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CHAPTER 6 STAT 512, J. TEBBS

6 Functions of Random Variables

Complementary reading: Chapter 6 (WMS).

PROBLEM: Suppose Y is a continuous random variable, and consider a function of Y,
say, U = g(Y'), where g : R — R. The function U = ¢(Y') is itself a random variable,
and, thus, it has its own distribution. The goal of this chapter is to find distributions
of functions of random variables. When there are multiple random variables, we will be

interested in functions of the form U = ¢g(Y3, Y3, ..., Y,,), where g : R" — R.

REMARK: Here are some examples where this exercise might be of interest:

e In a medical experiment, Y denotes the systolic blood pressure for a group of cancer

patients. How is U = g(Y') = log V" distributed?

e A field trial is undertaken to study Y, the yield for an experimental wheat cultivar,

measured in bushels/acre. How is U = g(Y) = VY distributed?

e An actuary is examining the distributions of claim amounts, Y; and Y3, for two
competing policies. What is the distribution of U = ¢(¥1,Y2) = Y1/(Y1 + Y3)?
Here, g : R? — R.

e In an early-phase clinical trial, the time to death is recorded for a sample of n rats,

yielding data Y1, Y5, ..., Y,,. Researchers would like to find distribution of
1 n
U=9gY1,Ys, .. Y,)==>» Y,
g( 1y 4250y ) n ZZI
the average time for the sample. Here, g : R" — R.
PREVAILING THEME: This chapter deals with finding distributions of functions of
random variables. We will investigate three techniques for doing this:
(1) Method of distribution functions
(2) Method of transformations

(3) Method of moment generating functions.
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6.1 The method of distribution functions (or “cdf technique”)

SETTING: Suppose Y is a continuous random variable with cumulative distribution
function (cdf) Fy(y) = P(Y < y). The cdf technique is especially useful when the
cdf Fy(y) can be written out in closed form (although this is not a requirement). This

method can also be used if Y is vector valued (see Examples 6.2 and 6.3 in WMS).
Method of distribution functions:

1. If possible, find a closed form expression for Fy(y) = P(Y <y).

2. Find the support of U.

3. Write Fyy(u) = P(U < w), the cdf of U, in terms of Fy (y), the cdf of Y.

4. Differentiate Fy;(u) to obtain the pdf of U, fy(u).

Example 6.1. Suppose that Y ~ (0, 1). Find the distribution of U = g(Y) = —InY.
SOLUTION. The cdf of Y ~ (0, 1) is given by

0, y<0
Fy(y) = y, O<y<1
L, y>1

The support for Y ~ U(0,1) is Ry = {y : 0 < y < 1}; thus, because © = —lny > 0
(sketch a graph of the log function), it follows that the support for U is Ry = {u : u > 0}.

Using the method of distribution functions, we have

Fy(u)=PU <u) = P(—InY <u)
= P(lnY > —u)
= PY>e")=1-PY <e*)=1-Fy(e™).

Notice how we have written the cdf of U as a function of the cdf of Y. Because Fy (y) =y

for 0 < y < 1; i.e., for u > 0, we have

Fy(u)y=1—Fy(e ") =1—¢e"
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Taking derivatives, we get, for u > 0,

d d
= —F =—(1—-e")=e"
fulu) = S Fulu) = o (1= e ") =
Summarizing,
e ™, u>0
Jolu) =

0, otherwise.

This is an exponential pdf with mean 3 = 1; that is, U ~ exponential(1). O

Example 6.2. Suppose that Y ~ U(—n/2,7/2). Find the distribution of the random
variable defined by U = ¢(Y) = tan(Y).
SOLUTION. The cdf of Y ~ U(—n/2,7/2) is given by

07 Yy S _7T/2
Fy(y) =4 Y12 —n/2<y< /2
1, y>n/2

The support for Y is Ry = {y : —7/2 < y < w/2}. Sketching a graph of the tangent
function over the principal branch from —x /2 to /2, we see that —oco < u < co. Thus,
Ry = {u: —00 < u < oo} = R, the set of all reals. Using the method of distribution

functions (and recalling the inverse tangent function), we have

Fy(u)=P(U <u) = Pftan(Y) < u]
= P[Y <tan '(u)] = Fy[tan ' (u)].

Notice how we have written the cdf of U as a function of the cdf of Y. Because Fy(y) =

(y+7/2)/m for —m/2 <y < w/2; i.e., for u € R, we have

Fy(u) = Fy[tan ' (u)]
tan~!(u) + 7T/2'

T
The pdf of U, for u € R, is given by
d d [tan™'(u) + /2 1
fU(u) du U(U’) du |: T :| 7T(1+U2)

PAGE 3



CHAPTER 6 STAT 512, J. TEBBS

0.20 0.25 0.30
| | 1

0.15
|

0.05
|

0.0
1

Figure 6.1: The standard Cauchy probability density function.

Summarizing,
folu) = m, —00 < U < 00
0, otherwise.
A random variable with this pdf is said to have a (standard) Cauchy distribution. One
interesting fact about a Cauchy random variable is that none of its moments are finite!

Thus, if U has a Cauchy distribution, F(U), and all higher order moments, do not exist.
EXERCISE: If U is standard Cauchy, show that E(|U|) = 4o00. O

6.2 The method of transformations

SETTING: Suppose that Y is a continuous random variable with cdf Fy(y) and sup-
port Ry, and let U = ¢g(Y), where g : Ry — R is a continuous, one-to-one function
defined over Ry. Examples of such functions include continuous (strictly) increas-
ing/decreasing functions. Recall from calculus that if g is one-to-one, it has an unique

inverse g—!. Also recall that if ¢ is increasing (decreasing), then so is g~
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METHOD OF TRANSFORMATIONS: Suppose that g(y) is a strictly increasing function
of y defined over Ry. Then, it follows that u = g(y) <= ¢~ '(u) = y and

Fy(u) = P(U <u) = Plg(Y) <

= PlY <g 'u)] = Fylg " (u)].

Differentiating Fy(u) with respect to u, we get

d d

Ju(u) = ==Fy(u) = —=Fy[g~ ()] = frlg™ (@)] =g~ (u).
——

chain rule
Now as g is increasing, so is g~'; thus, Lg~!(u) > 0. If g(y) is strictly decreasing, then
Fy(u) =1— Fylg~*(u)] and “Lg~*(u) < 0 (verify!), which gives

d d

i) = - Fy(u) = {1 = Flg™ ()]} = — il ()] g (u).

Combining both cases, we have shown that the pdf of U, where nonzero, is given by
o) = Felg™ )] g™ )|
du

It is again important to keep track of the support for U. If Ry denotes the support of
Y, then Ry, the support for U, is given by Ry = {u:u = g(y); y € Ry }.

Method of transformations:

1. Verify that the transformation u = g(y) is continuous and one-to-one over Ry.
2. Find the support of U.
3. Find the inverse transformation y = g~ !(u) and its derivative (with respect to u).

4. Use the formula above for fy(u).

Example 6.3. Suppose that Y ~ exponential(3); i.e., the pdf of Y is

1 _-y/B
Fly) = 3¢ y/, y >0

0, otherwise.

Let U = g(Y) = VY. Use the method of transformations to find the pdf of U,
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SOLUTION. First, we note that the transformation g(y) = ,/y is a continuous strictly
increasing function of y over Ry = {y : y > 0}, and, thus, g(y) is one-to-one. Next, we
need to find the support of U. This is easy since y > 0 implies u = /y > 0 as well.

Thus, Ry = {u : u > 0}. Now, we find the inverse transformation:

) =u=y=y=g'(u)=u’
inverse tra;lrsformation

and its derivative:
d _, d, ,
— = — = 2u.
7.9 (W) = —-(u) =2u

Thus, for u > 0,

folw) = ol ]|-g7 w)]

= Loy |2u| = 2U

G g

Summarizing,
%“e’“Q/ Bou>0
fo(u) =
0, otherwise.
This is a Weibull distribution with parameters m = 2 and a = (3; see Exercise 6.26
in WMS. The Weibull family of distributions is common in engineering and actuarial

science applications. [

Example 6.4. Suppose that Y ~ beta(a = 6,3 = 2); i.e., the pdf of Y is given by

425(1 —y), 0 1
oly) = v(1-y), O0<y<

0, otherwise.

What is the distribution of U = g(Y) =1-Y7?

SOLUTION. First, we note that the transformation g(y) = 1—y is a continuous decreasing
function of y over Ry = {y : 0 < y < 1}, and, thus, g(y) is one-to-one. Next, we need
to find the support of U. This is easy since 0 < y < 1 clearly implies 0 < u < 1. Thus,
Ry ={u:0<wu<1}. Now, we find the inverse transformation:

gy)=u=1-y=y=g'(u)=1-u

g
inverse transformation
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and its derivative:

d d
=g () = o (1—u) = ~1
Thus, for 0 < u < 1,
d
folw) = frlg™ @)]] 597 ()

= 421 —u)’[1 — (1 —w)] x | — 1| = 42u(1 — u)®.

Summarizing,

2u(l —u)®, 0<u<1
fu(u) =

0, otherwise.

We recognize this is a beta distribution with parameters o« =2 and g = 6. [J

QUESTION: What happens if u = g(y) is not a one-to-one transformation? In this case,
we can still use the method of transformations, but we have “break up” the transformation

g : Ry — Ry into disjoint regions where g is one-to-one.

RESULT': Suppose that Y is a continuous random variable with pdf fy(y) and that U =
g(Y), not necessarily a one-to-one (but continuous) function of y over Ry. Furthermore,
suppose that we can partition Ry into a finite collection of sets, say, By, Bs, ..., Br, where
P(Y; € B;) > 0 for all 4, and fy(y) is continuous on each B;. Furthermore, suppose that
there exist functions ¢1(y), 92(y), ..., gx(y) such that g;(y) is defined on B;, i = 1,2, ..., k,
and the g;(y) satisfy

(a) g(y) = gi(y) for all y € B;

(b) gi(y) is monotone on Bj, so that g; *(-) exists uniquely on B;.

