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CHAPTER 6 STAT 512, J. TEBBS

6 Functions of Random Variables

Complementary reading: Chapter 6 (WMS).

PROBLEM : Suppose Y is a continuous random variable, and consider a function of Y ,

say, U = g(Y ), where g : R → R. The function U = g(Y ) is itself a random variable,

and, thus, it has its own distribution. The goal of this chapter is to find distributions

of functions of random variables. When there are multiple random variables, we will be

interested in functions of the form U = g(Y1, Y2, ..., Yn), where g : Rn →R.

REMARK : Here are some examples where this exercise might be of interest:

• In a medical experiment, Y denotes the systolic blood pressure for a group of cancer

patients. How is U = g(Y ) = log Y distributed?

• A field trial is undertaken to study Y , the yield for an experimental wheat cultivar,

measured in bushels/acre. How is U = g(Y ) =
√

Y distributed?

• An actuary is examining the distributions of claim amounts, Y1 and Y2, for two

competing policies. What is the distribution of U = g(Y1, Y2) = Y1/(Y1 + Y2)?

Here, g : R2 →R.

• In an early-phase clinical trial, the time to death is recorded for a sample of n rats,

yielding data Y1, Y2, ..., Yn. Researchers would like to find distribution of

U = g(Y1, Y2, ..., Yn) =
1

n

n∑
i=1

Yi,

the average time for the sample. Here, g : Rn →R.

PREVAILING THEME : This chapter deals with finding distributions of functions of

random variables. We will investigate three techniques for doing this:

(1) Method of distribution functions

(2) Method of transformations

(3) Method of moment generating functions.
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6.1 The method of distribution functions (or “cdf technique”)

SETTING : Suppose Y is a continuous random variable with cumulative distribution

function (cdf) FY (y) ≡ P (Y ≤ y). The cdf technique is especially useful when the

cdf FY (y) can be written out in closed form (although this is not a requirement). This

method can also be used if Y is vector valued (see Examples 6.2 and 6.3 in WMS).

Method of distribution functions:

1. If possible, find a closed form expression for FY (y) = P (Y ≤ y).

2. Find the support of U .

3. Write FU(u) = P (U ≤ u), the cdf of U , in terms of FY (y), the cdf of Y .

4. Differentiate FU(u) to obtain the pdf of U , fU(u).

Example 6.1. Suppose that Y ∼ U(0, 1). Find the distribution of U = g(Y ) = − ln Y .

Solution. The cdf of Y ∼ U(0, 1) is given by

FY (y) =





0, y ≤ 0

y, 0 < y < 1

1, y ≥ 1.

The support for Y ∼ U(0, 1) is RY = {y : 0 < y < 1}; thus, because u = − ln y > 0

(sketch a graph of the log function), it follows that the support for U is RU = {u : u > 0}.
Using the method of distribution functions, we have

FU(u) = P (U ≤ u) = P (− ln Y ≤ u)

= P (ln Y > −u)

= P (Y > e−u) = 1− P (Y ≤ e−u) = 1− FY (e−u).

Notice how we have written the cdf of U as a function of the cdf of Y . Because FY (y) = y

for 0 < y < 1; i.e., for u > 0, we have

FU(u) = 1− FY (e−u) = 1− e−u.
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Taking derivatives, we get, for u > 0,

fU(u) =
d

du
FU(u) =

d

du
(1− e−u) = e−u.

Summarizing,

fU(u) =





e−u, u > 0

0, otherwise.

This is an exponential pdf with mean β = 1; that is, U ∼ exponential(1). ¤

Example 6.2. Suppose that Y ∼ U(−π/2, π/2). Find the distribution of the random

variable defined by U = g(Y ) = tan(Y ).

Solution. The cdf of Y ∼ U(−π/2, π/2) is given by

FY (y) =





0, y ≤ −π/2

y+π/2
π

, −π/2 < y < π/2

1, y ≥ π/2.

The support for Y is RY = {y : −π/2 < y < π/2}. Sketching a graph of the tangent

function over the principal branch from −π/2 to π/2, we see that −∞ < u < ∞. Thus,

RU = {u : −∞ < u < ∞} ≡ R, the set of all reals. Using the method of distribution

functions (and recalling the inverse tangent function), we have

FU(u) = P (U ≤ u) = P [tan(Y ) ≤ u]

= P [Y ≤ tan−1(u)] = FY [tan−1(u)].

Notice how we have written the cdf of U as a function of the cdf of Y . Because FY (y) =

(y + π/2)/π for −π/2 < y < π/2; i.e., for u ∈ R, we have

FU(u) = FY [tan−1(u)]

=
tan−1(u) + π/2

π
.

The pdf of U , for u ∈ R, is given by

fU(u) =
d

du
FU(u) =

d

du

[
tan−1(u) + π/2

π

]
=

1

π(1 + u2)
.
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Figure 6.1: The standard Cauchy probability density function.

Summarizing,

fU(u) =





1
π(1+u2)

, −∞ < u < ∞
0, otherwise.

A random variable with this pdf is said to have a (standard) Cauchy distribution. One

interesting fact about a Cauchy random variable is that none of its moments are finite!

Thus, if U has a Cauchy distribution, E(U), and all higher order moments, do not exist.

Exercise: If U is standard Cauchy, show that E(|U |) = +∞. ¤

6.2 The method of transformations

SETTING : Suppose that Y is a continuous random variable with cdf FY (y) and sup-

port RY , and let U = g(Y ), where g : RY → R is a continuous, one-to-one function

defined over RY . Examples of such functions include continuous (strictly) increas-

ing/decreasing functions. Recall from calculus that if g is one-to-one, it has an unique

inverse g−1. Also recall that if g is increasing (decreasing), then so is g−1.
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METHOD OF TRANSFORMATIONS : Suppose that g(y) is a strictly increasing function

of y defined over RY . Then, it follows that u = g(y) ⇐⇒ g−1(u) = y and

FU(u) = P (U ≤ u) = P [g(Y ) ≤ u]

= P [Y ≤ g−1(u)] = FY [g−1(u)].

Differentiating FU(u) with respect to u, we get

fU(u) =
d

du
FU(u) =

d

du
FY [g−1(u)] = fY [g−1(u)]

d

du
g−1(u)

︸ ︷︷ ︸
chain rule

.

Now as g is increasing, so is g−1; thus, d
du

g−1(u) > 0. If g(y) is strictly decreasing, then

FU(u) = 1− FY [g−1(u)] and d
du

g−1(u) < 0 (verify!), which gives

fU(u) =
d

du
FU(u) =

d

du
{1− FY [g−1(u)]} = −fY [g−1(u)]

d

du
g−1(u).

Combining both cases, we have shown that the pdf of U , where nonzero, is given by

fU(u) = fY [g−1(u)]
∣∣∣ d

du
g−1(u)

∣∣∣.

It is again important to keep track of the support for U . If RY denotes the support of

Y , then RU , the support for U , is given by RU = {u : u = g(y); y ∈ RY }.

Method of transformations:

1. Verify that the transformation u = g(y) is continuous and one-to-one over RY .

2. Find the support of U .

3. Find the inverse transformation y = g−1(u) and its derivative (with respect to u).

4. Use the formula above for fU(u).

Example 6.3. Suppose that Y ∼ exponential(β); i.e., the pdf of Y is

fY (y) =





1
β
e−y/β, y > 0

0, otherwise.

Let U = g(Y ) =
√

Y . Use the method of transformations to find the pdf of U .
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Solution. First, we note that the transformation g(y) =
√

y is a continuous strictly

increasing function of y over RY = {y : y > 0}, and, thus, g(y) is one-to-one. Next, we

need to find the support of U . This is easy since y > 0 implies u =
√

y > 0 as well.

Thus, RU = {u : u > 0}. Now, we find the inverse transformation:

g(y) = u =
√

y ⇐⇒ y = g−1(u) = u2

︸ ︷︷ ︸
inverse transformation

and its derivative:
d

du
g−1(u) =

d

du
(u2) = 2u.

Thus, for u > 0,

fU(u) = fY [g−1(u)]
∣∣∣ d

du
g−1(u)

∣∣∣

=
1

β
e−u2/β × |2u| = 2u

β
e−u2/β.

Summarizing,

fU(u) =





2u
β

e−u2/β, u > 0

0, otherwise.

This is a Weibull distribution with parameters m = 2 and α = β; see Exercise 6.26

in WMS. The Weibull family of distributions is common in engineering and actuarial

science applications. ¤

Example 6.4. Suppose that Y ∼ beta(α = 6, β = 2); i.e., the pdf of Y is given by

fY (y) =





42y5(1− y), 0 < y < 1

0, otherwise.

What is the distribution of U = g(Y ) = 1− Y ?

Solution. First, we note that the transformation g(y) = 1−y is a continuous decreasing

function of y over RY = {y : 0 < y < 1}, and, thus, g(y) is one-to-one. Next, we need

to find the support of U . This is easy since 0 < y < 1 clearly implies 0 < u < 1. Thus,

RU = {u : 0 < u < 1}. Now, we find the inverse transformation:

g(y) = u = 1− y ⇐⇒ y = g−1(u) = 1− u︸ ︷︷ ︸
inverse transformation
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and its derivative:
d

du
g−1(u) =

d

du
(1− u) = −1.

Thus, for 0 < u < 1,

fU(u) = fY [g−1(u)]
∣∣∣ d

du
g−1(u)

∣∣∣
= 42(1− u)5[1− (1− u)]× | − 1| = 42u(1− u)5.

Summarizing,

fU(u) =





42u(1− u)5, 0 < u < 1

0, otherwise.

We recognize this is a beta distribution with parameters α = 2 and β = 6. ¤

QUESTION : What happens if u = g(y) is not a one-to-one transformation? In this case,

we can still use the method of transformations, but we have “break up” the transformation

g : RY → RU into disjoint regions where g is one-to-one.

RESULT : Suppose that Y is a continuous random variable with pdf fY (y) and that U =

g(Y ), not necessarily a one-to-one (but continuous) function of y over RY . Furthermore,

suppose that we can partition RY into a finite collection of sets, say, B1, B2, ..., Bk, where

P (Yi ∈ Bi) > 0 for all i, and fY (y) is continuous on each Bi. Furthermore, suppose that

there exist functions g1(y), g2(y), ..., gk(y) such that gi(y) is defined on Bi, i = 1, 2, ..., k,

and the gi(y) satisfy

(a) g(y) = gi(y) for all y ∈ Bi

(b) gi(y) is monotone on Bi, so that g−1
i (·) exists uniquely on Bi.

Then, the pdf of U is given by

fU(u) =





∑k
i=1 fY [g−1

i (u)]
∣∣∣ d
du

g−1
i (u)

∣∣∣, u ∈ RU

0, otherwise.

That is, writing the pdf of U can be done by adding up the terms fY [g−1
i (u)]| d

du
g−1

i (u)|
corresponding to each disjoint set Bi, for i = 1, 2, ..., k.
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Example 6.5. Suppose that Y ∼ N (0, 1); that is, Y has a standard normal distribution;

i.e.,

fY (y) =





1√
2π

e−y2/2, −∞ < y < ∞
0, otherwise.

Consider the transformation U = g(Y ) = Y 2. This transformation is not one-to-one on

RY = R = {y : −∞ < y < ∞}, but it is one-to-one on B1 = (−∞, 0) and B2 = [0,∞)

(separately) since g(y) = y2 is decreasing on B1 and increasing on B2. Furthermore, note

that B1 and B2 partitions RY . Summarizing,

Partition Transformation Inverse transformation

B1 = (−∞, 0) g1(y) = y2 = u g−1
1 (u) = −√u = y

B2 = [0,∞) g2(y) = y2 = u g−1
2 (u) =

√
u = y

And, on both sets B1 and B2,

∣∣∣ d

du
g−1

i (u)
∣∣∣ =

1

2
√

u
.

Clearly, u = y2 > 0; thus, RU = {u : u > 0}, and the pdf of U is given by

fU(u) =





1√
2π

e−(−√u)2/2
(

1
2
√

u

)
+ 1√

2π
e−(

√
u)2/2

(
1

2
√

u

)
, u > 0

0, otherwise.

Thus, for u > 0, and recalling that Γ(1/2) =
√

π, fU(u) collapses to

fU(u) =
2√
2π

e−u/2

(
1

2
√

u

)

=
1√
2π

u
1
2
−1e−u/2 =

1√
π21/2

u
1
2
−1e−u/2 =

1

Γ(1/2)21/2
u

1
2
−1e−u/2.

Summarizing, the pdf of U is

fU(u) =





1
Γ(1/2)21/2 u

1
2
−1e−u/2, u > 0

0, otherwise.

That is, U ∼ gamma(1/2, 2). Recall that the gamma(1/2, 2) distribution is the same as

a χ2 distribution with 1 degree of freedom; that is, U ∼ χ2(1). ¤
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6.3 Several independent random variables

RECALL: In STAT 511, we talked about the notion of independence when dealing with

n-variate random vectors. Recall that Y1, Y2, ..., Yn are (mutually) independent random

variables if and only if

FY (y) =
n∏

i=1

FYi
(yi)

or, equivalently, if and only if

fY (y) =
n∏

i=1

fYi
(yi).

That is, the joint cdf FY (y) factors into the product of the marginal cdfs. Similarly, the

joint pdf (pmf) fY (y) factors into the product of the marginal pdfs (pmfs).

NOTATION REMINDER: The random vector Y = (Y1, Y2, ..., Yn). A realization of Y

is y = (y1, y2, ..., yn). Y is random; y is fixed.

MATHEMATICAL EXPECTATION : Suppose that Y1, Y2, ..., Yn are (mutually) inde-

pendent random variables. For real valued functions g1, g2, ..., gn,

E[g1(Y1)g2(Y2) · · · gn(Yn)] = E[g1(Y1)]E[g2(Y2)] · · ·E[gn(Yn)],

provided that each expectation exists; that is, the expectation of the product is the

product of the expectations. This result only holds for independent random

variables!

Proof. We’ll prove this for the continuous case (the discrete case follows analogously).

Suppose that Y = (Y1, Y2, ..., Yn) is a vector of (mutually) independent random variables

with joint pdf fY (y). Then,

E

[
n∏

i=1

gi(Yi)

]
=

∫

Rn

[g1(y1)g2(y2) · · · gn(yn)]fY (y)dy

=

∫

R

∫

R
· · ·

∫

R
[g1(y1)g2(y2) · · · gn(yn)]fY1(y1)fY2(y2) · · · fYn(yn)dy

=

∫

R
g1(y1)fY1(y1)dy1

∫

R
g2(y2)fY2(y2)dy2 · · ·

∫

R
gn(yn)fYn(yn)dyn

= E[g1(Y1)]E[g2(Y2)] · · ·E[gn(Yn)]. ¤
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IMPORTANT : Suppose that a1, a2, ..., an are constants and that Y1, Y2, ..., Yn are inde-

pendent random variables, where Yi has mgf mYi
(t), for i = 1, 2, ..., n. Define the linear

combination

U =
n∑

i=1

aiYi = a1Y1 + a2Y2 + · · ·+ anYn.

Then, the moment generating function of U is given by

mU(t) =
n∏

i=1

mYi
(ait).

Proof. Using the definition, the moment generating function of U is

mU(t) = E(etU) = E
[
et(a1Y1+a2Y2+···+anYn)

]

= E
(
ea1tY1ea2tY2 · · · eantYn

)

= E(ea1tY1)E(ea2tY2) · · ·E(eantYn)

= mY1(a1t)mY2(a2t) · · ·mYn(ant) =
n∏

i=1

mYi
(ait). ¤

COROLLARY : If a1 = a2 = · · · = an = 1 in the last result, the linear combination

U =
∑n

i=1 Yi and

mU(t) =
n∏

i=1

mYi
(t).

That is, the mgf of the sum U =
∑n

i=1 Yi is the product of the marginal mgfs.

Example 6.6. Suppose that Y1, Y2, ..., Yn are independent N (µi, σ
2
i ) random variables

for i = 1, 2, ..., n. Find the distribution of the linear combination

U = a1Y1 + a2Y2 + · · ·+ anYn.