Then, the pdf of U is given by

S fylgt(w)]

0, otherwise.

Lol (u)|, u€ Ry

fu(u) =

That is, writing the pdf of U can be done by adding up the terms fy[g; " (u)]|-Lg; " (u))|

corresponding to each disjoint set B;, fort=1,2,..., k.
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Example 6.5. Suppose that Y ~ A(0, 1); that is, Y has a standard normal distribution;
ie.,
L V2 _xo<y< oo

fr(y) = Var

0, otherwise.
Consider the transformation U = g(Y') = Y. This transformation is not one-to-one on
Ry =R ={y: —oo <y < oo}, but it is one-to-one on By = (—00,0) and By = [0, 00)
(separately) since g(y) = y? is decreasing on B and increasing on By. Furthermore, note

that B; and B, partitions Ry. Summarizing,

Partition Transformation Inverse transformation
By =(-00,0) gqi(y) =y>=u gfl(u)z—\/_:y
By =[0,00) @) =y=u g '(u)y=Vu=y

And, on both sets B; and B,
d | 1
‘@gz- (u)‘ T 2yu
Clearly, u = y* > 0; thus, Ry = {u : u > 0}, and the pdf of U is given by

1 —(—yuw)?/2 [ _1 1 —(vw?/2(_1
eV (m>+ﬁe (Va)2/ (Wa) w0

0, otherwise.

Thus, for v > 0, and recalling that I'(1/2) = /7, fu(u) collapses to

2 1
—u/2
u) = —e —
fU( ) \ 27 (2\/&)
1., 1 . | ,
s—1_—u/2 s—1_—u/2 s—1_—u/2
= —u? e = _—F(1/2)21/2U2 e =,

V2T /242

Summarizing, the pdf of U is

1 11, —u/2
folu) = st e u>0
0, otherwise.

That is, U ~ gamma(1/2,2). Recall that the gamma(1/2,2) distribution is the same as

a x? distribution with 1 degree of freedom; that is, U ~ x?(1). O
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6.3 Several independent random variables

RECALL: In STAT 511, we talked about the notion of independence when dealing with
n-variate random vectors. Recall that Y7,Y5, ..., Y, are (mutually) independent random

variables if and only if

or, equivalently, if and only if

Fr(y) =[] )

i=1
That is, the joint cdf Fy-(y) factors into the product of the marginal cdfs. Similarly, the
joint pdf (pmf) fy(y) factors into the product of the marginal pdfs (pmfs).

NOTATION REMINDER: The random vector Y = (Y3,Y3,...,Y,,). A realization of Y

is y = (y1,Y2,---,Yn)- Y is random; y is fixed.

MATHEMATICAL EXPECTATION: Suppose that Y3,Ys, ..., Y, are (mutually) inde-

pendent random variables. For real valued functions g1, g2, ..., gn,

Elg1(Y1)g2(Y2) - gn(Yn)] = Elg1(Y1)]E[g2(Y2)] - - - Elgn(Ya)],

provided that each expectation exists; that is, the expectation of the product is the
product of the expectations. This result only holds for independent random
variables!

Proof. We'll prove this for the continuous case (the discrete case follows analogously).
Suppose that Y = (Y7, Y5, ..., Y,) is a vector of (mutually) independent random variables
with joint pdf fy-(y). Then,

ng’(Yi)

E

_ / 1 (51)92002) 93] ()

= //"'/[gl(yl)g2(y2)'"gn(yn)]fY1(y1)fY2(y2)'"fYn(yn)dy
RJIR R

/R a1 (y1) i (y1)dyn /R 92(y2) fra (y2)dys - - - /R 9n(Yn) fyo (Un) Ay
Elgi(Y1)]E[g2(Y2)] - - - Elgn(Ya)]. O
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IMPORTANT: Suppose that aq,as, ..., a, are constants and that Y7,Y5, ..., Y, are inde-
pendent random variables, where Y; has mgf my, (¢), for i = 1,2, ..., n. Define the linear

combination

U=) aYi=aYi+aYy+- -+,
i=1

Then, the moment generating function of U is given by
my(t) = [ v, (ait).
i=1
Proof. Using the definition, the moment generating function of U is

mU(t) — E(etU) — E [et(t11Y1+a2Y2+--~+anYn)}

o E (ea1tY1 eGQtYQ . eantYn)

— E(ealtYl)E(eagtY2> L. E(eantYn)

n

= my, (a1t)my,(ast) - - - my, (a,t) = H my; (a;t). O
i=1

COROLLARY: If a; = as = --- = a, = 1 in the last result, the linear combination
U=5%",Y and
my(t) = [ [ mv.(b).
i=1

That is, the mgf of the sum U = > | Y] is the product of the marginal mgfs.

Example 6.6. Suppose that Y1,Y5, ..., Y, are independent N (u;, o

2) random variables

for 1 = 1,2,...,n. Find the distribution of the linear combination
U=aY14+ @Yo+ -+a,Y,.

SOLUTION. Because Y7, Y5, ..., Y, are independent, we know from the last result that

my(t) = Hmm(ait)

=[] expluilait) + o} (ait)* /2]

i=1

= exp [(i Cli/h') t+ (i a?af) t2/2] :
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We recognize this as the moment generating function of a normal random variable with
mean E(U) = Y"1 | a;u; and variance V(U) = Y | a?o?. Because mgfs are unique, we

i=1"1"1"

may conclude that

U~N (Zn:ai,ui,i:a?a?> .

i=1 i=1

That is, the distribution of a linear combination of independent normal ran-

dom variables is normally distributed. [

CONCEPTUALIZATION: In many statistical problems, a collection of random vari-
ables, say, Y1,Y5, ..., Y, can be viewed as independent observations from the same proba-
bility model. Statisticians like to call this common model the population distribution
because, at least conceptually, we can envisage the observations Y7, Y5, ..., Y, as being
randomly drawn from a population where fy(y) describes the population; i.e., the pdf

(pmf) fy(y) describes how the observations Y1, Ys, ..., Y,, are marginally distributed.

IID OBSERVATIONS': Suppose that Y7, Ys, ..., Y, are independent observations, where
each Y; has the common pdf (pmf) fy(y). A succinct way to express this is to say that

“Y1,Y5, ..., Y, is an iid sample from fy(y).”

The collection Yi,Y5,...,Y, is often called a random sample, and the model fy(y)
represents the population distribution. The acronym “iid” is read “independent and

identically distributed.”

REMARK: With an iid sample Y3,Y5, ..., Y, from fy(y), there may be certain character-
istics of fy (y) that we would like investigate, especially if the exact form of fy-(y) is not
known. For example, we might like to estimate the mean or variance of the distribution;
i.e., we might like to estimate F(Y) = p and/or V(Y) = ¢%. An obvious estimator for
E(Y) = u is the sample mean

3

721232;
2

i.e., the arithmetic average of the sample Y7, Y5, ...;Y,. An estimator for V(Y) = o is
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the sample variance

52— 1 > (Vi-Y)

n—1~4
=1
Both Y and S? are values that are computed from the sample; i.e., they are computed

from the observations (i.e., data) Y, Y5, ..., Y,,, so they are called statistics. Note that

- 1< 1 < 1<
EY)=F| - Y| =~ EY;) =~ —
©=5(15) L= s
and
VY)=V 1zn:Y ! iV(Y) ! Zn: 2 O
= - il = i) = —5 o= —.
i3 n’ i=1 n’ i=1 n
That is, the mean of sample mean Y is the same as the underlying population mean .

The variance of the sample mean Y equals the population variance o2 divided by n (the

sample size).

Example 6.7. Suppose that Y7,Y5, ..., Y, is an iid sample from fy(y), where

1 @7% (%)2
fyrly) =4 V? ’
0, otherwise.

—00 <Yy < o0

That is, Y7, Ya, ..., Y, ~iid A (u, 0?). What is the distribution of the sample mean Y?
SOLUTION. It is important to recognize that the sample mean Y is simply a linear

combination of the observations Y1,Y5,....Y,, witha; =ay =--- =a, = %; ie.,

- 1< Y, Y, Y,
Y == Y=+ 2 4...4 2
n; n+n+ +n

We know that Y7,Y5, ..., Y, are iid N'(u, 0?) so
Y ~N (Z aift, Z a?02> :
i=1 i=1
where ay = as =---=a, = %; that is,

2
VNN(M,%).

PUNCHLINE: If we have an iid sample of normal observations, the sample mean Y is
also normally distributed. [
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6.4 The method of moment generating functions

UNIQUENESS: Suppose that Z; and Z, are random variables with mgfs my, (¢) and
my,(t), respectively. If my, (t) = myg,(t) for all ¢, then Z; and Z5 have the same distri-

bution. This is called the uniqueness property of moment generating functions.

PUNCHLINE: The mgf completely determines the distribution! How can we use this
result? Suppose that we have a transformation U = g(Y) or U = g(Y1, Y5, ..., Y,,). If we
can compute my(t), the mgf of U, and can recognize it as one we already know (e.g.,
Poisson, normal, gamma, binomial, etc.), then we can use the uniqueness property to
conclude that U has that distribution (we’ve been doing this informally all along; see,

e.g., Example 6.6).

REMARK: When U = ¢(Y), using the mgf method requires us to know the mgf of Y up
front. Thus, if you do not know my (¢), it is best to try another method. This turns out
to be true because, in executing the mgf technique, we must be able to express the mgf
of U as a function of the mgf of Y (as we’ll see in the examples which follow). Similarly,

if U = g(Y1,Ys,....Y,), the mgf technique is not helpful unless you know the marginal

mgfs my, (t), my, (t), ..., my, (¢).

Method of moment generating functions:
1. Derive the mgf of U, which is given by my(t) = E(e'V).
2. Try to recognize my (t) as a moment generating function that you already know.
3. Because mgfs are unique, U must have the same distribution as the one whose mgf

you recognized.

Example 6.8. Suppose that Y ~ gamma(c, 3). Use the method of mgfs to derive the
distribution of U = ¢g(Y) = 2Y/p.
SOLUTION. We know that the mgf of Y is

mvit) = (1—1@t>a’
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for t < 1/5. Now, the mgf of U is given by

mU(t) — E(etU) — E[et(2Y/ﬂ)] — E[e(2t/B)Y]

= my(2t/f)
1 o 1 \°
- ) - (=)

for ¢ < 1/2. However, we recognize my(t) = (1 — 2¢t)™* as the x*(2a) mgf. Thus, by
uniqueness, we can conclude that U = 2Y/8 ~ x*(2«). O

MGF TECHNIQUE: The method of moment generating functions is very useful (and
commonly applied) when we have independent random variables Y1, Y5, ..., Y,, and in-

terest lies in deriving the distribution of the sum

In particular, we know that
my () = [ [mv(®),
i=1

where my,(t) denotes the marginal mgf of Y;. Of course, if Y;,Y5,...,Y, are iid, then
not only are the random variables independent, they also all have the same distribu-
tion! Thus, because mgfs are unique, the mgfs must be the same too. Summarizing, if
Y1,Ys, ..., Y, are iid, each with mgf my (t),

n

my(t) = [[my(t) = [my(2)]".

=1

Example 6.9. Suppose that Y7, Y5, ..., Y, is an iid sample from

p(1—p)tY, y=0,1

0, otherwise.

py(y) =

That is, Y1,Y3, ..., Y, are iid Bernoulli(p) random variables. What is the distribution of
thesum U =Y, +Ys+---+Y,?
SOLUTION. Recall that the Bernoulli mgf is given by my (t) = q + pe’, where ¢ = 1 — p.

Using the last result, we know that

my (t) = [my (t)]" = (¢ + pe")",
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which we recognize as the mgf of a b(n,p) random variable! Thus, by the uniqueness

property of mgfs, we have that U =Y, + Yo+ -+ Y, ~ b(n,p). O

Example 6.10. Suppose that Y7,Y5, ..., Y, is an iid sample from

_ 1  a-1,—y/B
o ay € Y y > 0
fr(y) = He)?

0, otherwise.
That is, Y1, Y5, ..., Y, are iid gamma(c, ) random variables. What is the distribution of
thesum U =Y, + Y5+ ---+Y,7?

SOLUTION. Recall that the gamma mgf is, for ¢t < 1/0,

myit) = (1—15t>a'

Using the last result we know that, for ¢t < 1/0,

ot =m0 = [(1 jﬂt)T ) (1 —1615)&”’

which we recognize as the mgf of a gamma(an, §) random variable. Thus, by the unique-

ness property of mgfs, we have that U =Y; + Y, + -+ + Y, ~ gamma(an, 5). O

COROLLARY: If Y1,Y5,....Y, is an iid sample of exponential random variables with
mean 3, then U = Y] + Y, + --- + Y, ~ gamma(n, 3). This follows from Example 6.10
by taking a = 1. [J

Example 6.11. As another special case of Example 6.10, take « = 1/2 and § = 2 so
that Y1,Ys, ..., Y, are iid x?(1) random variables. The result in Example 6.10 says that
U=Y,+Yy+ - +Y, ~ gamma(n/2,2) which is the same as the x*(n) distribution.

Thus, the sum of independent x?(1) random variables follows a x?(n) distribution. [J

GENERALIZATION: If Y1,Y5, ..., Y, are independent (not iid) random variables where
Y ~ x2(v), then U =Y + Yo+ - 4+ Y, ~ x*(v), where v =3, 1.

Example 6.12. Suppose that Y1,Y5, ..., Y,, are independent A (u;, 0?) random variables.
Find the distribution of

n

2
U:Z (E;Mi) .
=1
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SOLUTION. Define
Y —
Zi = a s

g;

for each 1 = 1,2, ...,n. Observe the following facts.

o 71,75, ..., Z, are independent N/ (0, 1) random variables. That Z; ~ N (0, 1) follows
from standardization. That 7, Zs, ..., Z,, are independent follows because func-

tions of independent random variables are themselves independent.

e From Example 6.5, we know that Z7, Z2, ..., Z? are independent x?*(1) random vari-
ables. This is true because Z; ~ N'(0,1) = Z? ~ x*(1) and because Z%, Z3, ..., Z>

n

are functions of 7y, Zs, ..., Z, (which are independent).

e Finally, from Example 6.11 we know that

6.5 Bivariate transformations

REMARK: So far in this chapter, we have talked about transformations involving a single
random variable Y. It is sometimes of interest to consider a bivariate transformation

such as
U = 91(Y1,Y2)
U2 = 92<Y17}/2)

To discuss such transformations, we will assume that Y; and Y, are jointly continuous
random variables. Furthermore, for the following methods to apply, the transformation
needs to be one-to-one. We start with the joint distribution of Y = (Y3, Y3). Our first
goal is to derive the joint distribution of U = (U, Us).

BIVARIATE TRANSFORMATIONS: Suppose that Y = (Y1,Y3) is a continuous ran-
dom vector with joint pdf fy,y,(y1,92). Let g : R*> — R? be a continuous one-to-one

vector-valued mapping from Ry, y, to Ry, v,, where Uy = ¢1(Y1,Ys) and Us = ¢2(Y1, Y2),
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and where Ry, y, and Ry, y, denote the two-dimensional supports of Y = (Y7,Y5) and
U = (U, Us,), respectively. If g; ' (u1,us) and g5 ' (uy,up) have continuous partial deriva-

tives with respect to both u; and us, and the Jacobian, J, where, with “det” denoting

“determinant”,
A9y M(ui,uz)  Agy (ur,uz)
ou ou
J = det ! 2 0
995 '(u1,u2)  Agy "(u,uz) # 0,
Ou1 Ousg
then

fY1,Y2 [gfl(ula u2)7 ggl(uh u2)]|‘]‘7 (uh u2) S RU1,U2
fUl,UQ(Ul,Uz) =
0, otherwise,

where |.J| denotes the absolute value of J.

RECALL: The determinant of a 2 x 2 matrix, e.g.,

a b
det = ad — be.
c d

IMPORTANT: When performing a bivariate transformation, the function g : R? — R?
must be one-to-one. In addition, we need to keep track of what the transformation
Uy = 1(Y1,Y2),Us = ¢2(Y1,Y2) “does” to the support Ry, y,. Remember, g is a vector-

valued function that maps points in Ry, y, to Ry, v,.

Steps to perform a bivariate transformation:

1. Find fv,v,(y1,¥2), the joint distribution of Y7 and Y,. This may be given in the
problem. If Y7 and Y5 are independent, then fy, v, (y1,%2) = fvi (Y1) fra(y2)-

2. Find Ry, 1, the support of U = (Uy, Uy).

3. Find the inverse transformations y; = g7 (u1,us) and yo = g5 (u1, us).

4. Find the Jacobian, J, of the inverse transformation.

5. Use the formula above to find fi, v, (w1, ug), the joint distribution of U; and Us.

NOTE: If desired, marginal distributions fi, (u1) and fi, (u2) can be found by integrating
the joint distribution fy, v, (u1, u2) as we learned in STAT 511.
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Example 6.13. Suppose that Y; ~ gamma(a, 1), Yo ~ gamma(f, 1), and that Y; and

Y, are independent. Define the transformation

Ui = g(Y1,Y2) =Y1+ Y,
Vi

Uy = 92(Y1,Y2)=Y1+Y2-

Find each of the following distributions:

(a) fu,.v,(u1,usg), the joint distribution of U; and Us,
(b) fu,(u1), the marginal distribution of U;, and

(¢) fu,(uz), the marginal distribution of Us.

SOLUTIONS. (a) Since Y] and Y3 are independent, the joint distribution of Y] and Y5 is

le,YQ (yh 92) = fn (yl)fy2 (yz)

1 -1 - 1 6_1 —
— o Y1 Y2
™ ° “1tE)” °
_ 1 a—1 ﬂ—le—(y1+y2)

M@ ¥

for y1 > 0, y2 > 0, and 0, otherwise. Here, Ry,y, = {(v1,%2) : y1 > 0,92 > 0}. By

inspection, we see that u; = y; +yo > 0, and uy = yl?ﬁyQ must fall between 0 and 1.

Thus, the support of U = (Uy, Us) is given by
Ry, v, = {(u1,u2) :up > 0,0 < ug < 1}.
The next step is to derive the inverse transformation. It follows that

ur = g1(y1,Y2) = Y1 + Yo Y1 = gfl(Ub Ug) = Uy Uz
=

Uy = Go(Y1,Y2) = ylz_/ﬁyz Y2 = 92_1(“17U2) = Ur — UU2

The Jacobian is given by

dgy H(urug)  9gy ' (u1,uz)

U2 U

J = det 716“1 718“2 = det = —uguy — u (1 — ug) = —uy.
0gy (u1,u2)  0gy  (u1,u2) 1—w —u
Bul BUQ 2 1
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We now write the joint distribution for U = (Uy,Us). For w3 > 0 and 0 < uy < 1, we

have that
fUl,Uz(UhUz) = le,Yz[gfl(UhUz)agil(ula’@)”ﬂ
]. _ — —lui1u U] —uijuw
- W(ulw)a T T R T}

Rewriting this expression, we get

uS T (1—u2)P ! a4p-1 _
Wul e”l, U1>070<U2<1

0, otherwise.

fUl,UQ(Ul,W) =

ASIDE: We see that U; and U, are independent since the support Ry, v, = {(u1,usg) :
u; > 0,0 < uy < 1} does not constrain uy by uy or vice versa and since the nonzero part

of fu,.v,(u1,us2) can be factored into the two expressions hy(u;) and he(ug), where
hy (Ul) _ U?Jrﬁfleful

and
uy (1 — uy)Pt

P(a)I'(5)
(b) To obtain the marginal distribution of Uy, we integrate the joint pdf fu, v, (w1, us)

over uy. That is, for u; > 0,

1

fUl (ul) = fU1,U2(u17u2)du2
u2=0

_ /1 ug ™ (1 — ug)P ! WO e gy,
ug=0 F(Q)F(ﬁ) !