Solution. Because Y1, Y2, ..., Yn are independent, we know from the last result that

mU(t) =
n∏

i=1

mYi
(ait)

=
n∏

i=1

exp[µi(ait) + σ2
i (ait)

2/2]

= exp

[(
n∑

i=1

aiµi

)
t +

(
n∑

i=1

a2
i σ

2
i

)
t2/2

]
.
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We recognize this as the moment generating function of a normal random variable with

mean E(U) =
∑n

i=1 aiµi and variance V (U) =
∑n

i=1 a2
i σ

2
i . Because mgfs are unique, we

may conclude that

U ∼ N
(

n∑
i=1

aiµi,

n∑
i=1

a2
i σ

2
i

)
.

That is, the distribution of a linear combination of independent normal ran-

dom variables is normally distributed. ¤

CONCEPTUALIZATION : In many statistical problems, a collection of random vari-

ables, say, Y1, Y2, ..., Yn can be viewed as independent observations from the same proba-

bility model. Statisticians like to call this common model the population distribution

because, at least conceptually, we can envisage the observations Y1, Y2, ..., Yn as being

randomly drawn from a population where fY (y) describes the population; i.e., the pdf

(pmf) fY (y) describes how the observations Y1, Y2, ..., Yn are marginally distributed.

IID OBSERVATIONS : Suppose that Y1, Y2, ..., Yn are independent observations, where

each Yi has the common pdf (pmf) fY (y). A succinct way to express this is to say that

“Y1, Y2, ..., Yn is an iid sample from fY (y).”

The collection Y1, Y2, ..., Yn is often called a random sample, and the model fY (y)

represents the population distribution. The acronym “iid” is read “independent and

identically distributed.”

REMARK : With an iid sample Y1, Y2, ..., Yn from fY (y), there may be certain character-

istics of fY (y) that we would like investigate, especially if the exact form of fY (y) is not

known. For example, we might like to estimate the mean or variance of the distribution;

i.e., we might like to estimate E(Y ) = µ and/or V (Y ) = σ2. An obvious estimator for

E(Y ) = µ is the sample mean

Y =
1

n

n∑
i=1

Yi;

i.e., the arithmetic average of the sample Y1, Y2, ..., Yn. An estimator for V (Y ) = σ2 is
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the sample variance

S2 =
1

n− 1

n∑
i=1

(Yi − Y )2.

Both Y and S2 are values that are computed from the sample; i.e., they are computed

from the observations (i.e., data) Y1, Y2, ..., Yn, so they are called statistics. Note that

E(Y ) = E

(
1

n

n∑
i=1

Yi

)
=

1

n

n∑
i=1

E(Yi) =
1

n

n∑
i=1

µ = µ

and

V (Y ) = V

(
1

n

n∑
i=1

Yi

)
=

1

n2

n∑
i=1

V (Yi) =
1

n2

n∑
i=1

σ2 =
σ2

n
.

That is, the mean of sample mean Y is the same as the underlying population mean µ.

The variance of the sample mean Y equals the population variance σ2 divided by n (the

sample size).

Example 6.7. Suppose that Y1, Y2, ..., Yn is an iid sample from fY (y), where

fY (y) =





1√
2πσ

e−
1
2

(
y−µ

σ

)2

, −∞ < y < ∞
0, otherwise.

That is, Y1, Y2, ..., Yn ∼ iid N (µ, σ2). What is the distribution of the sample mean Y ?

Solution. It is important to recognize that the sample mean Y is simply a linear

combination of the observations Y1, Y2, ..., Yn, with a1 = a2 = · · · = an = 1
n
; i.e.,

Y =
1

n

n∑
i=1

Yi =
Y1

n
+

Y2

n
+ · · ·+ Yn

n
.

We know that Y1, Y2, ..., Yn are iid N (µ, σ2) so

Y ∼ N
(

n∑
i=1

aiµ,

n∑
i=1

a2
i σ

2

)
,

where a1 = a2 = · · · = an = 1
n
; that is,

Y ∼ N
(

µ,
σ2

n

)
.

PUNCHLINE : If we have an iid sample of normal observations, the sample mean Y is

also normally distributed. ¤
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6.4 The method of moment generating functions

UNIQUENESS : Suppose that Z1 and Z2 are random variables with mgfs mZ1(t) and

mZ2(t), respectively. If mZ1(t) = mZ2(t) for all t, then Z1 and Z2 have the same distri-

bution. This is called the uniqueness property of moment generating functions.

PUNCHLINE : The mgf completely determines the distribution! How can we use this

result? Suppose that we have a transformation U = g(Y ) or U = g(Y1, Y2, ..., Yn). If we

can compute mU(t), the mgf of U , and can recognize it as one we already know (e.g.,

Poisson, normal, gamma, binomial, etc.), then we can use the uniqueness property to

conclude that U has that distribution (we’ve been doing this informally all along; see,

e.g., Example 6.6).

REMARK : When U = g(Y ), using the mgf method requires us to know the mgf of Y up

front. Thus, if you do not know mY (t), it is best to try another method. This turns out

to be true because, in executing the mgf technique, we must be able to express the mgf

of U as a function of the mgf of Y (as we’ll see in the examples which follow). Similarly,

if U = g(Y1, Y2, ..., Yn), the mgf technique is not helpful unless you know the marginal

mgfs mY1(t),mY2(t), ..., mYn(t).

Method of moment generating functions:

1. Derive the mgf of U , which is given by mU(t) = E(etU).

2. Try to recognize mU(t) as a moment generating function that you already know.

3. Because mgfs are unique, U must have the same distribution as the one whose mgf

you recognized.

Example 6.8. Suppose that Y ∼ gamma(α, β). Use the method of mgfs to derive the

distribution of U = g(Y ) = 2Y/β.

Solution. We know that the mgf of Y is

mY (t) =

(
1

1− βt

)α

,

PAGE 13



CHAPTER 6 STAT 512, J. TEBBS

for t < 1/β. Now, the mgf of U is given by

mU(t) = E(etU) = E[et(2Y/β)] = E[e(2t/β)Y ]

= mY (2t/β)

=

[
1

1− β(2t/β)

]α

=

(
1

1− 2t

)α

,

for t < 1/2. However, we recognize mU(t) = (1 − 2t)−α as the χ2(2α) mgf. Thus, by

uniqueness, we can conclude that U = 2Y/β ∼ χ2(2α). ¤

MGF TECHNIQUE : The method of moment generating functions is very useful (and

commonly applied) when we have independent random variables Y1, Y2, ..., Yn and in-

terest lies in deriving the distribution of the sum

U = g(Y1, Y2, ..., Yn) = Y1 + Y2 + · · ·+ Yn.

In particular, we know that

mU(t) =
n∏

i=1

mYi
(t),

where mYi
(t) denotes the marginal mgf of Yi. Of course, if Y1, Y2, ..., Yn are iid, then

not only are the random variables independent, they also all have the same distribu-

tion! Thus, because mgfs are unique, the mgfs must be the same too. Summarizing, if

Y1, Y2, ..., Yn are iid, each with mgf mY (t),

mU(t) =
n∏

i=1

mY (t) = [mY (t)]n.

Example 6.9. Suppose that Y1, Y2, ..., Yn is an iid sample from

pY (y) =





py(1− p)1−y, y = 0, 1

0, otherwise.

That is, Y1, Y2, ..., Yn are iid Bernoulli(p) random variables. What is the distribution of

the sum U = Y1 + Y2 + · · ·+ Yn?

Solution. Recall that the Bernoulli mgf is given by mY (t) = q + pet, where q = 1− p.

Using the last result, we know that

mU(t) = [mY (t)]n = (q + pet)n,
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which we recognize as the mgf of a b(n, p) random variable! Thus, by the uniqueness

property of mgfs, we have that U = Y1 + Y2 + · · ·+ Yn ∼ b(n, p). ¤

Example 6.10. Suppose that Y1, Y2, ..., Yn is an iid sample from

fY (y) =





1
Γ(α)βα yα−1e−y/β, y > 0

0, otherwise.

That is, Y1, Y2, ..., Yn are iid gamma(α, β) random variables. What is the distribution of

the sum U = Y1 + Y2 + · · ·+ Yn?

Solution. Recall that the gamma mgf is, for t < 1/β,

mY (t) =

(
1

1− βt

)α

.

Using the last result we know that, for t < 1/β,

mU(t) = [mY (t)]n =

[(
1

1− βt

)α]n

=

(
1

1− βt

)αn

,

which we recognize as the mgf of a gamma(αn, β) random variable. Thus, by the unique-

ness property of mgfs, we have that U = Y1 + Y2 + · · ·+ Yn ∼ gamma(αn, β). ¤

COROLLARY : If Y1, Y2, ..., Yn is an iid sample of exponential random variables with

mean β, then U = Y1 + Y2 + · · · + Yn ∼ gamma(n, β). This follows from Example 6.10

by taking α = 1. ¤

Example 6.11. As another special case of Example 6.10, take α = 1/2 and β = 2 so

that Y1, Y2, ..., Yn are iid χ2(1) random variables. The result in Example 6.10 says that

U = Y1 + Y2 + · · · + Yn ∼ gamma(n/2, 2) which is the same as the χ2(n) distribution.

Thus, the sum of independent χ2(1) random variables follows a χ2(n) distribution. ¤

GENERALIZATION : If Y1, Y2, ..., Yn are independent (not iid) random variables where

Yi ∼ χ2(νi), then U = Y1 + Y2 + · · ·+ Yn ∼ χ2(ν), where ν =
∑

i νi.

Example 6.12. Suppose that Y1, Y2, ..., Yn are independent N (µi, σ
2
i ) random variables.

Find the distribution of

U =
n∑

i=1

(
Yi − µi

σi

)2

.
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Solution. Define

Zi =
Yi − µi

σi

,

for each i = 1, 2, ..., n. Observe the following facts.

• Z1, Z2, ..., Zn are independent N (0, 1) random variables. That Zi ∼ N (0, 1) follows

from standardization. That Z1, Z2, ..., Zn are independent follows because func-

tions of independent random variables are themselves independent.

• From Example 6.5, we know that Z2
1 , Z

2
2 , ..., Z

2
n are independent χ2(1) random vari-

ables. This is true because Zi ∼ N (0, 1) =⇒ Z2
i ∼ χ2(1) and because Z2

1 , Z
2
2 , ..., Z

2
n

are functions of Z1, Z2, ..., Zn (which are independent).

• Finally, from Example 6.11 we know that

U =
n∑

i=1

(
Yi − µi

σi

)2

=
n∑

i=1

Z2
i ∼ χ2(n). ¤

6.5 Bivariate transformations

REMARK : So far in this chapter, we have talked about transformations involving a single

random variable Y . It is sometimes of interest to consider a bivariate transformation

such as

U1 = g1(Y1, Y2)

U2 = g2(Y1, Y2).

To discuss such transformations, we will assume that Y1 and Y2 are jointly continuous

random variables. Furthermore, for the following methods to apply, the transformation

needs to be one-to-one. We start with the joint distribution of Y = (Y1, Y2). Our first

goal is to derive the joint distribution of U = (U1, U2).

BIVARIATE TRANSFORMATIONS : Suppose that Y = (Y1, Y2) is a continuous ran-

dom vector with joint pdf fY1,Y2(y1, y2). Let g : R2 → R2 be a continuous one-to-one

vector-valued mapping from RY1,Y2 to RU1,U2 , where U1 = g1(Y1, Y2) and U2 = g2(Y1, Y2),
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and where RY1,Y2 and RU1,U2 denote the two-dimensional supports of Y = (Y1, Y2) and

U = (U1, U2), respectively. If g−1
1 (u1, u2) and g−1

2 (u1, u2) have continuous partial deriva-

tives with respect to both u1 and u2, and the Jacobian, J , where, with “det” denoting

“determinant”,

J = det

∣∣∣∣∣∣

∂g−1
1 (u1,u2)

∂u1

∂g−1
1 (u1,u2)

∂u2

∂g−1
2 (u1,u2)

∂u1

∂g−1
2 (u1,u2)

∂u2

∣∣∣∣∣∣
6= 0,

then

fU1,U2(u1, u2) =





fY1,Y2 [g
−1
1 (u1, u2), g

−1
2 (u1, u2)]|J |, (u1, u2) ∈ RU1,U2

0, otherwise,

where |J | denotes the absolute value of J .

RECALL: The determinant of a 2× 2 matrix, e.g.,

det

∣∣∣∣∣∣
a b

c d

∣∣∣∣∣∣
= ad− bc.

IMPORTANT : When performing a bivariate transformation, the function g : R2 → R2

must be one-to-one. In addition, we need to keep track of what the transformation

U1 = g1(Y1, Y2), U2 = g2(Y1, Y2) “does” to the support RY1,Y2 . Remember, g is a vector-

valued function that maps points in RY1,Y2 to RU1,U2 .

Steps to perform a bivariate transformation:

1. Find fY1,Y2(y1, y2), the joint distribution of Y1 and Y2. This may be given in the

problem. If Y1 and Y2 are independent, then fY1,Y2(y1, y2) = fY1(y1)fY2(y2).

2. Find RU1,U2 , the support of U = (U1, U2).

3. Find the inverse transformations y1 = g−1
1 (u1, u2) and y2 = g−1

2 (u1, u2).

4. Find the Jacobian, J , of the inverse transformation.

5. Use the formula above to find fU1,U2(u1, u2), the joint distribution of U1 and U2.

NOTE : If desired, marginal distributions fU1(u1) and fU2(u2) can be found by integrating

the joint distribution fU1,U2(u1, u2) as we learned in STAT 511.

PAGE 17



CHAPTER 6 STAT 512, J. TEBBS

Example 6.13. Suppose that Y1 ∼ gamma(α, 1), Y2 ∼ gamma(β, 1), and that Y1 and

Y2 are independent. Define the transformation

U1 = g1(Y1, Y2) = Y1 + Y2

U2 = g2(Y1, Y2) =
Y1

Y1 + Y2

.

Find each of the following distributions:

(a) fU1,U2(u1, u2), the joint distribution of U1 and U2,

(b) fU1(u1), the marginal distribution of U1, and

(c) fU2(u2), the marginal distribution of U2.

Solutions. (a) Since Y1 and Y2 are independent, the joint distribution of Y1 and Y2 is

fY1,Y2(y1, y2) = fY1(y1)fY2(y2)

=
1

Γ(α)
yα−1

1 e−y1 × 1

Γ(β)
yβ−1

2 e−y2

=
1

Γ(α)Γ(β)
yα−1

1 yβ−1
2 e−(y1+y2),

for y1 > 0, y2 > 0, and 0, otherwise. Here, RY1,Y2 = {(y1, y2) : y1 > 0, y2 > 0}. By

inspection, we see that u1 = y1 + y2 > 0, and u2 = y1

y1+y2
must fall between 0 and 1.

Thus, the support of U = (U1, U2) is given by

RU1,U2 = {(u1, u2) : u1 > 0, 0 < u2 < 1}.

The next step is to derive the inverse transformation. It follows that

u1 = g1(y1, y2) = y1 + y2

u2 = g2(y1, y2) = y1

y1+y2

=⇒ y1 = g−1
1 (u1, u2) = u1u2

y2 = g−1
2 (u1, u2) = u1 − u1u2

.

The Jacobian is given by

J = det

∣∣∣∣∣∣

∂g−1
1 (u1,u2)

∂u1

∂g−1
1 (u1,u2)

∂u2

∂g−1
2 (u1,u2)

∂u1

∂g−1
2 (u1,u2)

∂u2

∣∣∣∣∣∣
= det

∣∣∣∣∣∣
u2 u1

1− u2 −u1

∣∣∣∣∣∣
= −u2u1 − u1(1− u2) = −u1.
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We now write the joint distribution for U = (U1, U2). For u1 > 0 and 0 < u2 < 1, we

have that

fU1,U2(u1, u2) = fY1,Y2 [g
−1
1 (u1, u2), g

−1
2 (u1, u2)]|J |

=
1

Γ(α)Γ(β)
(u1u2)

α−1(u1 − u1u2)
β−1e−[u1u2+(u1−u1u2)] × | − u1|.