1 B 1
= ——ut’ le_ul/ u§ ™ 1 — ug)? ! duy
u :O\ 7

I'(a)l'(3) »
beta(a,3)kernel
1 ')l
_ u?Jr,Bfleful % ()L(B)
I'()I'(B) I'(a+3)
]‘ a+ﬂ71 —u1
= —u e .
Dla+p) "
Summarizing,
L¢P emu gy >0,
fo(w) = § T
0, otherwise.

We recognize this as a gamma(a + 3, 1) pdf; thus, marginally, U; ~ gamma(a + 3, 1).
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(c) To obtain the marginal distribution of U, we integrate the joint pdf fu, v, (w1, us)

over u;. That is, for 0 < uy < 1,

Ju (u2)

Summarizing,

fUQ (uQ) =

[e.9]

fUl,UQ (u17 u2)du1
u1=0

-1 _
/OO Ug (1 — UQ)B lua+,@—1€—u1du1
1
w—o LT(T

)
B )/Bi > a+pB—-1 _ —uy
F(a)T(0) £120“1+ ¢

g

= T(a+)

Llath) uy t (1 —u)? 7, 0<uy <1,

0, otherwise.

Thus, marginally, Us ~ beta(a, 3). O

REMARK: Suppose that Y = (Y1,Y3) is a continuous random vector with joint pdf

Iviva(y1,y2), and suppose that we would like to find the distribution of a single random

variable

Even though there is no U, present here, the bivariate transformation technique can still
be useful! In this case, we can define a “dummy variable” Uy = g¢o(Y7,Y>) that is of
no interest to us, perform the bivariate transformation to obtain fy, y,(u1, us2), and then
find the marginal distribution of U; by integrating fu, v, (u1,u2) out over the dummy

variable us. While the choice of Us is arbitrary, there are certainly bad choices. Stick

Ul = gl(}q7}6)

with something easy; usually Us = ¢2(Y7, Y5) = Y5 does the trick.

EXERCISE: Suppose that Y] and Y5 are random variables with joint pdf

y1ye, 0 <y <y <1,

le,Yg(ybyZ) =

Find the pdf of U; = Y;/Ys.

0, otherwise.
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REMARK : The transformation method can also be extended to handle n-variate trans-
formations. Suppose that Y7, Y5, ..., Y, are continuous random variables with joint pdf

fy(y) and define
Ul = gl<}/17)/27‘”7yn)

U2 = 92(Y1,Y27 7Yn)

Uy, = gu(Y1,Ya,...Y,).

If this transformation is one-to-one, the procedure that we discussed for the bivariate

case extends straightforwardly; see WMS, pp 330.

6.6 Order statistics

DEFINITION: Suppose that Y7,Ys, ..., Y, are iid observations from fy(y). As we have
discussed, the values Y7, Y3, ..., Y, can be envisioned as a random sample from a pop-

ulation where fy (y) describes the behavior of individuals in this population. Define

Y1) = smallest of Y1,Y5,...,Y,

Y2y = second smallest of Y1,Y5,..., Y,

Y = largest of Y1,Y5,...,Y,,.

The new random variables, Y(;) < Y() < --- <Y, are called order statistics; they are

simply the observations Y7, Ys, ..., Y,, ordered from low to high.

GOALS: We are interested in understanding how a single order statistic is distributed
(e.g., minimum, maximum, sample median, etc.). In addition, we might want to derive
the distribution of a function of order statistics, say, R = Y{,) — Y(1), the sample range.
Throughout our discussion, we assume that the observations Y7, Y, ..., Y, are continuous

so that, theoretically, ties are not possible.
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PDF OF Yy): Suppose that Y1,Y5,...,Y, are iid observations from the pdf fy(y) or,
equivalently, from the cdf Fy(y). To derive fy, (y), the marginal pdf of the minimum

order statistic, we will use the distribution function technique. The cdf of Y(y) is

Fy,(y) = P(Yy <)
= 1-PYy >y)
= 1-P{Mi>ytn{Ya>y}tn---n{Y, >y}
= 1-PY1>y)P(Ya>y) - P(Y, >y)

= 1-[PM>y|"=1—-[1-Fy(y)"

Thus, for values of y in the support of Y/,

Fro ) = 5B
d n
= @{1 —[1—-F )"}
= —n[l=FW]" =) =nfyy)l - Fyy]"

and 0, otherwise. This is the marginal pdf of the minimum order statistic. [

Example 6.14. An engineering system consists of 5 components placed in series; that
is, the system fails when the first component fails. Suppose that the n = 5 component
lifetimes Y7, Y5, ..., Y5 are assumed to be iid exponential observations with mean 3. Since
the system fails when the first component fails, system failures can be determined (at
least, probabilistically) by deriving the pdf of Y{;), the minimum order statistic. Recall
that for the exponential model, the pdf is

fr(y) = 3 v

0, otherwise

and the cdf is given by
0, y<0

F =
V) 1—e 8 4y >0.

Using the formula for the pdf of the minimum order statistic, we see that, with n = 5
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(v)

f_min

0.0 0.2 0.4 0.6 0.8 1.0 1.2

miny

Figure 6.2: The probability density function of Y(1), the minimum order statistic in Ex-
ample 6.14 when 0 = 1 year. This represents the distribution of the lifetime of a series

system, which is exponential with mean 1/5.

components, the distribution of the lifetime of the series system is given by

Froy W) = nfrl—Fry))"!

=5 (%ey/ﬁ) [1 _ (1 _ e,y/g)}&sq

) 4

— Zeu/B (emy/B
S ()

e )
B (8/5)

for y > 0. That is, the minimum order statistic Y{;), which measures the lifetime of the

system, follows an exponential distribution with mean E(Y{y)) = 8/5. O

Example 6.15. Suppose that, in Example 6.14, the mean component lifetime is § = 1
year, and that an engineer is claiming the system with these settings will likely last at
least 6 months (before repair is needed). Is there evidence to support his claim?

SOLUTION. We can compute the probability that the system lasts longer than 6 months,
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which occurs when Y(;) > 0.5. Using the pdf for Y(y) (see Figure 6.2), we have

1 00
P(Yy(l) > 05) = / 1_/56_3//(1/5)dy — / 56_5ydy ~ 0.082.
0.5 0.5

Thus, chances are that the system would not last longer than six months. There is not

very much evidence to support the engineer’s claim. [J

PDF OF Y(,: Suppose that Y7,Y5,...,Y, are iid observations from the pdf fy(y) or,
equivalently, from the cdf Fy(y). To derive fy,,(y), the marginal pdf of the maximum

order statistic, we will use the distribution function technique. The cdf of Y, is

Py, (y) = P(Y) <y)
= P{Vi<yIn{Ya<y}n---n{Y, <y}
= P(Yi <y)P(Ya<y)--P(Y, <vy)

= [PM <y)]" = [Fr(y)]"

Thus, for values of y in the support of Y{,),

d

frwy) = d_yFY(”> (v)

d n
= d—y{[Fy(y)] }
= nfy(W)[Fy )",

and 0, otherwise. This is the marginal pdf of the maximum order statistic. [J

Example 6.16. The proportion of rats that successfully complete a designed experiment
(e.g., running through a maze) is of interest for psychologists. Denote by Y the proportion
of rats that complete the experiment, and suppose that the experiment is replicated in
10 different rooms. Assume that Y7, Y5, ..., Y} are iid beta random variables with o = 2
and # = 1. Recall that for this beta model, the pdf is

Foly) = 2y, O<y<1

0, otherwise.

Find the pdf of Y(1¢), the largest order statistic. Also, calculate P(Y{19) > 0.90).
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20

15
|

f_max(y)
10
\

0.6 0.7 0.8 0.9 1.0

max y

Figure 6.3: The pdf for Y10y, the largest order statistic in Example 6.16.

SOLUTION. Direct calculation shows that the cdf of Y is given by

0, y<0
Fy(y) =14 ¢ 0<y<l1
L, y>1

Using the formula for the pdf of the maximum order statistic, for 0 <y < 1,

Yoo (Y) = nfy (y)[Fy (y)]"~ = 10(2y)(v*)? = 20y".

Thus, the pdf of Y is given by

20y, 0<y<1
fY<10) (y) =

0, otherwise

and this probability density function is depicted in Figure 6.3. Note that this is the pdf
of a beta(a = 20, 8 = 1) random variable; i.e., Y{19) ~ beta(20,1). Furthermore,

1

1
P(Y(10) > 0.90) = / 20y%dy = y*|  =1-(0.9* ~0.88. O
0.90

0.90
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PDF OF Yy,: Suppose that Y3,Y5,..., Y, are iid observations from the pdf fy(y) or,
equivalently, from the cdf Fy (y). To derive fy,,, (y), the pdf of the kth order statistic,

we appeal to a multinomial-type argument. Define

Class Description #Y;’s
1 the Y;’s less than y k—1
2 the Y;’s equal to y 1

3 the Y;’s greater than y n —k

Thus, since Y7, Y5, ..., Y, are independent, we have, by appeal to the multinomial model,

n!
(k—D!(n — k)

Frwy) = B O A @] = B,

where we interpret
Fy(y) = PYi<y)
Krly) = PYi=y)

1-Fy(y) = PYi>y).

Thus, the pdf of the kth order statistic Y{y) is given by

n!

k—Dl(n— k)

Friwy) = (B )= B )],

for values of y in the support of Y, and 0, otherwise. [

Example 6.17. Suppose that Y3,Ys, ..., Y, are iid (0, 1) observations. What is the
distribution of the kth order statistic Y7

SOLUTION. Recall that for this model, the pdf is

1, O0<y<1
fr(y) = .
0, otherwise
and the cdf of Y is
0, y<0
Fy(y) = y, O0<y<1
L, y>1
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Using the formula for the pdf of the kth order statistic, we have, for 0 < y < 1,

Fro) = Gl - A
n! k—1 n—k
ERE TR AL
['(n+1)

k—1 1 — (n—k—&-l)—l‘
et —krn? 7Y

You should recognize this as a beta pdf with @« = k and 8 = n — k + 1. That is,
Y(x) ~ beta(k,n —k +1). O

TWO ORDER STATISTICS: Suppose that Y1,Y5,...,Y, are iid observations from the
pdf fy(y) or, equivalently, from the cdf Fy(y). For j < k, the joint distribution of Y
and Y{y is

n! -
fY(j)’Y(k)<yj’yk) = (] _ 1)'(/{3 ] —j)‘(n _ ]{3)' [Fy(y])]]

< fy W) [Fy (ye) — Fy ()" fyr () [1 = Fy ()],

for values of y; < g, in the support of Y(;) and Y{;), and 0, otherwise. [

REMARK: Informally, this result can again be derived using a multinomial-type argu-

ment, only this time, using the 5 classes

Class Description #Y.’s
1 the Y;’s less than y; j—1
2 the Y;’s equal to y; 1
3 the Y;’s greater than y; but less than y, &k —1—7
4 the Y;’s equal to yi 1
5 the Y;’s greater than yy n—=k

EXERCISE: Suppose that Y7, Ys, ..., Ys5 is an iid sample of n = 5 exponential observations
with mean § = 1.

(a) Find the joint distribution of Y{;y and Y(s).

(b) Find the probability that the sample range R = Y(5) — Y1) exceeds 2. That is,
compute P(R > 2) = P(Ysy — Y1) > 2). Hint: You have the joint distribution of ¥{y

and Y(s) in part (a).

PAGE 27



CHAPTER 7 STAT 512, J. TEBBS

7 Sampling Distributions and the Central Limit The-

orem

Complementary reading: Chapter 7 (WMS).

7.1 Introduction

REMARK: For the remainder of this course, we will often treat a collection of random

variables Y7, Y5, ..., Y, as a random sample. This is understood to mean that

e the random variables Y7, Y5, ..., Y,, are independent

e cach Y; has common pdf (pmf) fy(y). This probability model fy(y) can be discrete
(e.g., Bernoulli, Poisson, geometric, etc.) or continuous (e.g., normal, gamma,

uniform, etc.). It could also be a mixture of continuous and discrete parts.

REVIEW : In mathematical statistics, it is common to refer to a collection of random vari-
ables with these properties as an iid sample. The acronymn “iid” means “independent
and identically distributed.” The model fy(y) is called the population distribution;

it represents the distribution from which the sample values Y7, Y3, ..., Y,, are drawn.

DEFINITION: A statistic, say T, is a function of the random variables Y1, Y5, ..., Y,,. A

statistic can depend on known constants, but it can not depend on unknown parameters.

NOTE: To emphasize the dependence of T" on Y7, Y5, ..., Y,,, we may write
T=T(Y1,Ys,....Y,).

In addition, while it will often be the case that Y7, Y5, ..., Y,, constitute a random sample
(i.e., that they are iid), our definition of a statistic T holds in more general settings. In
practice, it is common to view Y7, Y, ..., Y, as data from an experiment or observational

study and 7" as some summary measure (e.g., sample mean, sample variance, etc.).
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Example 7.1. Suppose that Y;,Y5, ..., Y, is an iid sample from fy(y). For example,

each of the following are statistics:

T(Y1,Ya,...,Y,) =Y = 13" Y, the sample mean.

T n

e T(YV1,Ys,....Y,) = %[Y(n/g) + Y{[n/2+1)), the sample median (if n is even).

o T'(Y1,Ys,....Y,) = Yj), the minimum order statistic.
o T'(Y1,Ys,....Y,) = Yy — Y1), the sample range.
e T(Y1,Ys,....Y,) =52 = L5 (YV; — Y)?, the sample variance.

IMPORTANT: Since Y1, Ys, ..., Y,, are random variables, any statistic 7" = T'(Y1, Ys, ..., Y3,),
being a function of Y1,Y5, ..., Y, is also a random variable. Thus, T has, among other

characteristics, its own mean, its own variance, and its own probability distribution!

DEFINITION: The probability distribution of a statistic 7" is called the sampling dis-
tribution of T". The sampling distribution of 7" describes mathematically how the values
of T vary in repeated sampling from the population distribution fy(y). Sampling distri-

butions play a central role in statistics.

7.2 Sampling distributions related to the normal distribution

Example 7.2. Suppose that Y}, Y5, ..., Y, is an iid sample from a N (i, 0?) distribution,

and consider the statistic

3

Y=1%v,

the sample mean. From Example 6.7 (notes), we know that
2
Y ~N (,u, 0—) .
n

Y-y
~o/yn
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Example 7.3. In the interest of pollution control, an experimenter records Y, the
amount of bacteria per unit volume of water (measured in mg/cm?®). The population
distribution for Y is assumed to be normal with mean p = 48 and variance o = 100;
that is, Y ~ N (48,100). As usual, let Z denote a standard normal random variable.

(a) What is the probability that a single water specimen’s bacteria amount will exceed
50 mg/cm??

SOLUTION. Here, we use the population distribution A/(48,100) to compute

50 — 48
my>w):f{2> n )

— P(Z>0.2) =0.4207.

(b) Suppose that the experimenter takes a random sample of n = 100 water specimens,
and denote the observations by Y7, Y5, ..., Yi90. What is the probability that the sample
mean Y will exceed 50 mg/cm?®?

SOLUTION. Here, we need to use the sampling distribution of the sample mean Y. Since

the population distribution is N (48,100), we know that
— 0'2

Thus,

- 50 — 48
P(Y > 50) = P(Z> 1 >

— P(Z>2)=0.0228. O
EXERCISE: How large should the sample size n be so that P(Y > 50) < 0.01?

RECALL: If Y1,Y5, ..., Y,, are independent N (j;, 0?) random variables, then

ﬁé(n;“QQNX%M-

i=1

We proved this in the last chapter. See Example 6.12 (notes).

SPECIAL CASE: If Y1,Ys, ..., Y, are iid N (p, 0?), then

ﬁi(n;¢?2~x%M-

=1
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NEW RESULT: If Y1,Y5, ..., Y, are iid N'(u, 0?), then

(n—1)5% _ Z”;(Y —7>2 1)

o2 : o
=1

In addition, Y and S? are independent.

REMARK: We will not prove the independence result, in general; this would be proven
in a more advanced course, although WMS proves this for the n = 2 case. The statistics
Y and S? are independent only if the observations Yi,Ys, ..., Y, are iid N(u,o?). If the

normal model changes (or does not hold), then Y and S? are no longer independent.

Proof. We will prove that

First, we write

since the cross product

2 () (%)=

Now, we know that W; ~ x2(n). Also, we can rewrite W3 as

S5 - ()
<%>2NX2(1),

~N(0,1),

since o
Y —p
o/v/n

and the square of a standard normal is distributed as x*(1). So, we have

Wl - WQ+W3

—1)5?
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Since W, is a function of S? and Wj is a function of Y, W, and W; are independent.

Thus, the mgf of W) is given by
a0 = B(@) = Bl
= E{et[(”—l)SQ/UQ]eth,}
B0y gy,

But, my, (t) = (1—2t)7"/2 since W} ~ x%(n) and my, (t) = (1—2t)~1/2 since W5 ~ x2(1);
both of these mgfs are valid for ¢ < 1/2. Thus, it follows that

(1—2t)™"2 = p{ln=DS%/e%1 (1 — 2)~1/2,
Hence, it must be the case that
E{et[(n—l)SQ/ch]} = E(e™2) = my, (1) = (1 — 2t>—(n—1)/2,
for values of t < 1/2. Thus, Wy ~ x?(n — 1) by the uniqueness property of mgfs. [J

Example 7.4. In an ecological study examining the effects of Hurricane Katrina, re-
searchers choose n = 9 plots and, for each plot, record Y, the amount of dead weight
material (recorded in grams). Denote the nine dead weights by Y7, Y, ..., Yy, where Y;
represents the dead weight for plot 7. The researchers model the data Y7,Y5, ..., Yy as an
iid NV (100, 32) sample. What is the probability that the sample variance S? of the nine
dead weights is less than 20?7 That is, what is P(S? < 20)?

SOLUTION. We know that

Thus,

85%  8(20)
P(S*<20) = P|— < —~2
(5% < 20) { 37 < "33 }
= P[*8) <5 ~024.0
Note that the table of y? probabilities (Table 6, pp 794-5, WMS) offers little help in
computing P[x*(8) < 5]. I found this probability using the pchisq(5,8) command in R.
EXERCISE: How large should the sample size n be so that P(S? < 20) < 0.017?
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7.2.1 The ¢ distribution

THE t DISTRIBUTION: Suppose that Z ~ A(0,1) and that W ~ x?(v). If Z and W

are independent, then the random variable

A
W/v

T —

has a t distribution with v degrees of freedom. This is denoted T' ~ t(v).

THE t PDF': Suppose that the random variable T" has a t distribution with v degrees of
freedom. The pdf for T is given by

vl
Fr(t) —\/7%( 13(11)/2)(1 + 82 /p)" 2 oo <t < 00
T pr—

0, otherwise.

REMARK: 1t is possible to derive the ¢ pdf using a bivariate transformation argument.
The good news is that, in practice, we will never use the formula for the ¢ pdf to find
probabilities. Computing gives areas (probabilities) upon request; in addition, tabled

values (giving limited probabilities) are readily available. See Table 5 (WMS).