Rewriting this expression, we get

fU1,U2(u1, u2) =





uα−1
2 (1−u2)β−1

Γ(α)Γ(β)
uα+β−1

1 e−u1 , u1 > 0, 0 < u2 < 1

0, otherwise.

ASIDE : We see that U1 and U2 are independent since the support RU1,U2 = {(u1, u2) :

u1 > 0, 0 < u2 < 1} does not constrain u1 by u2 or vice versa and since the nonzero part

of fU1,U2(u1, u2) can be factored into the two expressions h1(u1) and h2(u2), where

h1(u1) = uα+β−1
1 e−u1

and

h2(u2) =
uα−1

2 (1− u2)
β−1

Γ(α)Γ(β)
.

(b) To obtain the marginal distribution of U1, we integrate the joint pdf fU1,U2(u1, u2)

over u2. That is, for u1 > 0,

fU1(u1) =

∫ 1

u2=0

fU1,U2(u1, u2)du2

=

∫ 1

u2=0

uα−1
2 (1− u2)

β−1

Γ(α)Γ(β)
uα+β−1

1 e−u1du2

=
1

Γ(α)Γ(β)
uα+β−1

1 e−u1

∫ 1

u2=0

uα−1
2 (1− u2)

β−1

︸ ︷︷ ︸
beta(α,β)kernel

du2

=
1

Γ(α)Γ(β)
uα+β−1

1 e−u1 × Γ(α)Γ(β)

Γ(α + β)

=
1

Γ(α + β)
uα+β−1

1 e−u1 .

Summarizing,

fU1(u1) =





1
Γ(α+β)

uα+β−1
1 e−u1 , u1 > 0,

0, otherwise.

We recognize this as a gamma(α + β, 1) pdf; thus, marginally, U1 ∼ gamma(α + β, 1).
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(c) To obtain the marginal distribution of U2, we integrate the joint pdf fU1,U2(u1, u2)

over u1. That is, for 0 < u2 < 1,

fU2(u2) =

∫ ∞

u1=0

fU1,U2(u1, u2)du1

=

∫ ∞

u1=0

uα−1
2 (1− u2)

β−1

Γ(α)Γ(β)
uα+β−1

1 e−u1du1

=
uα−1

2 (1− u2)
β−1

Γ(α)Γ(β)

∫ ∞

u1=0

uα+β−1
1 e−u1du1

︸ ︷︷ ︸
= Γ(α+β)

=
Γ(α + β)

Γ(α)Γ(β)
uα−1

2 (1− u2)
β−1.

Summarizing,

fU2(u2) =





Γ(α+β)
Γ(α)Γ(β)

uα−1
2 (1− u2)

β−1, 0 < u2 < 1,

0, otherwise.

Thus, marginally, U2 ∼ beta(α, β). ¤

REMARK : Suppose that Y = (Y1, Y2) is a continuous random vector with joint pdf

fY1,Y2(y1, y2), and suppose that we would like to find the distribution of a single random

variable

U1 = g1(Y1, Y2).

Even though there is no U2 present here, the bivariate transformation technique can still

be useful! In this case, we can define a “dummy variable” U2 = g2(Y1, Y2) that is of

no interest to us, perform the bivariate transformation to obtain fU1,U2(u1, u2), and then

find the marginal distribution of U1 by integrating fU1,U2(u1, u2) out over the dummy

variable u2. While the choice of U2 is arbitrary, there are certainly bad choices. Stick

with something easy; usually U2 = g2(Y1, Y2) = Y2 does the trick.

Exercise: Suppose that Y1 and Y2 are random variables with joint pdf

fY1,Y2(y1, y2) =





8y1y2, 0 < y1 < y2 < 1,

0, otherwise.

Find the pdf of U1 = Y1/Y2.
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REMARK : The transformation method can also be extended to handle n-variate trans-

formations. Suppose that Y1, Y2, ..., Yn are continuous random variables with joint pdf

fY (y) and define

U1 = g1(Y1, Y2, ..., Yn)

U2 = g2(Y1, Y2, ..., Yn)

...

Un = gn(Y1, Y2, ..., Yn).

If this transformation is one-to-one, the procedure that we discussed for the bivariate

case extends straightforwardly; see WMS, pp 330.

6.6 Order statistics

DEFINITION : Suppose that Y1, Y2, ..., Yn are iid observations from fY (y). As we have

discussed, the values Y1, Y2, ..., Yn can be envisioned as a random sample from a pop-

ulation where fY (y) describes the behavior of individuals in this population. Define

Y(1) = smallest of Y1, Y2, ..., Yn

Y(2) = second smallest of Y1, Y2, ..., Yn

...

Y(n) = largest of Y1, Y2, ..., Yn.

The new random variables, Y(1) ≤ Y(2) ≤ · · · ≤ Y(n) are called order statistics; they are

simply the observations Y1, Y2, ..., Yn ordered from low to high.

GOALS : We are interested in understanding how a single order statistic is distributed

(e.g., minimum, maximum, sample median, etc.). In addition, we might want to derive

the distribution of a function of order statistics, say, R = Y(n) − Y(1), the sample range.

Throughout our discussion, we assume that the observations Y1, Y2, ..., Yn are continuous

so that, theoretically, ties are not possible.
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PDF OF Y(1): Suppose that Y1, Y2, ..., Yn are iid observations from the pdf fY (y) or,

equivalently, from the cdf FY (y). To derive fY(1)
(y), the marginal pdf of the minimum

order statistic, we will use the distribution function technique. The cdf of Y(1) is

FY(1)
(y) = P (Y(1) ≤ y)

= 1− P (Y(1) > y)

= 1− P ({Y1 > y} ∩ {Y2 > y} ∩ · · · ∩ {Yn > y})
= 1− P (Y1 > y)P (Y2 > y) · · ·P (Yn > y)

= 1− [P (Y1 > y)]n = 1− [1− FY (y)]n.

Thus, for values of y in the support of Y(1),

fY(1)
(y) =

d

dy
FY(1)

(y)

=
d

dy
{1− [1− FY (y)]n}

= −n[1− FY (y)]n−1[−fY (y)] = nfY (y)[1− FY (y)]n−1,

and 0, otherwise. This is the marginal pdf of the minimum order statistic. ¤

Example 6.14. An engineering system consists of 5 components placed in series; that

is, the system fails when the first component fails. Suppose that the n = 5 component

lifetimes Y1, Y2, ..., Y5 are assumed to be iid exponential observations with mean β. Since

the system fails when the first component fails, system failures can be determined (at

least, probabilistically) by deriving the pdf of Y(1), the minimum order statistic. Recall

that for the exponential model, the pdf is

fY (y) =





1
β
e−y/β, y > 0

0, otherwise

and the cdf is given by

FY (y) =





0, y ≤ 0

1− e−y/β, y > 0.

Using the formula for the pdf of the minimum order statistic, we see that, with n = 5
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Figure 6.2: The probability density function of Y(1), the minimum order statistic in Ex-

ample 6.14 when β = 1 year. This represents the distribution of the lifetime of a series

system, which is exponential with mean 1/5.

components, the distribution of the lifetime of the series system is given by

fY(1)
(y) = nfY (y)[1− FY (y)]n−1

= 5

(
1

β
e−y/β

) [
1− (

1− e−y/β
)]5−1

=
5

β
e−y/β

(
e−y/β

)4

=
5

β
e−5y/β =

1

(β/5)
e−y/(β/5),

for y > 0. That is, the minimum order statistic Y(1), which measures the lifetime of the

system, follows an exponential distribution with mean E(Y(1)) = β/5. ¤

Example 6.15. Suppose that, in Example 6.14, the mean component lifetime is β = 1

year, and that an engineer is claiming the system with these settings will likely last at

least 6 months (before repair is needed). Is there evidence to support his claim?

Solution. We can compute the probability that the system lasts longer than 6 months,
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which occurs when Y(1) > 0.5. Using the pdf for Y(1) (see Figure 6.2), we have

P (Y(1) > 0.5) =

∫ ∞

0.5

1

1/5
e−y/(1/5)dy =

∫ ∞

0.5

5e−5ydy ≈ 0.082.

Thus, chances are that the system would not last longer than six months. There is not

very much evidence to support the engineer’s claim. ¤

PDF OF Y(n): Suppose that Y1, Y2, ..., Yn are iid observations from the pdf fY (y) or,

equivalently, from the cdf FY (y). To derive fY(n)
(y), the marginal pdf of the maximum

order statistic, we will use the distribution function technique. The cdf of Y(n) is

FY(n)
(y) = P (Y(n) ≤ y)

= P ({Y1 ≤ y} ∩ {Y2 ≤ y} ∩ · · · ∩ {Yn ≤ y})
= P (Y1 ≤ y)P (Y2 ≤ y) · · ·P (Yn ≤ y)

= [P (Y1 ≤ y)]n = [FY (y)]n.

Thus, for values of y in the support of Y(n),

fY(n)
(y) =

d

dy
FY(n)

(y)

=
d

dy
{[FY (y)]n}

= nfY (y)[FY (y)]n−1,

and 0, otherwise. This is the marginal pdf of the maximum order statistic. ¤

Example 6.16. The proportion of rats that successfully complete a designed experiment

(e.g., running through a maze) is of interest for psychologists. Denote by Y the proportion

of rats that complete the experiment, and suppose that the experiment is replicated in

10 different rooms. Assume that Y1, Y2, ..., Y10 are iid beta random variables with α = 2

and β = 1. Recall that for this beta model, the pdf is

fY (y) =





2y, 0 < y < 1

0, otherwise.

Find the pdf of Y(10), the largest order statistic. Also, calculate P (Y(10) > 0.90).
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Figure 6.3: The pdf for Y(10), the largest order statistic in Example 6.16.

Solution. Direct calculation shows that the cdf of Y is given by

FY (y) =





0, y ≤ 0

y2, 0 < y < 1

1, y ≥ 1.

Using the formula for the pdf of the maximum order statistic, for 0 < y < 1,

fY(10)
(y) = nfY (y)[FY (y)]n−1 = 10(2y)(y2)9 = 20y19.

Thus, the pdf of Y(10) is given by

fY(10)
(y) =





20y19, 0 < y < 1

0, otherwise

and this probability density function is depicted in Figure 6.3. Note that this is the pdf

of a beta(α = 20, β = 1) random variable; i.e., Y(10) ∼ beta(20, 1). Furthermore,

P (Y(10) > 0.90) =

∫ 1

0.90

20y19dy = y20
∣∣∣
1

0.90
= 1− (0.9)20 ≈ 0.88. ¤
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PDF OF Y(k): Suppose that Y1, Y2, ..., Yn are iid observations from the pdf fY (y) or,

equivalently, from the cdf FY (y). To derive fY(k)
(y), the pdf of the kth order statistic,

we appeal to a multinomial-type argument. Define

Class Description #Yi’s

1 the Yi’s less than y k − 1

2 the Yi’s equal to y 1

3 the Yi’s greater than y n− k

Thus, since Y1, Y2, ..., Yn are independent, we have, by appeal to the multinomial model,

fY(k)
(y) =

n!

(k − 1)!1!(n− k)!
[FY (y)]k−1[fY (y)]1[1− FY (y)]n−k,

where we interpret

FY (y) = P (Yi < y)

fY (y) = P (Yi = y)

1− FY (y) = P (Yi > y).

Thus, the pdf of the kth order statistic Y(k) is given by

fY(k)
(y) =

n!

(k − 1)!(n− k)!
[FY (y)]k−1fY (y)[1− FY (y)]n−k,

for values of y in the support of Y(k), and 0, otherwise. ¤

Example 6.17. Suppose that Y1, Y2, ..., Yn are iid U(0, 1) observations. What is the

distribution of the kth order statistic Y(k)?

Solution. Recall that for this model, the pdf is

fY (y) =





1, 0 < y < 1

0, otherwise

and the cdf of Y is

FY (y) =





0, y ≤ 0

y, 0 < y < 1

1, y ≥ 1.
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Using the formula for the pdf of the kth order statistic, we have, for 0 < y < 1,

fY(k)
(y) =

n!

(k − 1)!(n− k)!
[FY (y)]k−1fY (y)[1− FY (y)]n−k

=
n!

(k − 1)!(n− k)!
yk−1(1− y)n−k

=
Γ(n + 1)

Γ(k)Γ(n− k + 1)
yk−1(1− y)(n−k+1)−1.

You should recognize this as a beta pdf with α = k and β = n − k + 1. That is,

Y(k) ∼ beta(k, n− k + 1). ¤

TWO ORDER STATISTICS : Suppose that Y1, Y2, ..., Yn are iid observations from the

pdf fY (y) or, equivalently, from the cdf FY (y). For j < k, the joint distribution of Y(j)

and Y(k) is

fY(j),Y(k)
(yj, yk) =

n!

(j − 1)!(k − 1− j)!(n− k)!
[FY (yj)]

j−1

× fY (yj)[FY (yk)− FY (yj)]
k−1−jfY (yk)[1− FY (yk)]

n−k,

for values of yj < yk in the support of Y(j) and Y(k), and 0, otherwise. ¤

REMARK : Informally, this result can again be derived using a multinomial-type argu-

ment, only this time, using the 5 classes

Class Description #Yi’s

1 the Yi’s less than yj j − 1

2 the Yi’s equal to yj 1

3 the Yi’s greater than yj but less than yk k − 1− j

4 the Yi’s equal to yk 1

5 the Yi’s greater than yk n− k

Exercise: Suppose that Y1, Y2, ..., Y5 is an iid sample of n = 5 exponential observations

with mean β = 1.

(a) Find the joint distribution of Y(1) and Y(5).

(b) Find the probability that the sample range R = Y(5) − Y(1) exceeds 2. That is,

compute P (R > 2) = P (Y(5) − Y(1) > 2). Hint: You have the joint distribution of Y(1)

and Y(5) in part (a).
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7 Sampling Distributions and the Central Limit The-

orem

Complementary reading: Chapter 7 (WMS).

7.1 Introduction

REMARK : For the remainder of this course, we will often treat a collection of random

variables Y1, Y2, ..., Yn as a random sample. This is understood to mean that

• the random variables Y1, Y2, ..., Yn are independent

• each Yi has common pdf (pmf) fY (y). This probability model fY (y) can be discrete

(e.g., Bernoulli, Poisson, geometric, etc.) or continuous (e.g., normal, gamma,

uniform, etc.). It could also be a mixture of continuous and discrete parts.

REVIEW : In mathematical statistics, it is common to refer to a collection of random vari-

ables with these properties as an iid sample. The acronymn “iid” means “independent

and identically distributed.” The model fY (y) is called the population distribution;

it represents the distribution from which the sample values Y1, Y2, ..., Yn are drawn.

DEFINITION : A statistic, say T , is a function of the random variables Y1, Y2, ..., Yn. A

statistic can depend on known constants, but it can not depend on unknown parameters.

NOTE : To emphasize the dependence of T on Y1, Y2, ..., Yn, we may write

T = T (Y1, Y2, ..., Yn).

In addition, while it will often be the case that Y1, Y2, ..., Yn constitute a random sample

(i.e., that they are iid), our definition of a statistic T holds in more general settings. In

practice, it is common to view Y1, Y2, ..., Yn as data from an experiment or observational

study and T as some summary measure (e.g., sample mean, sample variance, etc.).
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Example 7.1. Suppose that Y1, Y2, ..., Yn is an iid sample from fY (y). For example,

each of the following are statistics:

• T (Y1, Y2, ..., Yn) = Y = 1
n

∑n
i=1 Yi, the sample mean.

• T (Y1, Y2, ..., Yn) = 1
2
[Y(n/2) + Y([n/2]+1)], the sample median (if n is even).

• T (Y1, Y2, ..., Yn) = Y(1), the minimum order statistic.

• T (Y1, Y2, ..., Yn) = Y(n) − Y(1), the sample range.

• T (Y1, Y2, ..., Yn) = S2 = 1
n−1

∑n
i=1(Yi − Y )2, the sample variance.

IMPORTANT : Since Y1, Y2, ..., Yn are random variables, any statistic T = T (Y1, Y2, ..., Yn),

being a function of Y1, Y2, ..., Yn, is also a random variable. Thus, T has, among other

characteristics, its own mean, its own variance, and its own probability distribution!

DEFINITION : The probability distribution of a statistic T is called the sampling dis-

tribution of T . The sampling distribution of T describes mathematically how the values

of T vary in repeated sampling from the population distribution fY (y). Sampling distri-

butions play a central role in statistics.

7.2 Sampling distributions related to the normal distribution

Example 7.2. Suppose that Y1, Y2, ..., Yn is an iid sample from a N (µ, σ2) distribution,

and consider the statistic

Y =
1

n

n∑
i=1

Yi,

the sample mean. From Example 6.7 (notes), we know that

Y ∼ N
(

µ,
σ2

n

)
.

Furthermore, the quantity

Z =
Y − µ

σ/
√

n
∼ N (0, 1). ¤
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Example 7.3. In the interest of pollution control, an experimenter records Y , the

amount of bacteria per unit volume of water (measured in mg/cm3). The population

distribution for Y is assumed to be normal with mean µ = 48 and variance σ2 = 100;

that is, Y ∼ N (48, 100). As usual, let Z denote a standard normal random variable.

(a) What is the probability that a single water specimen’s bacteria amount will exceed

50 mg/cm3?

Solution. Here, we use the population distribution N (48, 100) to compute

P (Y > 50) = P

(
Z >

50− 48

10

)

= P (Z > 0.2) = 0.4207.

(b) Suppose that the experimenter takes a random sample of n = 100 water specimens,

and denote the observations by Y1, Y2, ..., Y100. What is the probability that the sample

mean Y will exceed 50 mg/cm3?

Solution. Here, we need to use the sampling distribution of the sample mean Y . Since

the population distribution is N (48, 100), we know that

Y ∼ N
(

µ,
σ2

n

)
∼ N (48, 1) .

Thus,

P (Y > 50) = P

(
Z >

50− 48

1

)

= P (Z > 2) = 0.0228. ¤

Exercise: How large should the sample size n be so that P (Y > 50) < 0.01?

RECALL: If Y1, Y2, ..., Yn are independent N (µi, σ
2
i ) random variables, then

n∑
i=1

(
Yi − µi

σi

)2

∼ χ2(n).

We proved this in the last chapter. See Example 6.12 (notes).

SPECIAL CASE : If Y1, Y2, ..., Yn are iid N (µ, σ2), then

n∑
i=1

(
Yi − µ

σ

)2

∼ χ2(n).
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NEW RESULT : If Y1, Y2, ..., Yn are iid N (µ, σ2), then

(n− 1)S2

σ2
=

n∑
i=1

(
Yi − Y

σ

)2

∼ χ2(n− 1).

In addition, Y and S2 are independent.

REMARK : We will not prove the independence result, in general; this would be proven

in a more advanced course, although WMS proves this for the n = 2 case. The statistics

Y and S2 are independent only if the observations Y1, Y2, ..., Yn are iid N (µ, σ2). If the

normal model changes (or does not hold), then Y and S2 are no longer independent.

Proof. We will prove that
(n− 1)S2

σ2
∼ χ2(n− 1).

First, we write

n∑
i=1

(
Yi − µ

σ

)2

︸ ︷︷ ︸
W1

=
n∑

i=1

(
Yi − Y + Y − µ

σ

)2

=
n∑

i=1

(
Yi − Y

σ

)2

︸ ︷︷ ︸
W2

+
n∑

i=1

(
Y − µ

σ

)2

︸ ︷︷ ︸
W3

,

since the cross product

2
n∑

i=1

(
Yi − Y

σ

)(
Y − µ

σ

)
= 0.

Now, we know that W1 ∼ χ2(n). Also, we can rewrite W3 as

n∑
i=1

(
Y − µ

σ

)2

= n

(
Y − µ

σ

)2

=

(
Y − µ

σ/
√

n

)2

∼ χ2(1),

since
Y − µ

σ/
√

n
∼ N (0, 1),

and the square of a standard normal is distributed as χ2(1). So, we have

W1 = W2 + W3

=
(n− 1)S2

σ2
+ W3.
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Since W2 is a function of S2 and W3 is a function of Y , W2 and W3 are independent.

Thus, the mgf of W1 is given by

mW1(t) = E(etW1) = E
{
et[(n−1)S2/σ2+W3]

}

= E
{
et[(n−1)S2/σ2]etW3

}

= E
{
et[(n−1)S2/σ2]

}
E(etW3).

But, mW1(t) = (1−2t)−n/2 since W1 ∼ χ2(n) and mW3(t) = (1−2t)−1/2 since W3 ∼ χ2(1);

both of these mgfs are valid for t < 1/2. Thus, it follows that

(1− 2t)−n/2 = E
{
et[(n−1)S2/σ2]

}
(1− 2t)−1/2.

Hence, it must be the case that

E
{
et[(n−1)S2/σ2]

}
= E(etW2) = mW2(t) = (1− 2t)−(n−1)/2,

for values of t < 1/2. Thus, W2 ∼ χ2(n− 1) by the uniqueness property of mgfs. ¤

Example 7.4. In an ecological study examining the effects of Hurricane Katrina, re-

searchers choose n = 9 plots and, for each plot, record Y , the amount of dead weight

material (recorded in grams). Denote the nine dead weights by Y1, Y2, ..., Y9, where Yi

represents the dead weight for plot i. The researchers model the data Y1, Y2, ..., Y9 as an

iid N (100, 32) sample. What is the probability that the sample variance S2 of the nine

dead weights is less than 20? That is, what is P (S2 < 20)?

Solution. We know that

(n− 1)S2

σ2
=

8S2

32
∼ χ2(8).

Thus,

P (S2 < 20) = P

[
8S2

32
<

8(20)

32

]

= P [χ2(8) < 5] ≈ 0.24. ¤

Note that the table of χ2 probabilities (Table 6, pp 794-5, WMS) offers little help in

computing P [χ2(8) < 5]. I found this probability using the pchisq(5,8) command in R.

Exercise: How large should the sample size n be so that P (S2 < 20) < 0.01?
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7.2.1 The t distribution

THE t DISTRIBUTION : Suppose that Z ∼ N (0, 1) and that W ∼ χ2(ν). If Z and W

are independent, then the random variable

T =
Z√
W/ν

has a t distribution with ν degrees of freedom. This is denoted T ∼ t(ν).

THE t PDF : Suppose that the random variable T has a t distribution with ν degrees of

freedom. The pdf for T is given by

fT (t) =





Γ( ν+1
2

)√
πν Γ(ν/2)

(1 + t2/ν)−(ν+1)/2, −∞ < t < ∞
0, otherwise.

REMARK : It is possible to derive the t pdf using a bivariate transformation argument.

The good news is that, in practice, we will never use the formula for the t pdf to find

probabilities. Computing gives areas (probabilities) upon request; in addition, tabled

values (giving limited probabilities) are readily available. See Table 5 (WMS).

FACTS ABOUT THE t DISTRIBUTION :

• continuous and symmetric about 0

• indexed by a parameter called the degrees of freedom (thus, there are infinitely

many t distributions!)

• in practice, ν will usually be an integer (and is often related to the sample size)

• As ν →∞, t(ν) → N (0, 1); thus, when ν becomes larger, the t(ν) and the N (0, 1)

distributions look more alike

• E(T ) = 0 and V (T ) = ν
ν−2

for ν > 2

• When compared to the standard normal distribution, the t distribution, in general,

is less peaked, and has more mass in the tails. Note that V (T ) > 1.
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Figure 7.4: The t(3) distribution (dotted) and the N (0, 1) distribution (solid).

RELATIONSHIP WITH THE CAUCHY DISTRIBUTION : When ν = 1, the t pdf

reduces to

fT (t) =





1
π(1+t2)

, −∞ < t < ∞
0, otherwise.

which we recognize as the pdf of a Cauchy random variable. Recall that no moments are

finite for the Cauchy distribution.

IMPORTANT RESULT : Suppose that Y1, Y2, ..., Yn is an iid N (µ, σ2) sample. From past

results, we know that

Y − µ

σ/
√

n
∼ N (0, 1) and

(n− 1)S2

σ2
∼ χ2(n− 1).

In addition, we know that Y and S2 are independent, so the two quantities above (being

functions of Y and S2, respectively) are independent too. Thus,

t =

Y−µ
σ/
√

n√
(n−1)S2

σ2 /(n− 1)
∼ “N (0, 1)”√

“χ2(n− 1)”/(n− 1)
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has a t(n− 1) distribution. But, simple algebra shows that

t =

Y−µ
σ/
√

n√
(n−1)S2

σ2 /(n− 1)
=

Y − µ

S/
√

n
.

This allows us to conclude that if Y1, Y2, ..., Yn is an iid N (µ, σ2) sample,

t =
Y − µ

S/
√

n
∼ t(n− 1).

COMPARISON : You should see the effect of estimating σ, the population standard

deviation, with S, the sample standard deviation. Recall that if Y1, Y2, ..., Yn is an iid

N (µ, σ2) sample,

Z =
Y − µ

σ/
√

n
∼ N (0, 1).

Thus, when we replace σ with its natural estimator S, we go from a standard normal

sampling distribution to a t sampling distribution with n − 1 degrees of freedom. Of

course, if n is large, then we know that these sampling distributions will be “close” to

each other.

DERIVATION OF THE t PDF : We know that Z ∼ N (0, 1), that W ∼ χ2(ν), and that

Z and W are independent. Thus, the joint pdf of (Z, W ) is given by

fZ,W (z, w) =
1√
2π

e−z2/2

︸ ︷︷ ︸
N (0,1) pdf

1

Γ(ν/2)2ν/2
wν/2−1e−w/2

︸ ︷︷ ︸
χ2(ν) pdf

,

for −∞ < z < ∞ and w > 0. Consider the bivariate transformation

T = g1(Z, W ) =
Z√
W/ν

U = g2(Z, W ) = W.

The support of (Z,W ) is the set RZ,W = {(z, w) : −∞ < z < ∞, w > 0}. The support

of (T, U) is the image space of RZ,W under g : R2 → R2, where g is defined as above;

i.e., RT,U = {(t, u) : −∞ < t < ∞, u > 0}. The (vector-valued) function g is one-to-one,

so the inverse transformation exists and is given by

z = g−1
1 (t, u) = t

√
u/ν

w = g−1
2 (t, u) = u.
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The Jacobian of the transformation is

J = det

∣∣∣∣∣∣

∂g−1
1 (t,u)

∂t

∂g−1
1 (t,u)

∂u

∂g−1
2 (t,u)

∂t

∂g−1
2 (t,u)

∂u

∣∣∣∣∣∣
= det

∣∣∣∣∣∣

√
u/ν t/2

√
uν

0 1

∣∣∣∣∣∣
=

√
u/ν.

We have the support of (T, U), the inverse transformation, and the Jacobian; we are now

ready to write the joint pdf of (T, U). For all −∞ < t < ∞ and u > 0, this joint pdf is

given by

fT,U(t, u) = fZ,W [g−1
1 (t, u), g−1

2 (t, u)]|J |
=

1√
2π

e−(t
√

u/ν)2/2 1

Γ(ν/2)2ν/2
uν/2−1e−u/2 × |

√
u/ν|

=
1√

2πνΓ(ν/2)2ν/2
u(ν+1)/2−1e

−u
2

(
1+ t2

ν

)
.

To find the marginal pdf of T , we simply integrate fT,U(t, u) with respect to u; that is,

fT (t) =

∫ ∞

0

fT,U(t, u)du

=

∫ ∞

0

1√
2πνΓ(ν/2)2ν/2

u(ν+1)/2−1e
−u

2

(
1+ t2

ν

)
du

=
1√

2πνΓ(ν/2)2ν/2

∫ ∞

0

u(ν+1)/2−1e
−u

2

(
1+ t2

ν

)

︸ ︷︷ ︸
gamma(a,b) kernel

du,

where a = (ν + 1)/2 and b = 2
(
1 + t2

ν

)−1

. The gamma kernel integral above equals

Γ(a)ba = Γ[(ν + 1)/2]

[
2

(
1 +

t2

ν

)−1
](ν+1)/2

,

so that the pdf of T becomes

fT (t) =
1√

2πνΓ(ν/2)2ν/2
Γ[(ν + 1)/2]

[
2

(
1 +

t2

ν

)−1
](ν+1)/2

=
Γ(ν+1

2
)√

πν Γ(ν/2)
(1 + t2/ν)−(ν+1)/2,

for all −∞ < t < ∞. We recognize this as the pdf of a t random variable with ν degrees

of freedom. ¤
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7.2.2 The F distribution

THE F DISTRIBUTION : Suppose that W1 ∼ χ2(ν1) and that W2 ∼ χ2(ν2). If W1 and

W2 are independent, then the quantity

F =
W1/ν1

W2/ν2

has an F distribution with ν1 (numerator) and ν2 (denominator) degrees of freedom.

This is denoted F (ν1, ν2).

REMARK : It is possible to derive the F pdf using a bivariate transformation (similar to

the argument we just made in deriving the t pdf). If W ∼ F (ν1, ν2), the pdf of W , for

all w > 0, is given by

fW (w) =
Γ(ν1+ν2

2
)
(

ν1

ν2

)ν1/2

w(ν1−2)/2

Γ(ν1

2
)Γ(ν2

2
)
(
1 + ν1w

ν2

)(ν1+ν2)/2
.

Like the t pdf, we will never use the formula for the F pdf to find probabilities. Computing

gives areas (probabilities) upon request; in addition, F tables (though limited in their

use) are readily available. See Table 7 (WMS).

FACTS ABOUT THE F DISTRIBUTION :

• continuous and skewed right

• indexed by two degrees of freedom parameters ν1 and ν2; these are usually

integers and are often related to sample sizes

• If W ∼ F (ν1, ν2), then E(W ) = ν2/(ν2 − 2), for ν2 > 2. A formula for V (W ) is

given on pp 368 (WMS). Note that E(W ) ≈ 1 if ν2 is large.

FUNCTIONS OF t AND F : The following results are useful. Each of the following facts

can be proven using the method of transformations.

1. If W ∼ F (ν1, ν2), then 1/W ∼ F (ν2, ν1).
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2. If T ∼ t(ν), then T 2 ∼ F (1, ν).

3. If W ∼ F (ν1, ν2), then (ν1/ν2)W/[1 + (ν1/ν2)W ] ∼ beta(ν1/2, ν2/2).

Example 7.5. Suppose that Y1, Y2, ..., Yn is an iid sample from a N (µ, σ2) distribution.

Recall that

Z =
Y − µ

σ/
√

n
∼ N (0, 1) and T =

Y − µ

S/
√

n
∼ t(n− 1).

Now, write

T 2 =

(
Y − µ

S/
√

n

)2

=

(
Y − µ

σ/
√

n

)2
σ2

S2

=

(
Y−µ
σ/
√

n

)2

/1

(n−1)S2

σ2 /(n− 1)

∼ “χ2(1)”/1

“χ2(n− 1)”/(n− 1)
∼ F (1, n− 1),

since the numerator and denominator are independent; this follows since Y and S2 are

independent when the underlying population distribution is normal. We have informally

established the second result (immediately above) for the case wherein ν is an integer

greater than 1. ¤

AN IMPORTANT APPLICATION : Suppose that we have two independent samples:

Y11, Y12, ..., Y1n1 ∼ iid N (µ1, σ
2
1)

Y21, Y22, ..., Y2n2 ∼ iid N (µ2, σ
2
2).

Define the statistics

Y 1+ =
1

n1

n1∑
j=1

Y1j = sample mean for sample 1

Y 2+ =
1

n2

n2∑
j=1

Y2j = sample mean for sample 2

S2
1 =

1

n1 − 1

n1∑
j=1

(Y1j − Y 1+)2 = sample variance for sample 1

S2
2 =

1

n2 − 1

n2∑
j=1

(Y2j − Y 2+)2 = sample variance for sample 2.
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We know that

(n1 − 1)S2
1

σ2
1

∼ χ2(n1 − 1) and
(n2 − 1)S2

2

σ2
2

∼ χ2(n2 − 1).