FACTS ABOUT THE t DISTRIBUTION:

e continuous and symmetric about 0

e indexed by a parameter called the degrees of freedom (thus, there are infinitely

many t distributions!)
e in practice, v will usually be an integer (and is often related to the sample size)

e Asv — oo, t(r) — N(0,1); thus, when v becomes larger, the ¢(v) and the N'(0, 1)

distributions look more alike
o BE(T)=0and V(T') = -4 for v > 2

e When compared to the standard normal distribution, the ¢ distribution, in general,

is less peaked, and has more mass in the tails. Note that V(T") > 1.
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0.4

0.3

0.2
1

0.1

0.0

Figure 7.4: The t(3) distribution (dotted) and the N'(0,1) distribution (solid).

RELATIONSHIP WITH THE CAUCHY DISTRIBUTION: When v = 1, the t pdf

reduces to

— L _o<t<oo

fr(t)y =3 O
0, otherwise.
which we recognize as the pdf of a Cauchy random variable. Recall that no moments are

finite for the Cauchy distribution.

IMPORTANT RESULT: Suppose that Y1, Y5, ..., Y,, is an iid N'(u, 0?) sample. From past

results, we know that

j/?/_; ~N(0,1) and (n_a—zl)szwxz(n—l).

In addition, we know that Y and S? are independent, so the two quantities above (being

functions of Y and S?, respectively) are independent too. Thus,

0'?/;\/% N “N(O, 1)77
\/(n—al)SQ/(n —1) “X2(n—1)"/(n—1)

2

t =
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has a t(n — 1) distribution. But, simple algebra shows that
Y -
a/Vn Y-y

R -y SV

t =

This allows us to conclude that if Y7, Y5, ..., Y,, is an iid A (u, 0%) sample,
Y —u
- S/vn

COMPARISON: You should see the effect of estimating o, the population standard

t ~t(n—1).

deviation, with S, the sample standard deviation. Recall that if Y7,Y5,....,Y,, is an iid

N (1, 0?) sample, B
_ Y-
- o/vn

Thus, when we replace ¢ with its natural estimator S, we go from a standard normal

Z ~ N(0,1).

sampling distribution to a ¢ sampling distribution with n — 1 degrees of freedom. Of
course, if n is large, then we know that these sampling distributions will be “close” to

each other.

DERIVATION OF THE t PDF: We know that Z ~ N(0,1), that W ~ x*(v), and that
Z and W are independent. Thus, the joint pdf of (Z, W) is given by

1 2 1
— 222 - o w/2-1_—w/2
fZ,W(Za U)) \/ﬁe P(y/2>2y/2w € ’
N(0.1) pdf X2(v) pf

for —o0 < z < 0o and w > 0. Consider the bivariate transformation

A
W/v
U=g(ZW) = W

T:gl(Z,W) =

The support of (Z, W) is the set Rzw = {(z,w) : —00 < z < co,w > 0}. The support
of (T,U) is the image space of Rzy under g : R? — R? where g is defined as above;
i.e., Rry ={(t,u) : —oo <t < oo,u > 0}. The (vector-valued) function g is one-to-one,

so the inverse transformation exists and is given by

z :gfl(t,u) = t\/m

w=g, (t,u) = wu.
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The Jacobian of the transformation is

991 M(tw)  dgr t(tw)
vulv )2/ uv
= det /vt =/u/v.
0

J — det ot ou
1

995 ' (tu) gy ' (tu)
ot ou

We have the support of (T, U), the inverse transformation, and the Jacobian; we are now
ready to write the joint pdf of (T,U). For all —co < ¢t < oo and u > 0, this joint pdf is
given by

fT,U(tyu) = fZ,W[gfl(tau)vggl(t7u>]|‘]|
1 2 1
_ —(ty/u/v)?/2 v/2—-1_-—u/2
N Topret ¢ xIVu

_ 1 (w1)/2-1,-5(145)

V2rol(v)2)272 "

To find the marginal pdf of 7', we simply integrate fry(¢,u) with respect to u; that is,

frlt) = / " fru(tw)du

LD/2-1,-5 (145 4,

o 1
/0 V2T (v/2)2v/2
1 o _uqy 8
_ wtn/2-1,-5(145) 4
_ u e u,
V2mul(v)2)2v/2 /0 h ~ g

gamma/(a,b) kernel

-1
where a = (v +1)/2 and b = 2 (1 + ﬁ) . The gamma kernel integral above equals

v

(v+1)/2

2\ 1
2(1+—) ] ,

1%

PN (v+1)/2
> (1+2) ]

1%

[(a)b* =T[(v+1)/2]

so that the pdf of T becomes

1
fT(t) = \/27r_1/F(V/2)2V/2F[<V + 1)/2]
_ F(VTH> (1 +t2/V)_(V+1)/2,

Vv D(v]2)

for all —oo <t < 0o. We recognize this as the pdf of a ¢t random variable with v degrees

of freedom.
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7.2.2 The F distribution

THE F DISTRIBUTION: Suppose that Wi ~ x?(v1) and that Wy ~ x?(v5). If Wi and
Wy are independent, then the quantity

. Wl/Vl

F =
WQ/VQ

has an F' distribution with v; (numerator) and v, (denominator) degrees of freedom.

This is denoted F(vy, vs).

REMARK: Tt is possible to derive the F' pdf using a bivariate transformation (similar to
the argument we just made in deriving the ¢ pdf). If W ~ F(vy,14), the pdf of W, for

all w > 0, is given by

[(4te) <V_1> v/ w1—2)/2

2 12

>(V1+V2)/2'

Like the t pdf, we will never use the formula for the F' pdf to find probabilities. Computing
gives areas (probabilities) upon request; in addition, F' tables (though limited in their

use) are readily available. See Table 7 (WMS).

FACTS ABOUT THE F DISTRIBUTION:

e continuous and skewed right

e indexed by two degrees of freedom parameters v, and 1v5; these are usually

integers and are often related to sample sizes

o If W ~ F(vy,15), then E(W) = 1n/(vs — 2), for v, > 2. A formula for V(W) is
given on pp 368 (WMS). Note that E(W) ~ 1 if v, is large.

FUNCTIONS OF t AND F': The following results are useful. Each of the following facts

can be proven using the method of transformations.

1. W ~ F(vy, 1), then 1/W ~ F(vy,17).
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2. If T ~ t(v), then T? ~ F(1,v).
3. W ~ F(vy,1s), then (v1/v2)W/[1 + (v1/v2)W] ~ beta(v/2,15/2).
Example 7.5. Suppose that Y1, Y5, ..., Y, is an iid sample from a N (u, o?) distribution.

Recall that
7 =

Now, write

X*(1)"/1 o~ F(1m
-1/ "D

since the numerator and denominator are independent; this follows since Y and S? are

13

independent when the underlying population distribution is normal. We have informally
established the second result (immediately above) for the case wherein v is an integer

greater than 1. [J

AN IMPORTANT APPLICATION: Suppose that we have two independent samples:

}/117Y127 "‘JYITbl ~ iid N(,uho-%)
}/VQIaYVQQy "'a}/Qng ~ iid N(Man-%)

Define the statistics

— 1 &
Yi,=— Z Y1, = sample mean for sample 1
T 1
— 1 &
Yo, =— Z Y5, = sample mean for sample 2
N9 et
1 < -
S? = — Z<YU ~Y1,)* = sample variance for sample 1
j=1
IR =
Sy = p— Z(YQJ —Y,.)? = sample variance for sample 2.
j=1
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We know that

ny —1)5? ny — 1)S52
—< ! 2) L~x?(ni—1) and —( 2 2) 2 ~x%(ng —1).
01 P

Furthermore, as the samples are independent, (n; — 1)S%/0? and (ny — 1)S3 /03 are as

well. Thus, the quantity

(n1—1)S?
#/(nl -1 o« X2(ny —1)"/(ny — 1)

_ N /
e, 1) K2 = 1) (e = 1)

NF(nl—l,ng—l).

But, algebraically,
(n1—1)S?
/=1 5252

F= = .
2 D% J(ny — 1) S3/03
2
Thus, we conclude that
52/0.2
F=2"1~F( —1ny—1).
s3/o3 ~ Tt =l

In addition, if the two population variances o? and o3 are equal; i.e., 0} = 02 = 02, say,

then
B S2/o? B 5_12
o S3/0% 82

NF(nl—l,ng—l).

7.3 The Central Limit Theorem

RECALL: 1f Y1, Y5, ..., Y, is an iid sample from a N(u,o?) distribution, then we know
the sample mean Y ~ A (u,02/n). This begs the question: “What is the sampling

distribution of Y if the observations (data) are not normally distributed?”

CENTRAL LIMIT THEOREM: Suppose that Y7, Y5, ..., Y, is an iid sample from a pop-
ulation distribution with mean E(Y) = p and V(Y) = 02 < oo. Let Y = 23" Y]
denote the sample mean and define

Vi () =

Then, as n — oo, the cumulative distribution function (cdf) of U, converges pointwise

to the cdf of a N(0, 1) random variable.
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NOTATION: We write U, —— N(0,1). The symbol «_2,7 is read, “converges in distri-

bution to.” The mathematical statement that

Y —up
~o/Vn

implies that, for large n, ¥ has an approximate normal sampling distribution with

U, —L, N(0,1)

mean p and variance o2 /n. Thus, it is common to write
Y ~ AN (i, 0% /n).

REMARK: Note that this result is very powerfull The Central Limit Theorem (CLT)
states that averages will be approximately normally distributed even if the underlying
population distribution, say, fy(y), is not! This is not an exact result; it is only an

approximation.

HOW GOOD IS THE APPROXIMATION?: Since the CLT only offers an approximate
sampling distribution for Y, one might naturally wonder exactly how good the approxi-

mation is. In general, the goodness of the approximation jointly depends on

(a) sample size. The larger the sample size n, the better the approximation.