Furthermore, as the samples are independent, (n1 − 1)S2
1/σ

2
1 and (n2 − 1)S2

2/σ
2
2 are as

well. Thus, the quantity

F =

(n1−1)S2
1

σ2
1

/(n1 − 1)

(n2−1)S2
2

σ2
2

/(n2 − 1)
∼ “χ2(n1 − 1)”/(n1 − 1)

“χ2(n2 − 1)”/(n2 − 1)
∼ F (n1 − 1, n2 − 1).

But, algebraically,

F =

(n1−1)S2
1

σ2
1

/(n1 − 1)

(n2−1)S2
2

σ2
2

/(n2 − 1)
=

S2
1/σ

2
1

S2
2/σ

2
2

.

Thus, we conclude that

F =
S2

1/σ
2
1

S2
2/σ

2
2

∼ F (n1 − 1, n2 − 1).

In addition, if the two population variances σ2
1 and σ2

2 are equal; i.e., σ2
1 = σ2

2 = σ2, say,

then

F =
S2

1/σ
2

S2
2/σ

2
=

S2
1

S2
2

∼ F (n1 − 1, n2 − 1).

7.3 The Central Limit Theorem

RECALL: If Y1, Y2, ..., Yn is an iid sample from a N (µ, σ2) distribution, then we know

the sample mean Y ∼ N (µ, σ2/n). This begs the question: “What is the sampling

distribution of Y if the observations (data) are not normally distributed?”

CENTRAL LIMIT THEOREM : Suppose that Y1, Y2, ..., Yn is an iid sample from a pop-

ulation distribution with mean E(Y ) = µ and V (Y ) = σ2 < ∞. Let Y = 1
n

∑n
i=1 Yi

denote the sample mean and define

Un =
√

n

(
Y − µ

σ

)
=

Y − µ

σ/
√

n
.

Then, as n → ∞, the cumulative distribution function (cdf) of Un converges pointwise

to the cdf of a N (0, 1) random variable.

PAGE 39



CHAPTER 7 STAT 512, J. TEBBS

NOTATION : We write Un
d−→ N (0, 1). The symbol “

d−→” is read, “converges in distri-

bution to.” The mathematical statement that

Un =
Y − µ

σ/
√

n

d−→ N (0, 1)

implies that, for large n, Y has an approximate normal sampling distribution with

mean µ and variance σ2/n. Thus, it is common to write

Y ∼ AN (µ, σ2/n).

REMARK : Note that this result is very powerful! The Central Limit Theorem (CLT)

states that averages will be approximately normally distributed even if the underlying

population distribution, say, fY (y), is not! This is not an exact result; it is only an

approximation.

HOW GOOD IS THE APPROXIMATION? : Since the CLT only offers an approximate

sampling distribution for Y , one might naturally wonder exactly how good the approxi-

mation is. In general, the goodness of the approximation jointly depends on

(a) sample size. The larger the sample size n, the better the approximation.

(b) symmetry in the underlying population distribution fY (y). The more symmetric

fY (y) is, the better the approximation. If fY (y) is highly skewed (e.g., exponential),

we need a larger sample size for the CLT to “kick in.” Recall from STAT 511 that

ξ =
E[(Y − µ)3]

σ3

the skewness coefficient, quantifies the skewness in the distribution of Y .

RESULT : Suppose Un is a sequence of random variables; denote by FUn(u) and mUn(t)

the corresponding sequence of cdfs and mgfs, respectively. Then, if mUn(t) −→ mU(t)

pointwise for all t in an open neighborhood of 0, then there exists a cdf FU(u) where

FUn(u) −→ FU(u) pointwise at all points where FU(u) is continuous. That is, convergence

of mgfs implies convergence of cdfs. We say that the sequence of random variables Un

converges in distribution to U and write Un
d−→ U .
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LEMMA: Recall from calculus that, for all a ∈ R,

lim
n→∞

(
1 +

a

n

)n

= ea.

A slight variant of this result states that if an → a, as n →∞, then

lim
n→∞

(
1 +

an

n

)n

= ea.

PROOF OF THE CLT : To prove the CLT, we will use the last result (and the lemma

above) to show that the mgf of

Un =
√

n

(
Y − µ

σ

)

converges to mU(t) = et2/2, the mgf of a standard normal random variable. We will

then be able to conclude that Un
d−→ N (0, 1), thereby establishing the CLT. Let mY (t)

denote the common mgf of each Y1, Y2, ..., Yn. We know that this mgf mY (t) is finite for

all t ∈ (−h, h), for some h > 0. Define

Xi =
Yi − µ

σ
,

and let mX(t) denote the common mgf of each X1, X2, ..., Xn (the Yi’s are iid; so are the

Xi’s). This mgf mX(t) exists for all t ∈ (−σh, σh). Simple algebra shows that

Un =
√

n

(
Y − µ

σ

)
=

1√
n

n∑
i=1

Xi.

Thus, the mgf of Un is given by

mUn(t) = E(etUn) = E
[
e(t/

√
n)

∑n
i=1 Xi

]
= E

[
e(t/

√
n)X1e(t/

√
n)X2 · · · e(t/

√
n)Xn

]

= E
[
e(t/

√
n)X1

]
E

[
e(t/

√
n)X2

]
· · ·E

[
e(t/

√
n)Xn

]

=
[
mX(t/

√
n)

]n
.

Now, consider the McLaurin series expansion (i.e., a Taylor series expansion about 0) of

mX(t/
√

n); we have

mX(t/
√

n) =
∞∑

k=0

m
(k)
X (0)

(t/
√

n)k

k!
,
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where m
(k)
X (0) = (dk/dtk)mX(t)|t=0. Recall that mX(t) exists for all t ∈ (−σh, σh), so

this power series expansion is valid for all |t/√n| < σh; i.e., for all |t| < √
nσh. Because

each Xi has mean 0 and variance 1 (verify!), it is easy to see that

m
(0)
X (0) = 1

m
(1)
X (0) = 0

m
(2)
X (0) = 1.

Thus, our series expansion above becomes

mX(t/
√

n) = 1 +
(t/
√

n)2

2!
+ RX(t/

√
n),

where RX(t/
√

n) is the remainder term in the expansion; i.e.,

RX(t/
√

n) =
∞∑

k=3

m
(k)
X (0)

(t/
√

n)k

k!
.

The key to finishing the proof is recognizing that

lim
n→∞

nRX(t/
√

n) = 0.

This is not difficult to see since the k = 3 term in RX(t/
√

n) contains an n
√

n in

its denominator; the k = 4 term contains an n2 in its denominator, and so on, and

since m
(k)
X (0)/k! is finite for all k. The last statement also is true when t = 0 since

RX(0/
√

n) = 0. Thus, for any fixed t, we can write

lim
n→∞

mUn(t) = lim
n→∞

[
mX(t/

√
n)

]n

= lim
n→∞

[
1 +

(t/
√

n)2

2!
+ RX(t/

√
n)

]n

= lim
n→∞

{
1 +

1

n

[
t2

2
+ nRX(t/

√
n)

]}n

.

Finally, let an = t2

2
+nRX(t/

√
n). It is easy to see that an → t2/2, since nRX(t/

√
n) → 0.

Thus, the last limit equals et2/2. We have shown that

lim
n→∞

mUn(t) = et2/2,

the mgf of a standard normal distribution; this completes the proof. ¤
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Example 7.6. A chemist is studying the degradation behavior of vitamin B6 in a

multivitamin. The chemist selects a random sample of n = 36 multivitamin tablets, and

for each tablet, counts the number of days until the B6 content falls below the FDA

requirement. Let Y1, Y2, ..., Y36 denote the measurements for the 36 tablets, and assume

that Y1, Y2, ..., Y36 is an iid sample from a Poisson distribution with mean 50.

(a) What is the approximate probability that the average number of days Y will exceed

52? That is, what is P (Y > 52)?

Solution. Recall that in the Poisson model, µ = σ2 = 50. The Central Limit Theorem

says that

Y ∼ AN
(

50,
50

36

)
.

Thus,

P (Y > 52) ≈ P

(
Z >

52− 50√
50/36

)
= P (Z > 1.70) = 0.0446.

(b) How many tablets does the researcher need to observe so that P (Y < 49.5) ≈ 0.01?

Solution. We want to find the n such that

P (Y < 49.5) ≈ P

(
Z <

49.5− 50√
50/n

)
= P

(
Z <

49.5− 50√
50/n

)
≈ 0.01.

Thus, we need to solve
49.5− 50√

50/n
= −2.33

for n; note that z = −2.33 is the 1st percentile of the standard normal distribution. It

follows that n ≈ 1086. ¤

7.4 The normal approximation to the binomial

IMPORTANCE : An important application of the Central Limit Theorem deals with

approximating the sampling distributions of functions of count data; such data are

pervasive in statistical problems.

RECALL: Suppose that Y1, Y2, ..., Yn is an iid sample from a Bernoulli(p) distribution;

that is, Yi = 1, if the ith trial is a “success,” and Yi = 0, otherwise. Recall that the
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probability mass function (pmf) for the Bernoulli random variable is

pY (y) =





py(1− p)1−y, y = 0, 1

0, otherwise.

That is, the sample Y1, Y2, ..., Yn is a random string of zeros and ones, where P (Yi = 1) =

p, for each i. Recall that in the Bernoulli model,

µ = E(Y ) = p and σ2 = V (Y ) = p(1− p).

From Example 6.9 (notes), we know that

X =
n∑

i=1

Yi,

the number of “successes,” has a binomial distribution with parameters n and p; that is,

X ∼ b(n, p). Define the sample proportion p̂ as

p̂ =
X

n
=

1

n

n∑
i=1

Yi.

Note that p̂ is an average of iid values of 0 and 1; thus, the CLT must apply! That is,

for large n,

p̂ ∼ AN
[
p,

p(1− p)

n

]
.

HOW GOOD IS THE APPROXIMATION? : Since we are sampling from a “binary”

population (almost as discrete as one can get!), one might naturally wonder how well the

normal distribution approximates the true sampling distribution of p̂. The approximation

is best when

(a) n is large (the approximation improves as n increases), and

(b) p is close to 1/2. Recall that, for Y ∼ b(1, p),

ξ =
E[(Y − µ)3]

σ3
=

1− 2p√
p(1− p)

.
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0.0 0.1 0.2 0.3 0.4 0.5 0.6

phat: n=10, p=0.1

0.00 0.05 0.10 0.15 0.20 0.25 0.30

phat: n=40, p=0.1

0.00 0.05 0.10 0.15 0.20 0.25

phat: n=100, p=0.1

0.0 0.2 0.4 0.6 0.8 1.0

phat: n=10, p=0.5

0.2 0.3 0.4 0.5 0.6 0.7 0.8

phat: n=40, p=0.5

0.3 0.4 0.5 0.6 0.7

phat: n=100, p=0.5

Figure 7.5: The approximate sampling distributions for p̂ for different n and p.

RULES OF THUMB : One can feel comfortable using the normal approximation as long

as np and n(1 − p) are larger than 10. Other guidelines have been proposed in the

literature. This is just a guideline.

Example 7.7. Figure 7.5 presents Monte Carlo distributions for 10,000 simulated

values of p̂ for each of six select cases:

Case 1: n = 10, p = 0.1 Case 2: n = 40, p = 0.1 Case 3: n = 100, p = 0.1

Case 4: n = 10, p = 0.5 Case 5: n = 40, p = 0.5 Case 6: n = 100, p = 0.5

One can clearly see that the normal approximation is not good when p = 0.1, except

when n is very large. On the other hand, when p = 0.5, the normal approximation is

already pretty good when n = 40. ¤
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Example 7.8. Dimenhydrinate, also known by the trade names Dramamine and Gravol,

is an over-the-counter drug used to prevent motion sickness. The drug’s manufacturer

claims that dimenhydrinate helps reduce motion sickness in 40 percent of the population.

A random sample of n = 200 individuals is recruited in a study to test the manufacturer’s

claim. Define Yi = 1, if the the ith subject responds to the drug, and Yi = 0, otherwise,

and assume that Y1, Y2, ..., Y200 is an iid Bernoulli(p = 0.4) sample; note that p = 0.4

corresponds to the company’s claim. Let X count the number of subjects that respond

to the drug; we then know that X ∼ b(200, 0.4). What is the probability that 60 or less

respond to the drug? That is, what is P (X ≤ 60)?

Solution. We compute this probability in two ways; first, we compute P (X ≤ 60)

exactly using the b(200, 0.4) model; this is given by

P (X ≤ 60) =
60∑

x=0

(
200

x

)
(0.4)x(1− 0.4)200−x = 0.0021.

I used the R command pbinom(60,200,0.4) to compute this probability. Alternatively,

we can use the CLT approximation to the binomial to find this probability; note that

the sample proportion

p̂ =
X

n
∼ AN

[
0.4,

0.4(1− 0.4)

200

]
.

Thus,

P (X ≤ 60) = P (p̂ ≤ 0.3)

≈ P


Z ≤ 0.3− 0.4√

0.4(1−0.4)
200




= P (Z ≤ −2.89) = 0.0019.

As we can see, the CLT approximation is very close to the true (exact) probability. Here,

np = 200× 0.4 = 80 and n(1− p) = 200× 0.6 = 120, both of which are large. Thus, we

can feel comfortable with the normal approximation. ¤

QUESTION FOR THOUGHT : We have observed here that P (X ≤ 60) is very, very

small under the assumption that p = 0.4, the probability of response for each subject,

claimed by the manufacturer. If we, in fact, did observe this event {X ≤ 60}, what might

this suggest about the manufacturer’s claim that p = 0.4?
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8 Estimation

Complementary reading: Chapter 8 (WMS).

8.1 Introduction

REMARK : Up until now (i.e., in STAT 511 and the material so far in STAT 512), we

have dealt with probability models. These models, as we know, can be generally

divided up into two types: discrete and continuous. These models are used to describe

populations of individuals.

• In a clinical trial with n patients, let p denote the probability of response to a new

drug. A b(1, p) model is assumed for each subject’s response (e.g., respond/not).

• In an engineering application, the lifetime of an electrical circuit, Y , is under in-

vestigation. An exponential(β) model is assumed.

• In a public-health study, Y , the number of sexual partners in the past year, is

recorded for a group of high-risk HIV patients. A Poisson(λ) model is assumed.

• In an ecological study, the amount of dead-weight (measured in g/plot), Y , is

recorded. A N (µ, σ2) model is assumed.

Each of these situations employs a probabilistic model that is indexed by population pa-

rameters. In real life, these parameters are unknown. An important statistical problem,

thus, involves estimating these parameters with a random sample Y1, Y2, ..., Yn (i.e., an

iid sample) from the population. We can state this problem generally as follows.

GENERAL PROBLEM : Suppose that Y1, Y2, ..., Yn is an iid sample from a population

which is described by the model fY (y; θ). Here, fY (y; θ) is a pmf or pdf that describes

the population of interest, and θ is a parameter that indexes the model. The statistical

problem of interest is to estimate θ with the observed data Y1, Y2, ..., Yn.
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TERMINOLOGY : Suppose that Y1, Y2, ..., Yn is an iid sample from fY (y; θ). A point

estimator θ̂ is a function of Y1, Y2, ..., Yn that estimates θ. Since θ̂ is (in general) a

function of Y1, Y2, ..., Yn, it is a statistic. In practice, θ could be a scalar or vector.

Example 8.1. Suppose that Y1, Y2, ..., Yn is an iid sample from a Poisson distribution

with mean θ. We know that the probability mass function (pmf) for Y is given by

fY (y; θ) =





θye−θ

y!
, y = 0, 1, 2, ...

0, otherwise.

Here, the parameter is θ = E(Y ). What estimator should we use to estimate θ?

Example 8.2. Suppose that Y1, Y2, ..., Yn is an iid sample from a U(0, θ) distribution.

We know that the probability density function (pdf) for Y is given by

fY (y; θ) =





1
θ
, 0 < y < θ

0, otherwise.

Here, the parameter is θ, the upper limit of the support of Y . What estimator should

we use to estimate θ?

Example 8.3. Suppose that Y1, Y2, ..., Yn is an iid sample from a N (µ, σ2) distribution.

We know that the probability density function (pdf) for Y is given by

fY (y; θ) =





1√
2πσ

e−
1
2(

y−µ
σ )

2

, −∞ < y < ∞
0, otherwise.

Here, the parameter is θ = (µ, σ2), a vector of two parameters (the mean and the

variance). What estimator should we use to estimate θ? Or, equivalently, we might ask

how to estimate µ and σ2 separately.

“GOOD” ESTIMATORS : In general, a “good” estimator θ̂ has the following properties:

(1) θ̂ is unbiased for θ, and

(2) θ̂ has small variance.
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8.2 Bias and mean-squared error

TERMINOLOGY : An estimator θ̂ is said to be unbiased for θ if

E(θ̂) = θ,

for all possible values of θ. If θ̂ is not an unbiased estimator; i.e., if E(θ̂) 6= θ, then we

say that θ̂ is biased. In general, the bias of an estimator is

B(θ̂) ≡ E(θ̂)− θ.

If B(θ̂) > 0, then θ̂ overestimates θ. If B(θ̂) < 0, then θ̂ underestimates θ. If θ̂ is

unbiased, then, of course, B(θ̂) = 0.

Example 8.1 (revisited). Suppose that Y1, Y2, ..., Yn is an iid sample from a Poisson

distribution with mean θ. Recall that, in general, the sample mean Y is an unbiased

estimator for a population mean µ. For the Poisson model, the (population) mean is

µ = E(Y ) = θ. Thus, we know that

θ̂ = Y =
1

n

n∑
i=1

Yi

is an unbiased estimator of θ. Recall also that the variance of the sample mean, V (Y ),

is, in general, the population variance σ2 divided by n. For the Poisson model, the

(population) variance is σ2 = θ; thus, V (θ̂) = V (Y ) = θ/n. ¤

Example 8.2 (revisited). Suppose that Y1, Y2, ..., Yn is an iid sample from a U(0, θ) dis-

tribution, and consider the point estimator Y(n). Intuitively, this seems like a reasonable

estimator to use; the largest order statistic should be fairly close to θ, the upper endpoint

of the support. To compute E(Y(n)), we have to know how Y(n) is distributed, so we find

its pdf. For 0 < y < θ, the pdf of Y(n) is

fY(n)
(y) = nfY (y)[FY (y)]n−1

= n

(
1

θ

) (y

θ

)n−1

= nθ−nyn−1,
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so that

E(Y(n)) =

∫ θ

0

y × nθ−nyn−1

︸ ︷︷ ︸
= fY(n)

(y)

dy = nθ−n

(
1

n + 1

)
yn+1

∣∣∣
θ

0
=

(
n

n + 1

)
θ.

We see that Y(n) is a biased estimator of θ (it underestimates θ on average). But,

θ̂ =

(
n + 1

n

)
Y(n)

is an unbiased estimator because

E(θ̂) = E

[(
n + 1

n

)
Y(n)

]
=

(
n + 1

n

)
E(Y(n)) =

(
n + 1

n

)(
n

n + 1

)
θ = θ. ¤

Exercise: Compute V (θ̂).

Example 8.3 (revisited). Suppose that Y1, Y2, ..., Yn is an iid sample from a N (µ, σ2)

distribution. To estimate µ, we know that a good estimator is Y . The sample mean Y

is unbiased; i.e., E(Y ) = µ, and, furthermore, V (Y ) = σ2/n decreases as the sample size

n increases. To estimate σ2, we can use the sample variance; i.e.,

S2 =
1

n− 1

n∑
i=1

(Yi − Y )2.

Assuming the normal model, the sample variance is unbiased. To see this, recall that

(n− 1)S2

σ2
∼ χ2(n− 1)

so that

E

[
(n− 1)S2

σ2

]
= n− 1,

since the mean of a χ2 random variable equals its degrees of freedom. Thus,

n− 1 = E

[
(n− 1)S2

σ2

]
=

(
n− 1

σ2

)
E(S2) =⇒ E(S2) = σ2,

showing that S2 is an unbiased estimator of the population variance σ2. To compute the

variance of S2 as an estimator, recall that

V

[
(n− 1)S2

σ2

]
= 2(n− 1),
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since the variance of a χ2 random variable equals twice its degrees of freedom. Therefore,

2(n− 1) = V

[
(n− 1)S2

σ2

]
=

[
(n− 1)2

σ4

]
V (S2)

=⇒ V (S2) =
2σ4

n− 1
. ¤

ESTIMATING FUNCTIONS OF PARAMETERS : In some problems, the goal is to

estimate a function of θ, say, τ(θ). The following example illustrates how we can find an

unbiased estimator of a function of θ.

Example 8.4. Suppose that Y1, Y2, ..., Yn are iid exponential observations with mean θ.

Derive an unbiased estimator for τ(θ) = 1/θ.

Solution. Since E(Y ) = θ, one’s intuition might suggest to try 1/Y as an estimator

for 1/θ. First, note that

E

(
1

Y

)
= E

(
n∑n

i=1 Yi

)
= nE

(
1

T

)
,

where T =
∑n

i=1 Yi. Recall that Y1, Y2, ..., Yn iid exponential(θ) =⇒ T ∼ gamma(n, θ),

so therefore

E

(
1

Y

)
= nE

(
1

T

)
= n

∫ ∞

t=0

1

t

1

Γ(n)θn
tn−1e−t/θ

︸ ︷︷ ︸
gamma(n,θ) pdf

dt

=
n

Γ(n)θn

∫ ∞

t=0

t(n−1)−1e−t/θdt

︸ ︷︷ ︸
= Γ(n−1)θn−1

=
nΓ(n− 1)θn−1

Γ(n)θn
=

nΓ(n− 1)

(n− 1)Γ(n− 1)θ
=

(
n

n− 1

)
1

θ
.

This shows that 1/Y is a biased estimator of τ(θ) = 1/θ. However,

E

(
n− 1

nY

)
=

(
n− 1

n

)
E

(
1

Y

)
=

(
n− 1

n

)(
n

n− 1

)
1

θ
=

1

θ
.

This shows that

τ̂(θ) =
n− 1

nY

is an unbiased estimator of τ(θ) = 1/θ. ¤
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TERMINOLOGY : The mean-squared error (MSE) of a point estimator θ̂ is given by

MSE(θ̂) ≡ E[(θ̂ − θ)2] = V (θ̂) + [B(θ̂)]2.

We see that the MSE combines the

• the precision (variance) of θ̂ and

• accuracy (bias) of θ̂.

Of course, if θ̂ is unbiased for θ, then MSE(θ̂) = V (θ̂), since B(θ̂) = 0.

INTUITIVELY : Suppose that we have two unbiased estimators, say, θ̂1 and θ̂2. Then we

would prefer to use the one with the smaller variance. That is, if V (θ̂1) < V (θ̂2), then

we would prefer θ̂1 as an estimator. Note that it only makes sense to choose an estimator

on the basis of its variance when both estimators are unbiased.

CURIOSITY : Suppose that we have two estimators θ̂1 and θ̂2 and that both of them are

not unbiased (e.g., one could be unbiased and other isn’t, or possibly both are biased).

On what grounds should we now choose between θ̂1 and θ̂2? In this situation, a reasonable

approach is to choose the estimator with the smaller mean-squared error. That is,

if MSE(θ̂1) < MSE(θ̂2), then we would prefer θ̂1 as an estimator.

Example 8.5. Suppose that Y1, Y2, ..., Yn is an iid Bernoulli(p) sample, where 0 < p < 1.

Define X = Y1 + Y2 + · · ·+ Yn and the two estimators

p̂1 =
X

n
and p̂2 =

X + 2

n + 4
.

Which estimator should we use to estimate p?

Solution. First, we should note that X ∼ b(n, p), since X is the sum of iid Bernoulli(p)

observations. Thus,

E(p̂1) = E

(
X

n

)
=

1

n
E(X) =

1

n
(np) = p

(i.e., p̂1 is unbiased) and

E(p̂2) = E

(
X + 2

n + 4

)
=

1

n + 4
E(X + 2) =

1

n + 4
[E(X) + 2] =

np + 2

n + 4
.
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Figure 8.6: Plots of MSE(p̂1) and MSE(p̂2) for different sample sizes in Example 8.5.

Thus, to compare p̂1 and p̂2 as estimators, we should use the estimators’ mean-squared

errors (since p̂2 is biased). The variances of p̂1 and p̂2 are, respectively,

V (p̂1) = V

(
X

n

)
=

1

n2
V (X) =

1

n2
[np(1− p)] =

p(1− p)

n

and

V (p̂2) = V

(
X + 2

n + 4

)
=

1

(n + 4)2
V (X + 2) =

1

(n + 4)2
V (X) =

np(1− p)

(n + 4)2
.

The mean-squared error of p̂1 is

MSE(p̂1) = V (p̂1) + [B(p̂1)]
2

=
p(1− p)

n
+ (p− p)2 =

p(1− p)

n
,

which is equal to V (p̂1) since p̂1 is unbiased. The mean-squared error of p̂2 is

MSE(p̂2) = V (p̂2) + [B(p̂2)]
2

=
np(1− p)

(n + 4)2
+

(
np + 2

n + 4
− p

)2

.
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ANALYSIS : Figure 8.6 displays values of MSE(p̂1) and MSE(p̂2) graphically for n = 5,

20, 50, and 100. We can see that neither estimator is uniformly superior; i.e., neither

estimator delivers a smaller MSE for all 0 < p < 1. However, for smaller sample sizes,

p̂2 often beats p̂1 (in terms of MSE) when p is in the vicinity of 0.5; otherwise, p̂1 often

provides smaller MSE.

8.3 The standard error of an estimator

TERMINOLOGY : The standard error of a point estimator θ̂ is simply the standard

deviation of the estimator. We denote the standard error of θ̂ by

σθ̂ =

√
V (θ̂).

Table 8.1 (WMS, pp 397) summarizes some common point estimators and their standard

errors. We now review these.

8.3.1 One population mean

SITUATION : Suppose that Y1, Y2, ..., Yn is an iid sample with mean µ and variance σ2

and that interest lies in estimating the population mean µ.

POINT ESTIMATOR: To estimate the (population) mean µ, a natural point estimator

to use is the sample mean; i.e.,

Y =
1

n

n∑
i=1

Yi.

FACTS : We have shown that, in general,

E(Y ) = µ

V (Y ) =
σ2

n
.

STANDARD ERROR: The standard error of Y is equal to

σY =

√
V (Y ) =

√
σ2

n
=

σ√
n

.

PAGE 54



CHAPTER 8 STAT 512, J. TEBBS

8.3.2 One population proportion

SITUATION : Suppose that Y1, Y2, ..., Yn is an iid Bernoulli(p) sample, where 0 < p < 1,

and that interest lies in estimating the population proportion p. Recall that X =
∑n

i=1 Yi ∼ b(n, p), since X is the sum of iid Bernoulli(p) observations.

POINT ESTIMATOR: To estimate the (population) proportion p, a natural point esti-

mator to use is the sample proportion; i.e.,

p̂ =
X

n
=

1

n

n∑
i=1

Yi.

FACTS : It is easy to show (verify!) that

E(p̂) = p

V (p̂) =
p(1− p)

n
.

STANDARD ERROR: The standard error of p̂ is equal to

σp̂ =
√

V (p̂) =

√
p(1− p)

n
.

8.3.3 Difference of two population means

SITUATION : Suppose that we have two independent samples; i.e.,

Sample 1: Y11, Y12, ..., Y1n1 are iid with mean µ1 and variance σ2
1

Sample 2: Y21, Y22, ..., Y2n2 are iid with mean µ2 and variance σ2
2

and that interest lies in estimating the population mean difference θ ≡ µ1 − µ2. As

noted, we assume that the samples themselves are independent (i.e., observations from

one sample are independent from observations in the other sample).

NEW NOTATION : Because we have two samples, we need to adjust our notation ac-

cordingly. Here, we use the conventional notation Yij to denote the jth observation from
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sample i, for i = 1, 2 and j = 1, 2, ..., ni. The symbol ni denotes the sample size from

sample i. It is not necessary that the sample sizes n1 and n2 are equal.

POINT ESTIMATOR: To estimate the population mean difference θ = µ1−µ2, a natural

point estimator to use is the difference of the sample means; i.e.,

θ̂ ≡ Y 1+ − Y 2+,

where

Y 1+ =
1

n1

n1∑
j=1

Y1j and Y 2+ =
1

n2

n2∑
j=1

Y2j.

This notation is also standard; the “+” symbol is understood to mean that the subscript

it replaces has been “summed over.”

FACTS : It is easy to show (verify!) that

E(Y 1+ − Y 2+) = µ1 − µ2

V (Y 1+ − Y 2+) =
σ2

1

n1

+
σ2

2

n2

.

STANDARD ERROR: The standard error of θ̂ = Y 1+ − Y 2+ is equal to

σY 1+−Y 2+
=

√
V (Y 1+ − Y 2+) =

√
σ2

1

n1

+
σ2

2

n2

.

8.3.4 Difference of two population proportions

SITUATION : Suppose that we have two independent samples; i.e.,

Sample 1: Y11, Y12, ..., Y1n1 are iid Bernoulli(p1)

Sample 2: Y21, Y22, ..., Y2n2 are iid Bernoulli(p2)

and that interest lies in estimating the population proportion difference θ ≡ p1−p2.

Again, it is not necessary that the sample sizes n1 and n2 are equal. As noted, we

assume that the samples themselves are independent (i.e., observations from one sample

are independent from observations in the other sample). Define

X1 =

n1∑
j=1

Y1j and X2 =

n2∑
j=1

Y2j.
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We know that X1 ∼ b(n1, p1), X2 ∼ b(n2, p2), and that X1 and X2 are independent (since

the samples are). The sample proportions are

p̂1 =
X1

n1

=
1

n1

n1∑
j=1

Y1j and p̂2 =
X2

n2

=
1

n2

n2∑
j=1

Y2j.

POINT ESTIMATOR: To estimate the population proportion difference θ = p1 − p2, a

natural point estimator to use is the difference of the sample proportions; i.e.,

θ̂ ≡ p̂1 − p̂2.

FACTS : It is easy to show (verify!) that

E(p̂1 − p̂2) = p1 − p2

V (p̂1 − p̂2) =
p1(1− p1)

n1

+
p2(1− p2)

n2

.

STANDARD ERROR: The standard error of θ̂ = p̂1 − p̂2 is equal to

σp̂1−p̂2 =
√

V (p̂1 − p̂2) =

√
p1(1− p1)

n1

+
p2(1− p2)

n2

.

8.4 Estimating the population variance

RECALL: Suppose that Y1, Y2, ..., Yn is an iid sample with mean µ and variance σ2. The

sample variance is defined as

S2 =
1

n− 1

n∑
i=1

(Yi − Y )2.

In Example 8.3 (notes), we showed that if Y1, Y2, ..., Yn is an iid N (µ, σ2) sample, then

the sample variance S2 is an unbiased estimator of the population variance σ2.

NEW RESULT : That S2 is an unbiased estimator of σ2 holds in general; that is, as long

as Y1, Y2, ..., Yn is an iid sample with mean µ and variance σ2,

E(S2) = σ2;

that is, S2 is an unbiased estimator of σ2, regardless of the population distribution, as

long as σ2 < ∞. The proof of this result is given on pp 398-399 in WMS.
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8.5 Error bounds and the Empirical Rule

TERMINOLOGY : We are often interested in understanding how close our estimator θ̂

is to a population parameter θ. Of course, in real life, θ is unknown, so we can never

know for sure. However, we can make probabilistic statements regarding the closeness of

θ̂ and θ. We call ε = |θ̂ − θ| the error in estimation.