(b) symmetry in the underlying population distribution fy(y). The more symmetric
fv(y) is, the better the approximation. If fy (y) is highly skewed (e.g., exponential),
we need a larger sample size for the CLT to “kick in.” Recall from STAT 511 that

ElY — p)°]

o3

&=

the skewness coefficient, quantifies the skewness in the distribution of Y.

RESULT: Suppose U, is a sequence of random variables; denote by Fy, (u) and my, (t)
the corresponding sequence of cdfs and mgfs, respectively. Then, if my, (t) — my(t)
pointwise for all ¢ in an open neighborhood of 0, then there exists a cdf Fy(u) where
Fy, (u) — Fy(u) pointwise at all points where Fy;(u) is continuous. That is, convergence
of mgfs implies convergence of cdfs. We say that the sequence of random variables U,

converges in distribution to U and write U, 4 U.
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LEMMA: Recall from calculus that, for all a € R,

a n
lim <1 + —) = e
n—0o0 n
A slight variant of this result states that if a,, — a, as n — oo, then

lim <1 + a—”) = e°.
n

n—oo

PROOF OF THE CLT: To prove the CLT, we will use the last result (and the lemma
above) to show that the mgf of

e (752)

converges to my(t) = e’’/2 the mgf of a standard normal random variable. We will
then be able to conclude that U, —& A/ (0,1), thereby establishing the CLT. Let my (¢)
denote the common mgf of each Y;,Y5, ..., Y,. We know that this mgf my (¢) is finite for
all t € (—h, h), for some h > 0. Define

and let mx (t) denote the common mgf of each X, Xo, ..., X, (the Y;’s are iid; so are the

X;’s). This mgf mx(t) exists for all t € (—oh,oh). Simple algebra shows that

Y - 1 <
Unzﬂ( U“):—HZ)@
=1

Thus, the mgf of U, is given by

mu, (t) = E(etUn) - [e(t/ﬁ)Zlei} - B [e(t/\/ﬁ)Xle(t/\/ﬁ)Xg o e(t/\/ﬁ)Xn}

= pleevmn] gl g [dvan]
= [mx(t/vn)]".

Now, consider the McLaurin series expansion (i.e., a Taylor series expansion about 0) of
mx(t/y/n); we have
- t/\/n)k
ma(t/vi) = 3 mP (o)LL

k!
k=0
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where mg?)(O) = (d*/dt*)mx(t)]i=o. Recall that myx(t) exists for all t € (—oh,oh), so
this power series expansion is valid for all |t/\/n| < oh; i.e., for all |[t| < \/noh. Because

each X; has mean 0 and variance 1 (verify!), it is easy to see that

mP(0) = 1
mP0) = 0
mP0) = 1

Thus, our series expansion above becomes

mat/vi) =1+ LY ey ),

where Ry (t/v/n) is the remainder term in the expansion; i.e.,
- t
NN Z (t/v/n)" \/_ ) ‘
k=
The key to finishing the proof is recognizing that

lim nRx(t/v/n) = 0.

This is not difficult to see since the k = 3 term in Rx(t/y/n) contains an ny/n in

2

its denominator; the k& = 4 term contains an n° in its denominator, and so on, and

since mg( (0)/k! is finite for all k. The last statement also is true when ¢ = 0 since
Rx(0/4/n) = 0. Thus, for any fixed ¢, we can write
lim my, (t) = lm [mx(t/vn)]"

n—oo n—oo

~ lim {1+(/I) RX(t/\/ﬁ)r

n—oo

= lim {1+% {5 +nRX(t/\/ﬁ)] }n

n—oo

Finally, let a,, = %—l—nRX (t/+/n). Tt is easy to see that a,, — t?/2, since nRx (t/y/n) — 0.
Thus, the last limit equals et’/2. We have shown that

lim my, (t) = /2,

n—oo

the mgf of a standard normal distribution; this completes the proof. [
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Example 7.6. A chemist is studying the degradation behavior of vitamin Bg in a
multivitamin. The chemist selects a random sample of n = 36 multivitamin tablets, and
for each tablet, counts the number of days until the Bg content falls below the FDA
requirement. Let Y7, Y5, ..., Y36 denote the measurements for the 36 tablets, and assume
that Y7, Y5, ..., Y34 is an iid sample from a Poisson distribution with mean 50.

(a) What is the approximate probability that the average number of days Y will exceed
527 That is, what is P(Y > 52)?

SOLUTION. Recall that in the Poisson model, ;i = 02 = 50. The Central Limit Theorem

— 50
Y ~ 90, — | .
v (5.3

says that

Thus,
52 — 50

\/50/36

(b) How many tablets does the researcher need to observe so that P(Y < 49.5) a2 0.01?

PW>5mzP<Z> )zP@>LmﬁﬂmM6

SOLUTION. We want to find the n such that

— 49.5 — 49.5 —
P(T < 495) ~ P (Z . M) _ p(z ) M) 001

/50/n

Thus, we need to solve

49.5 — 50
—— = -2.33
\/50/n
for n; note that z = —2.33 is the 1st percentile of the standard normal distribution. It

follows that n ~ 1086. [

7.4 The normal approximation to the binomial

IMPORTANCE: An important application of the Central Limit Theorem deals with
approximating the sampling distributions of functions of count data; such data are

pervasive in statistical problems.

RECALL: Suppose that Y7,Y5, ..., Y, is an iid sample from a Bernoulli(p) distribution;
that is, Y; = 1, if the ith trial is a “success,” and Y; = 0, otherwise. Recall that the
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probability mass function (pmf) for the Bernoulli random variable is

p(l—p)t v, y=0,1

0, otherwise.

py(y) =

That is, the sample Y7, Ys, ..., Y, is a random string of zeros and ones, where P(Y; = 1) =

p, for each i. Recall that in the Bernoulli model,
p=EY)=p and o*=V(Y)=p(-p)

From Example 6.9 (notes), we know that

the number of “successes,” has a binomial distribution with parameters n and p; that is,

X ~ b(n,p). Define the sample proportion p as

X1
Pe TR

Note that p is an average of iid values of 0 and 1; thus, the CLT must apply! That is,

for large n,

pranp 220,

HOW GOOD IS THE APPROXIMATION?: Since we are sampling from a “binary”
population (almost as discrete as one can get!), one might naturally wonder how well the
normal distribution approximates the true sampling distribution of p. The approximation

is best when

(a) n is large (the approximation improves as n increases), and

(b) pis close to 1/2. Recall that, for Y ~ b(1,p),

(Y -wY_ 1-2
o? p(1—p)
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Figure 7.5: The approzimate sampling distributions for p for different n and p.

RULES OF THUMB: One can feel comfortable using the normal approximation as long
as np and n(l — p) are larger than 10. Other guidelines have been proposed in the

literature. This is just a guideline.

Example 7.7. Figure 7.5 presents Monte Carlo distributions for 10,000 simulated

values of p for each of six select cases:

Case 1: n=10,p=0.1 Case 2: n=40,p=0.1 Case 3: n=100,p =0.1

Case 4: n=10,p=0.5 Caseb: n=40,p=0.5 Case 6: n=100,p=10.5

One can clearly see that the normal approximation is not good when p = 0.1, except
when n is very large. On the other hand, when p = 0.5, the normal approximation is

already pretty good when n = 40.
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Example 7.8. Dimenhydrinate, also known by the trade names Dramamine and Gravol,
is an over-the-counter drug used to prevent motion sickness. The drug’s manufacturer
claims that dimenhydrinate helps reduce motion sickness in 40 percent of the population.
A random sample of n = 200 individuals is recruited in a study to test the manufacturer’s
claim. Define Y; = 1, if the the ith subject responds to the drug, and Y; = 0, otherwise,
and assume that Y7,Y3, ..., Yoo is an iid Bernoulli(p = 0.4) sample; note that p = 0.4
corresponds to the company’s claim. Let X count the number of subjects that respond
to the drug; we then know that X ~ 5(200,0.4). What is the probability that 60 or less
respond to the drug? That is, what is P(X < 60)?

SOLUTION. We compute this probability in two ways; first, we compute P(X < 60)

exactly using the (200, 0.4) model; this is given by

T

P(X <60) =) (200) (0.4)%(1 — 0.4)2°°77 = 0.0021.

=0

I used the R command pbinom(60,200,0.4) to compute this probability. Alternatively,
we can use the CLT approximation to the binomial to find this probability; note that

X 0.4(1—0.4)
S 4,2 2
p AN{O : 500 ]

the sample proportion

Thus,

P(X <60) = P(p<0.3)

0.3-04

0.4(1-0.4)
200

— P(Z < —2.89) = 0.0019.

Q

Pl1Z<

As we can see, the CLT approximation is very close to the true (exact) probability. Here,
np = 200 x 0.4 = 80 and n(1 — p) = 200 x 0.6 = 120, both of which are large. Thus, we

can feel comfortable with the normal approximation. []

QUESTION FOR THOUGHT: We have observed here that P(X < 60) is very, very
small under the assumption that p = 0.4, the probability of response for each subject,
claimed by the manufacturer. If we, in fact, did observe this event {X < 60}, what might

this suggest about the manufacturer’s claim that p = 0.47
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8 Estimation

Complementary reading: Chapter 8 (WMS).

8.1 Introduction

REMARK: Up until now (i.e., in STAT 511 and the material so far in STAT 512), we
have dealt with probability models. These models, as we know, can be generally
divided up into two types: discrete and continuous. These models are used to describe

populations of individuals.

In a clinical trial with n patients, let p denote the probability of response to a new

drug. A b(1,p) model is assumed for each subject’s response (e.g., respond/not).

e In an engineering application, the lifetime of an electrical circuit, Y, is under in-

vestigation. An exponential(3) model is assumed.

e In a public-health study, Y, the number of sexual partners in the past year, is

recorded for a group of high-risk HIV patients. A Poisson(A) model is assumed.

e In an ecological study, the amount of dead-weight (measured in g/plot), Y, is

recorded. A N (i, 0%) model is assumed.