THE EMPIRICAL RULE : Suppose the estimator θ̂ has an approximate normal sam-

pling distribution with mean θ and variance σ2
θ̂
. It follows then that

• about 68 percent of the values of θ̂ will fall between θ ± σθ̂

• about 95 percent of the values of θ̂ will fall between θ ± 2σθ̂

• about 99.7 percent (or nearly all) of the values of θ̂ will fall between θ ± 3σθ̂.

These facts follow directly from the normal distribution. For example, with Z ∼ N (0, 1),

we compute

P
(
θ − σθ̂ < θ̂ < θ + σθ̂

)
= P

(
θ − σθ̂ − θ

σθ̂

<
θ̂ − θ

σθ̂

<
θ + σθ̂ − θ

σθ̂

)

≈ P (−1 < Z < 1)

= FZ(1)− FZ(−1)

= 0.8413− 0.1587 = 0.6826,

where FZ(·) denotes the cdf of the standard normal distribution.

REMARK : Most estimators θ̂, with probability “in the vicinity of” 0.95, will fall within

two standard deviations (standard errors) of its mean. Thus, if θ̂ is an unbiased estimator

of θ, or is approximately unbiased, then b = 2σθ̂ serves as a good approximate upper

bound for the error in estimation; that is, ε = |θ̂ − θ| ≤ 2σθ̂ with “high” probability.

Example 8.6. In an agricultural experiment, we observe an iid sample of n yields, say,

Y1, Y2, ..., Yn, measured in kg/area per plot. We can estimate the (population) mean yield
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µ with Y , the sample mean; from the Central Limit Theorem, we know that

Y ∼ AN
(

µ,
σ2

n

)
,

for large n. Thus, b = 2σ/
√

n serves as an approximate 95 percent bound on the error

in estimation ε = |Y − µ|. ¤

Example 8.7. In a public-health study involving intravenous drug users, subjects are

tested for HIV. Denote the HIV statuses by Y1, Y2, ..., Yn and assume these statuses are iid

Bernoulli(p) random variables (e.g., 1, if positive; 0, otherwise). The sample proportion

of HIV infecteds, then, is given by

p̂ =
1

n

n∑
i=1

Yi.

Recall that for n large,

p̂ ∼ AN
[
p,

p(1− p)

n

]
.

Thus, b = 2
√

p(1− p)/n serves as an approximate 95 percent bound on the error in

estimation ε = |p̂− p|. ¤

REMARK : To use the Empirical Rule, we need the sampling distribution of θ̂ to be

normally distributed, or, at least, approximately normally distributed. Otherwise, the

Empirical Rule may provide incorrect results. If we have an estimator θ̂ that does not

follow a normal distribution, we could use Chebyshev’s Inequality to put a bound on the

error in estimation ε. Recall that Chebyshev’s Inequality says

P (|θ̂ − θ| < kσθ̂) ≥ 1− 1

k2
,

for any value k > 0. For example, if k = 2, then b = 2σθ̂ is an at least 75 percent bound

on the error in estimation ε = |θ̂ − θ|.

8.6 Confidence intervals and pivotal quantities

REMARK : A point estimator θ̂ provides a “one-shot guess” of the value of an unknown

parameter θ. On the other hand, an interval estimator, or confidence interval, provides

a range of values that is likely to contain θ.
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Table 8.1: Manufacturing part length data. These observations are modeled as n = 10

realizations from a N (µ, σ2) distribution.

12.2 12.0 12.2 11.9 12.4 12.6 12.1 12.2 12.9 12.4

Example 8.8. The length of a critical part, measured in mm, in a manufacturing process

varies according to a N (µ, σ2) distribution (this is a model assumption). Engineers plan

to observe an iid sample of n = 10 parts and record Y1, Y2, ..., Y10. The observed data

from the experiment are given in Table 8.1.

POINT ESTIMATES : The sample mean computed with the observed data is y = 12.3

and sample variance is s2 = 0.09 (verify!). The sample mean y = 12.3 is a point

estimate for the population mean µ. Similarly, the sample variance s2 = 0.09 is a

point estimate for the population variance σ2. However, neither of these estimates

has a measure of variability associated with it; that is, both estimates are just single

“one-number” values.

TERMINOLOGY : Suppose that Y1, Y2, ..., Yn is an iid sample from a population distri-

bution (probability model) described by fY (y; θ). Informally, a confidence interval is an

interval of plausible values for a parameter θ. More specifically, if θ is our parameter of

interest, then we call (θ̂L, θ̂U) a 100(1− α) percent confidence interval for θ if

P (θ̂L ≤ θ ≤ θ̂U) = 1− α,

where 0 < α < 1. We call 1 − α the confidence level. In practice, we would like the

confidence level 1− α to be large (e.g., 0.90, 0.95, 0.99, etc.).

IMPORTANT : Before we observe Y1, Y2, ..., Yn, the interval (θ̂L, θ̂U) is a random inter-

val. This is true because θ̂L and θ̂U are random quantities as they will be functions of

Y1, Y2, ..., Yn. On the other hand, θ is a fixed parameter; it’s value does not change. After

we see the data Y1 = y1, Y2 = y2, ..., Yn = yn, like those data in Table 8.1, the numerical

interval (θ̂L, θ̂U) based on the realizations y1, y2, ..., yn is no longer random.
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Example 8.9. Suppose that Y1, Y2, ..., Yn is an iid N (µ, σ2
0) sample, where the mean µ is

unknown and variance σ2
0 is known. In this example, we focus on the population mean

µ. From past results, we know that Y ∼ N (µ, σ2
0/n). Thus,

Z =
Y − µ

σ0/
√

n
∼ N (0, 1);

i.e., Z has a standard normal distribution. We know there exists a value zα/2 such that

1− α = P (−zα/2 < Z < zα/2)

= P

(
−zα/2 <

Y − µ

σ0/
√

n
< zα/2

)

= P

(
−zα/2

σ0√
n

< Y − µ < zα/2
σ0√
n

)

= P

(
zα/2

σ0√
n

> µ− Y > −zα/2
σ0√
n

)

= P

(
Y + zα/2

σ0√
n

> µ > Y − zα/2
σ0√
n

)

= P

(
Y − zα/2

σ0√
n︸ ︷︷ ︸

θ̂L

< µ < Y + zα/2
σ0√
n︸ ︷︷ ︸

θ̂U

)
.

These calculations show that

Y ± zα/2

(
σ0√
n

)

is a 100(1 − α) percent confidence interval for the population mean µ. The probability

that the random interval (θ̂L, θ̂U) includes the mean µ is 1− α. ¤

Example 8.8 (revisited). In Example 8.8, suppose that the population variance for

the distribution of part lengths is σ2
0 = 0.1, so that σ0 ≈ 0.32 (we did not make this

assumption before) and that we would like to construct a 95 percent confidence interval

for µ, the mean length. From the data in Table 8.1, we have n = 10, y = 12.3, α = 0.05,

and z0.025 = 1.96 (z-table). A 95 percent confidence interval for µ is

12.3± 1.96

(
0.32√

10

)
=⇒ (12.1, 12.5).

INTERPRETATION : We are 95 percent confident that the population mean length µ is

between 12.1 and 12.5 mm. ¤
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NOTE : The interval (12.1, 12.5) is no longer random! Thus, it is not theoretically ap-

propriate to say that “the mean length µ is between 12.1 and 12.5 with probability

0.95.” A confidence interval, after it has been computed with actual data (like above),

no longer possesses any randomness. We only attach probabilities to events involving

random quantities.

INTERPRETATION : Instead of attaching the concept of probability to the interpre-

tation of a confidence interval, here is how one must think about them. In repeated

sampling, approximately 100(1 − α) percent of the confidence intervals will contain the

true parameter θ. Our calculated interval is just one of these.

TERMINOLOGY : We call the quantity Q a pivotal quantity, or a pivot, if its sampling

distribution does not depend on any unknown parameters. Note that Q can depend

on unknown parameters, but its sampling distribution can not. Pivots help us derive

confidence intervals. Illustrative examples now follow.

Example 8.10. In Example 8.9, the quantity

Z =
Y − µ

σ0/
√

n
∼ N (0, 1).

Since the standard normal distribution does not depend on any unknown parameters, Z

is a pivot. We used this fact to derive a 100(1−α) confidence interval for the population

mean µ, when σ2 = σ2
0 was known. ¤

Example 8.11. The time (in seconds) for a certain chemical reaction to take place is

assumed to follow a U(0, θ) distribution. Suppose that Y1, Y2, ..., Yn is an iid sample of

such times and that we would like to derive a 100(1−α) percent confidence interval for θ,

the maximum possible time. Intuitively, the largest order statistic Y(n) should be “close”

to θ, so let’s use Y(n) as an estimator. From Example 8.2, the pdf of Y(n) is given by

fY(n)
(y) =





nθ−nyn−1, 0 < y < θ

0, otherwise.

As we will now show,

Q =
Y(n)

θ
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is a pivot. We can show this using a transformation argument. With q = y(n)/θ, the

inverse transformation is given by y(n) = qθ and the Jacobian is dy(n)/dq = θ. Thus, the

pdf of Q, for values of 0 < q < 1 (why?), is given by

fQ(q) = fY(n)
(qθ)× |θ|

= nθ−n(qθ)n−1 × θ

= nqn−1.

You should recognize that Q ∼ beta(n, 1). Since Q has a distribution free of unknown

parameters, Q is a pivot, as claimed.

USING THE PIVOT : Define b as the value that satisfies P (Q > b) = 1− α. That is, b

solves

1− α = P (Q > b) =

∫ 1

b

nqn−1dq = 1− bn,

so that b = α1/n. Recognizing that P (Q > b) = P (b < Q < 1), it follows that

1− α = P (α1/n < Q < 1) = P

(
α1/n <

Y(n)

θ
< 1

)

= P

(
α−1/n >

θ

Y(n)

> 1

)

= P
(
Y(n) < θ < α−1/nY(n)

)
.

This argument shows that

(Y(n), α
−1/nY(n))

is a 100(1− α) percent confidence interval for the unknown parameter θ. ¤

Example 8.11 (revisited). Table 8.2 contains n = 36 chemical reaction times, modeled

as iid U(0, θ) realizations. The largest order statistic is y(36) = 9.962. With α = 0.05, a

95 percent confidence interval for θ is

(9.962, (0.05)−1/36 × 9.962) =⇒ (9.962, 10.826).

Thus, we are 95 percent confident that the maximum reaction time θ is between 9.962

and 10.826 seconds. ¤
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Table 8.2: Chemical reaction data. These observations are modeled as n = 36 realizations

from U(0, θ) distribution.

0.478 0.787 1.102 0.851 8.522 5.272 4.113 7.921 3.457

3.457 9.159 6.344 6.481 4.448 5.756 0.076 3.462 9.962

2.938 3.281 5.481 1.232 5.175 5.864 8.176 2.031 1.633

4.803 8.249 8.991 7.358 2.777 5.905 7.762 8.563 7.619

Example 8.12. Suppose that Y1, Y2, ..., Yn is an iid sample from an exponential dis-

tribution with mean θ and that we would like to estimate θ with a 100(1 − α) percent

confidence interval. Recall that

T =
n∑

i=1

Yi ∼ gamma(n, θ)

and that

Q =
2T

θ
∼ χ2(2n).

Thus, since Q has a distribution free of unknown parameters, Q is a pivot. Because

Q ∼ χ2(2n), we can trap Q between two quantiles from the χ2(2n) distribution with

probability 1−α. In particular, let χ2
2n,1−α/2 and χ2

2n,α/2 denote the lower and upper α/2

quantiles of a χ2(2n) distribution; that is, χ2
2n,1−α/2 solves

P (Q < χ2
2n,1−α/2) = α/2

and χ2
2n,α/2 solves

P (Q > χ2
2n,α/2) = α/2.

Recall that the χ2 distribution is tabled in Table 6 (WMS); the quantiles χ2
2n,1−α/2 and

χ2
2n,α/2 can be found in this table (or by using R). We have that

1− α = P (χ2
2n,1−α/2 < Q < χ2

2n,α/2) = P

(
χ2

2n,1−α/2 <
2T

θ
< χ2

2n,α/2

)

= P

(
1

χ2
2n,1−α/2

>
θ

2T
>

1

χ2
2n,α/2

)

= P

(
2T

χ2
2n,α/2

< θ <
2T

χ2
2n,1−α/2

)
.
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Table 8.3: Observed explosion data. These observations are modeled as n = 8 realizations

from an exponential distribution with mean θ.

3.690 14.091 1.989 0.047 8.114 4.996 20.734 6.975

This argument shows that (
2T

χ2
2n,α/2

,
2T

χ2
2n,1−α/2

)

is a 100(1− α) percent confidence interval for θ. ¤

Example 8.12 (revisited). Explosive devices used in mining operations produce nearly

circular craters when detonated. The radii of these craters, measured in feet, follow an

exponential distribution with mean θ. An iid sample of n = 8 explosions is observed

and the radii observed in the explosions are catalogued in Table 8.3. With these data,

we would like to write a 90 percent confidence interval for θ. The sum of the radii is

t =
∑8

i=1 yi = 60.636. With n = 8 and α = 0.10, we find (from WMS, Table 6),

χ2
16,0.95 = 7.96164

χ2
16,0.05 = 26.2962.

A 90 percent confidence interval for θ based on these data is
(

2× 60.636

26.2962
,
2× 60.636

7.96164

)
=⇒ (4.612, 15.232).

Thus, we are 90 percent confident that the mean crater radius θ is between 4.612 and

15.232 feet. ¤

8.7 Large-sample confidence intervals

TERMINOLOGY : The terms “large-sample” and/or “asymptotic” are used to describe

confidence intervals that are constructed from asymptotic theory. Of course, the main

asymptotic result we have seen so far is the Central Limit Theorem. This theorem

provides the basis for the large-sample intervals studied in this subsection.
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GOALS : In particular, we will present large-sample confidence intervals for

1. one population mean µ

2. one population proportion p

3. the difference of two population means µ1 − µ2

4. the difference of two population proportions p1 − p2.

Because these are “large-sample” confidence intervals, this means that the intervals are

approximate, so their true confidence levels are “close” to 1− α for large sample sizes.

LARGE-SAMPLE APPROACH : In each of the situations listed above, we will use a

point estimator, say, θ̂, which satisfies

Z =
θ̂ − θ

σθ̂

∼ AN (0, 1),

for large sample sizes. In this situation, we say that Z is an asymptotic pivot because

its large-sample distribution is free of all unknown parameters. Because Z follows an

approximate standard normal distribution, we can find a value zα/2 that satisfies

P

(
−zα/2 <

θ̂ − θ

σθ̂

< zα/2

)
≈ 1− α,

which, after straightforward algebra (verify!), can be restated as

P
(
θ̂ − zα/2σθ̂ < θ < θ̂ + zα/2σθ̂

)
≈ 1− α.

This shows that

θ̂ ± zα/2σθ̂

is an approximate 100(1− α) percent confidence interval for the parameter θ.

PROBLEM : As we will see shortly, the standard error σθ̂ will often depend on unknown

parameters (either θ itself or other unknown parameters). This is a problem, because we

are trying to compute a confidence interval for θ, and the standard error σθ̂ depends on

population parameters which are not known.
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SOLUTION : If we can substitute a “good” estimator for σθ̂, say, σ̂θ̂, then the interval

θ̂ ± zα/2σ̂θ̂

should remain valid in large samples. The theoretical justification as to why this approach

is, in fact, reasonable will be seen in the next chapter.

“GOOD” ESTIMATOR: In the preceding paragraph, the term “good” is used to describe

an estimator σ̂θ̂ that “approaches” the true standard error σθ̂ (in some sense) as the

sample size(s) become(s) large. Thus, we have two approximations at play:

• the Central Limit Theorem that approximates the true sampling distribution of

Z =
θ̂ − θ

σθ̂

• the approximation arising from using σ̂θ̂ as an estimate of σθ̂.

TERMINOLOGY : I like to call σ̂θ̂ the estimated standard error. It is simply a point

estimate of the true standard error σθ̂.

APPROXIMATE CONFIDENCE INTERVALS : We will use

θ̂ ± zα/2σ̂θ̂

as an approximate 100(1 − α) percent confidence interval for θ. We now present this

interval in the context of our four scenarios described earlier. Each of the following

intervals is valid for large sample sizes. These intervals may not be valid for small

sample sizes.