Each of these situations employs a probabilistic model that is indexed by population pa-
rameters. In real life, these parameters are unknown. An important statistical problem,
thus, involves estimating these parameters with a random sample Y3, Y5, ..., Y,, (i.e., an

iid sample) from the population. We can state this problem generally as follows.

GENERAL PROBLEM: Suppose that Y7,Y,, ..., Y, is an iid sample from a population
which is described by the model fy(y;#0). Here, fy(y;0) is a pmf or pdf that describes
the population of interest, and # is a parameter that indexes the model. The statistical

problem of interest is to estimate 6 with the observed data Y1,Ys,....Y,.
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TERMINOLOGY : Suppose that Y7,Ys, ..., Y, is an iid sample from fy(y;0). A point
estimator # is a function of Y1, Ys, ..., Y, that estimates 6. Since 0 is (in general) a

function of Y7, Y5, ..., Y, it is a statistic. In practice, 6 could be a scalar or vector.

Example 8.1. Suppose that Y}, Y, ... Y, is an iid sample from a Poisson distribution

with mean 6. We know that the probability mass function (pmf) for Y is given by

ve—? _
prlgg)={ 0 U hE

0, otherwise.
Here, the parameter is # = E(Y). What estimator should we use to estimate 67

Example 8.2. Suppose that Y3,Y5, ..., Y, is an iid sample from a U(0, ) distribution.
We know that the probability density function (pdf) for YV is given by

O<y<¥b
fr(y:0) =

1

9’

0, otherwise.

Here, the parameter is 6, the upper limit of the support of Y. What estimator should

we use to estimate 67

Example 8.3. Suppose that Y}, Y5, ..., Y, is an iid sample from a N (u, 0?) distribution.
We know that the probability density function (pdf) for Y is given by

1 1 u)z
—e 2\ 7/, —0o<y <00
fy(y;0) = .
0, otherwise.
Here, the parameter is @ = (u,0?), a vector of two parameters (the mean and the

variance). What estimator should we use to estimate 87 Or, equivalently, we might ask

how to estimate p and o2 separately.

“GOOD” ESTIMATORS: In general, a “good” estimator 0 has the following properties:

(1) 6 is unbiased for 6, and

(2) f has small variance.
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8.2 Bias and mean-squared error

TERMINOLOGY : An estimator 0 is said to be unbiased for 0 if
E@®) =6,

for all possible values of 6. If 0 is not an unbiased estimator; i.e., if E(é\) # 6, then we

say that 0 is biased. In general, the bias of an estimator is

If B(A) > 0, then 8 overestimates 6. If B(f) < 0, then 6 underestimates 6. If § is

unbiased, then, of course, B(f) = 0.

Example 8.1 (revisited). Suppose that Y3,Y5, ..., Y, is an iid sample from a Poisson
distribution with mean @. Recall that, in general, the sample mean Y is an unbiased
estimator for a population mean p. For the Poisson model, the (population) mean is

w=E(Y)=40. Thus, we know that

=Y =

S|

=1

is an unbiased estimator of §. Recall also that the variance of the sample mean, V(Y'),
is, in general, the population variance o2 divided by n. For the Poisson model, the

(population) variance is o = 6; thus, V(@) =V(Y)=60/n. O

Example 8.2 (revisited). Suppose that Y7, Y5, ..., Y, is an iid sample from a ¢(0, 0) dis-
tribution, and consider the point estimator Y{,). Intuitively, this seems like a reasonable
estimator to use; the largest order statistic should be fairly close to €, the upper endpoint
of the support. To compute E(Y,)), we have to know how Y{,) is distributed, so we find
its pdf. For 0 <y < 0, the pdf of Y, is

Frow@) = nfy@)[Fy @)

() e
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so that

0 1 6 n
E(Y,)) = Oy tdy =nd" [ —— | Y = 6.
(()) /nyu—zy " (n—l—l)y ‘0 (n—l—l)

= Yy

We see that Y{, is a biased estimator of ¢ (it underestimates 6 on average). But,

~ n+1
n
is an unbiased estimator because

5[5 o] () - (32 )

-~

EXERCISE: Compute V (0).

Example 8.3 (revisited). Suppose that Y}, Y5, ..., Y, is an iid sample from a N (u,o?)
distribution. To estimate p, we know that a good estimator is Y. The sample mean Y
is unbiased; i.e., E(Y) = y, and, furthermore, V (Y) = 0% /n decreases as the sample size
n increases. To estimate o2, we can use the sample variance; i.c.,

CLp o 0

n—1 %
i=1

Assuming the normal model, the sample variance is unbiased. To see this, recall that

(n—1)52

= ~X'(n—1)

so that
. 2
L -

o2

since the mean of a x? random variable equals its degrees of freedom. Thus,

n-1=E {—(” - 1>52} - (” _ 1) B(S?) = B(S?) = o,

o2 o2
showing that S? is an unbiased estimator of the population variance o2. To compute the

variance of S? as an estimator, recall that

P[E=D5)
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since the variance of a y? random variable equals twice its degrees of freedom. Therefore,

on—1)=V {—(” — 1)52} - [(" — 1>T V(S?)

o2 ot

204

— V(Sz):n_1

.0

ESTIMATING FUNCTIONS OF PARAMETERS: In some problems, the goal is to
estimate a function of 6, say, 7(#). The following example illustrates how we can find an

unbiased estimator of a function of 6.

Example 8.4. Suppose that Y7, Y5, ..., Y, are iid exponential observations with mean 6.
Derive an unbiased estimator for 7(6) = 1/6.

SOLUTION. Since E(Y) = 6, one’s intuition might suggest to try 1/Y as an estimator

#(5)=r(srw) e 2)

where T = """ | Y;. Recall that Y7,Y5, ..., Y, iid exponential(§) = T ~ gamma(n, §),

for 1/0. First, note that

so therefore

1 1 *1 1
Fl=)|=nE|— = — _t/edt
<Y) ! (T) ”/t_otrm)en ‘

e

gamma(n,f) pdf

e}

n
I'(n)o" \/t:O

= I'(n—1)gn—1

_ nl'(n —1)0"1 _ nl'(n —1) _ < n > 1
INCK (n—1)(n—1)0 n—1/)6

J/

This shows that 1/Y is a biased estimator of 7() = 1/6. However,

P05 )= () () = () ()i =4

This shows that

is an unbiased estimator of 7(6) = 1/0. O
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TERMINOLOGY : The mean-squared error (MSE) of a point estimator 0 is given by
MSE(0) = E[(6 — 6)%] = V() + [B(0)]2.

We see that the MSE combines the

e the precision (variance) of f and

e accuracy (bias) of 6.

Of course, if § is unbiased for 6, then MSE(@) = V(@\), since B(@\) = 0.

INTUITIVELY : Suppose that we have two unbiased estimators, say, 51 and é\g. Then we
would prefer to use the one with the smaller variance. That is, if V(6;) < V(6,), then
we would prefer §1 as an estimator. Note that it only makes sense to choose an estimator

on the basis of its variance when both estimators are unbiased.

CURIOSITY : Suppose that we have two estimators 51 and 52 and that both of them are
not unbiased (e.g., one could be unbiased and other isn’t, or possibly both are biased).
On what grounds should we now choose between (/9\1 and ¢/9\2? In this situation, a reasonable

approach is to choose the estimator with the smaller mean-squared error. That is,

if MSE(6;) < MSE(6,), then we would prefer 6; as an estimator.

Example 8.5. Suppose that Y7, Y3, ..., Y, is an iid Bernoulli(p) sample, where 0 < p < 1.
Define X =Y; + Y5+ --- 4+ Y, and the two estimators

. X i 5 X +2
= — all = .
p1 n P2 n+4

Which estimator should we use to estimate p?
SOLUTION. First, we should note that X ~ b(n, p), since X is the sum of iid Bernoulli(p)

observations. Thus,

(i.e., p1 is unbiased) and

X +2
n-+4

1 1 np + 2
= E(X +2) = E(X)+2] = :
) n+4 (X+2) n+4[ (X0 +2 n+ 4

B = (
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Figure 8.6: Plots of MSE(p1) and MSE(ps) for different sample sizes in Example 8.5.

Thus, to compare p; and py as estimators, we should use the estimators’ mean-squared

errors (since ps is biased). The variances of p; and p, are, respectively,

v(ﬁl) =V <£> = iV()() — %[np(l _p)] _ p<1 _p)

and
oy =v(2t2) o 1 S 7S W Ul )
V<p2)_v(n+4)_(n+4)2V(X+2>_(n+4)2V(X)_ (T iy

The mean-squared error of p; is

MSE(p1) = V() + [B()]?

p(1 —p)

_ - +@_py:pﬂ—m

n

Y

which is equal to V(p;) since p; is unbiased. The mean-squared error of p; is

MSE(,) = V(D) + [B(2)]

- w ()
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ANALYSIS: Figure 8.6 displays values of MSE(p;) and MSE(ps) graphically for n = 5,
20, 50, and 100. We can see that neither estimator is uniformly superior; i.e., neither
estimator delivers a smaller MSE for all 0 < p < 1. However, for smaller sample sizes,
P2 often beats p; (in terms of MSE) when p is in the vicinity of 0.5; otherwise, p; often
provides smaller MSE.

8.3 The standard error of an estimator

TERMINOLOGY : The standard error of a point estimator 0 is simply the standard

deviation of the estimator. We denote the standard error of aby

Table 8.1 (WMS, pp 397) summarizes some common point estimators and their standard

errors. We now review these.

8.3.1 One population mean

SITUATION: Suppose that Y;,Y5, ..., Y, is an iid sample with mean p and variance o2

and that interest lies in estimating the population mean .

POINT ESTIMATOR: To estimate the (population) mean p, a natural point estimator

to