8.7.1 One population mean

SITUATION : Suppose that Y1, Y2, ..., Yn is an iid sample with mean µ and variance σ2

and that interest lies in estimating the population mean µ. In this situation, the Central

Limit Theorem says that

Z =
Y − µ

σ/
√

n
∼ AN (0, 1)
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for large n. Here,

θ = µ

θ̂ = Y

σθ̂ =
σ√
n

σ̂θ̂ =
S√
n

,

where S denotes the sample standard deviation. Thus,

Y ± zα/2

(
S√
n

)

is an approximate 100(1− α) percent confidence interval for the population mean µ.

Example 8.13. The administrators for a hospital would like to estimate the mean

number of days required for in-patient treatment of patients between the ages of 25 and

34 years. A random sample of n = 500 hospital patients between these ages produced

the following sample statistics:

y = 5.4 days

s = 3.1 days.

Construct a 90 percent confidence interval for µ, the (population) mean length of stay

for this cohort of patients.

Solution. Here, n = 500 and z0.10/2 = z0.05 = 1.65. Thus, a 90 percent confidence

interval for µ is

5.4± 1.65

(
3.1√
500

)
=⇒ (5.2, 5.6) days.

We are 90 percent confident that the true mean length of stay, for patients aged 25-34,

is between 5.2 and 5.6 days. ¤

8.7.2 One population proportion

SITUATION : Suppose that Y1, Y2, ..., Yn is an iid Bernoulli(p) sample, where 0 < p < 1,

and that interest lies in estimating the population proportion p. In this situation, the
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Central Limit Theorem says that

Z =
p̂− p√

p(1−p)
n

∼ AN (0, 1)

for large n, where p̂ denotes the sample proportion. Here,

θ = p

θ̂ = p̂

σθ̂ =

√
p(1− p)

n

σ̂θ̂ =

√
p̂(1− p̂)

n
.

Thus,

p̂± zα/2

√
p̂(1− p̂)

n

is an approximate 100(1− α) percent confidence interval for p.

Example 8.14. The Women’s Interagency HIV Study (WIHS) is a large observational

study funded by the National Institutes of Health to investigate the effects of HIV in-

fection in women. The WIHS study reports that a total of 1288 HIV-infected women

were recruited to examine the prevalence of childhood abuse. Of the 1288 HIV positive

women, a total of 399 reported that, in fact, they had been a victim of childhood abuse.

Find a 95 percent confidence interval for p, the true proportion of HIV infected women

who are victims of childhood abuse.

Solution. Here, n = 1288, z0.05/2 = z0.025 = 1.96, and the sample proportion of HIV

childhood abuse victims is

p̂ =
399

1288
≈ 0.31.

Thus, a 95 percent confidence interval for p is

0.31± 1.96

√
0.31(1− 0.31)

1288
=⇒ (0.28, 0.34).

We are 95 percent confident that the true proportion of HIV infected women who are

victims of childhood abuse is between 0.28 and 0.34. ¤
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8.7.3 Difference of two population means

SITUATION : Suppose that we have two independent samples; i.e.,

Sample 1: Y11, Y12, ..., Y1n1 are iid with mean µ1 and variance σ2
1

Sample 2: Y21, Y22, ..., Y2n2 are iid with mean µ2 and variance σ2
2

and that interest lies in estimating the population mean difference µ1 − µ2. In this

situation, the Central Limit Theorem says that

Z =
(Y 1+ − Y 2+)− (µ1 − µ2)√

σ2
1

n1
+

σ2
2

n2

∼ AN (0, 1)

for large n1 and n2. Here,

θ = µ1 − µ2

θ̂ = Y 1+ − Y 2+

σθ̂ =

√
σ2

1

n1

+
σ2

2

n2

σ̂θ̂ =

√
S2

1

n1

+
S2

2

n2

,

where S2
1 and S2

2 are the respective sample variances. Thus,

(Y 1+ − Y 2+)± zα/2

√
S2

1

n1

+
S2

2

n2

is an approximate 100(1−α) percent confidence interval for the mean difference µ1−µ2.

Example 8.15. A botanist is interested in comparing the growth response of dwarf pea

stems to different levels of the hormone indoleacetic acid (IAA). Using 16-day-old pea

plants, the botanist obtains 5-millimeter sections and floats these sections on solutions

with different hormone concentrations to observe the effect of the hormone on the growth

of the pea stem. Let Y1 and Y2 denote, respectively, the independent growths that can be

attributed to the hormone during the first 26 hours after sectioning for 1
2
10−4 and 10−4

levels of concentration of IAA (measured in mm). Summary statistics from the study are

given in Table 8.4.
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Table 8.4: Botany data. Summary statistics for pea stem growth by hormone treatment.

Treatment Sample size Sample mean Sample standard deviation

1
2
10−4 mm IAA n1 = 53 y1+ = 1.03 s1 = 0.49

10−4 mm IAA n2 = 51 y2+ = 1.66 s2 = 0.59

The researcher would like to construct a 99 percent confidence interval for µ1 − µ2, the

mean difference in growths for the two IAA levels. This confidence interval is

(1.03− 1.66)± 2.58

√
(0.49)2

53
+

(0.59)2

51
=⇒ (−0.90,−0.36).

That is, we are 99 percent confident that the mean difference µ1 − µ2 is between −0.90

and −0.36. Note that, because this interval does not conclude 0, this analysis suggests

that the two (population) means are, in fact, truly different. ¤

8.7.4 Difference of two population proportions

SITUATION : Suppose that we have two independent samples; i.e.,

Sample 1: Y11, Y12, ..., Y1n1 are iid Bernoulli(p1)

Sample 2: Y21, Y22, ..., Y2n2 are iid Bernoulli(p2)

and that interest lies in estimating the population proportion difference p1 − p2. In this

situation, the Central Limit Theorem says that

Z =
(p̂1 − p̂2)− (p1 − p2)√

p1(1−p1)
n1

+ p2(1−p2)
n2

∼ AN (0, 1)

for large n1 and n2, where p̂1 and p̂2 are the sample proportions. Here,

θ = p1 − p2

θ̂ = p̂1 − p̂2

σθ̂ =

√
p1(1− p1)

n1

+
p2(1− p2)

n2

σ̂θ̂ =

√
p̂1(1− p̂1)

n1

+
p̂2(1− p̂2)

n2

.
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Thus,

(p̂1 − p̂2)± zα/2

√
p̂1(1− p̂1)

n1

+
p̂2(1− p̂2)

n2

is an approximate 100(1 − α) percent confidence interval for the population proportion

difference p1 − p2.

Example 8.16. An experimental type of chicken feed, Ration 1, contains a large amount

of an ingredient that enables farmers to raise heavier chickens. However, this feed may

be too strong and the mortality rate may be higher than that with the usual feed.

One researcher wished to compare the mortality rate of chickens fed Ration 1 with the

mortality rate of chickens fed the current best-selling feed, Ration 2. Denote by p1 and

p2 the population mortality rates (proportions) for Ration 1 and Ration 2, respectively.

She would like to get a 95 percent confidence interval for p1− p2. Two hundred chickens

were randomly assigned to each ration; of those fed Ration 1, 24 died within one week;

of those fed Ration 2, 16 died within one week.

• Sample 1: 200 chickens fed Ration 1 =⇒ p̂1 = 24/200 = 0.12

• Sample 2: 200 chickens fed Ration 2 =⇒ p̂2 = 16/200 = 0.08.

An approximate 95 percent confidence interval for the true difference p1 − p2 is

(0.12− 0.08)± 1.96

√
0.12(1− 0.12)

200
+

0.08(1− 0.08)

200
=⇒ (−0.02, 0.10).

Thus, we are 95 percent confident that the true difference in mortality rates is between

−0.02 and 0.10. Note that this interval does include 0, so we do not have strong (statis-

tical) evidence that the mortality rates (p1 and p2) are truly different. ¤

8.8 Sample size determinations

MOTIVATION : In many research investigations, it is of interest to determine how many

observations are needed to write a 100(1 − α) percent confidence interval with a given

precision. For example, we might want to construct a 95 percent confidence interval for a
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population mean in a way so that the confidence interval length is no more than 5 units

(e.g., days, inches, dollars, etc.). Sample-size determinations ubiquitously surface in agri-

cultural experiments, clinical trials, engineering investigations, epidemiological studies,

etc., and, in most real problems, there is no “free lunch.” Collecting more data costs

money! Thus, one must be cognizant not only of the statistical issues associated with

sample-size determination, but also of the practical issues like cost, time spent in data

collection, personnel training, etc.

8.8.1 One population mean

SIMPLE SETTING : Suppose that Y1, Y2, ..., Yn is an iid sample from a N (µ, σ2
0) pop-

ulation, where σ2
0 is known. In this situation, an exact 100(1 − α) percent confidence

interval for µ is given by

Y ± zα/2

(
σ0√
n

)

︸ ︷︷ ︸
=B, say

,

where B denotes the bound on the error in estimation; this bound is called the margin

of error.

SAMPLE SIZE FORMULA: In the setting described above, it is possible to determine

the sample size n necessary once we specify these two pieces of information:

• the confidence level, 100(1− α)

• the margin of error, B.

This is true because

B = zα/2

(
σ0√
n

)
⇐⇒ n =

(zα/2σ0

B

)2

.

Example 8.17. In a biomedical experiment, we would like to estimate the mean remain-

ing life of healthy rats that are given a high dose of a toxic substance. This may be done

in an early phase clinical trial by researchers trying to find a maximum tolerable dose for
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humans. Suppose that we would like to write a 99 percent confidence interval for µ with

a margin of error equal to B = 2 days. From past studies, remaining rat lifetimes are

well-approximated by a normal distribution with standard deviation σ0 = 8 days. How

many rats should we use for the experiment?

Solution. Here, z0.01/2 = z0.005 = 2.58, B = 2, and σ0 = 8. Thus,

n =
(zα/2σ0

B

)2

=

(
2.58× 8

2

)2

≈ 106.5.

Thus, we would need n = 107 rats to achieve these goals. ¤

8.8.2 One population proportion

SITUATION : Suppose that Y1, Y2, ..., Yn is an iid Bernoulli(p) sample, where 0 < p < 1,

and that interest lies in writing a confidence interval for p with a prescribed length. In

this situation, we know that

p̂± zα/2

√
p̂(1− p̂)

n

is an approximate 100(1− α) percent confidence interval for p.

SAMPLE SIZE : To determine the sample size for estimating p with a 100(1−α) percent

confidence interval, we need to specify the margin of error that we desire; i.e.,

B = zα/2

√
p̂(1− p̂)

n
.

We would like to solve this equation for n. However, note that B depends on p̂, which,

in turn, depends on n! This is a small problem, but we can overcome it by replacing p̂

with p∗, a guess for the value of p. Doing this, the last expression becomes

B = zα/2

√
p∗(1− p∗)

n
,

and solving this equation for n, we get

n =
(zα/2

B

)2

p∗(1− p∗).

This is the desired sample size to find a 100(1−α) percent confidence interval for p with

a prescribed margin of error equal to B.
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Example 8.18. In a Phase II clinical trial, it is posited that the proportion of patients

responding to a certain drug is p∗ = 0.4. To engage in a larger Phase III trial, the

researchers would like to know how many patients they should recruit into the study.

Their resulting 95 percent confidence interval for p, the true population proportion of

patients responding to the drug, should have a margin of error no greater than B = 0.03.

What sample size do they need for the Phase III trial?

Solution. Here, we have B = 0.03, p∗ = 0.4, and z0.05/2 = z0.025 = 1.96. The desired

sample size is

n =
(zα/2

B

)2

p∗(1− p∗) =

(
1.96

0.03

)2

(0.4)(1− 0.4) ≈ 1024.43.

Thus, their Phase III trial should recruit around 1025 patients. ¤

CONSERVATIVE APPROACH : If there is no sensible guess for p available, use p∗ = 0.5.

In this situation, the resulting value for n will be as large as possible. Put another way,

using p∗ = 0.5 gives the most conservative solution (i.e., the largest sample size, n).

This is true because

n = n(p∗) =
(zα/2

B

)2

p∗(1− p∗),

when viewed as a function of p∗, is maximized when p∗ = 0.5.

8.9 Small-sample confidence intervals for normal means

RECALL: We have already discussed how one can use large-sample arguments to justify

the use of large-sample confidence intervals like

Y ± zα/2

(
S√
n

)

for estimating a single population mean, µ, and

(Y 1+ − Y 2+)± zα/2

√
S2

1

n1

+
S2

2

n2

for estimating the difference of two population means, µ1 − µ2.
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CURIOSITY : What happens if the sample size n (or the sample sizes n1 and n2 in the

two-sample case) is/are not large? How appropriate are these intervals? Unfortunately,

neither of these confidence intervals is preferred when dealing with small sample sizes.

Thus, we need to treat small-sample problems differently. In doing so, we will assume

(at least initially) that we are dealing with normally distributed data.

8.9.1 One population mean

SETTING : Suppose that Y1, Y2, ...Yn is an iid sample from a N (µ, σ2) population. If

σ2 = σ2
0 is known, we have already seen that

Y ± zα/2

(
σ0√
n

)

is an exact 100(1− α) percent confidence interval for µ.

PROBLEM : In most real problems, rarely will anyone tell us the value of σ2. That is,

it is almost always the case that the population variance σ2 is an unknown parameter.

One might think to try using S as a point estimator for σ and substituting it into the

confidence interval formula above. This is certainly not illogical, but, the sample standard

deviation S is not an unbiased estimator for σ! Thus, if the sample size is small, there is

no guarantee that sample standard deviation S will be “close” to the population standard

deviation σ (it likely will be “close” if the sample size n is large). Furthermore, when the

sample size n is small, the bias and variability associated with S (as an estimator of σ)

could be large. To obviate this difficulty, we recall the following result.

RECALL: Suppose that Y1, Y2, ...Yn is an iid sample from a N (µ, σ2) population. From

past results, we know that

T =
Y − µ

S/
√

n
∼ t(n− 1).

Note that since the sampling distribution of T is free of all unknown parameters, T a

pivotal quantity. So, just like before, we can use this fact to derive an exact 100(1−α)

percent confidence interval for µ.

PAGE 76



CHAPTER 8 STAT 512, J. TEBBS

DERIVATION : Let tn−1,α/2 denote the upper α/2 quantile of the t(n − 1) distribution.

Then, because T ∼ t(n− 1), we can write

1− α = P (−tn−1,α/2 < T < tn−1,α/2)

= P

(
−tn−1,α/2 <

Y − µ

S/
√

n
< tn−1,α/2

)

= P

(
−tn−1,α/2

S√
n

< Y − µ < tn−1,α/2
S√
n

)

= P

(
tn−1,α/2

S√
n

> µ− Y > −tn−1,α/2
S√
n

)

= P

(
Y − tn−1,α/2

S√
n︸ ︷︷ ︸

θ̂L

< µ < Y + tn−1,α/2
S√
n︸ ︷︷ ︸

θ̂U

)
.

This argument shows that

Y ± tn−1,α/2

(
S√
n

)

is an exact 100(1−α) percent confidence interval for the population mean µ. This interval

is “exact” only if the underlying probability distribution is normal. ¤

Example 8.19. In an agricultural experiment, a random sample of n = 10 plots produces

the yields below (measured in kg per plot). From past studies, it has been observed that

plot yields vary according to a normal distribution. The goal is to write a 95 percent

confidence interval for µ, the population mean yield. Here are the sample yields:

23.2 20.1 18.8 19.3 24.6 27.1 33.7 24.7 32.4 17.3

From these data, we compute y = 24.1 and s = 5.6. Also, with n = 10, the degrees of

freedom is n − 1 = 9, and tn−1,α/2 = t9,0.025 = 2.262 (WMS Table 5). The 95 percent

confidence interval is

24.1± 2.262

(
5.6√
10

)
=⇒ (20.1, 28.1).

Thus, based on these data, we are 95 percent confident that the population mean yield

µ is between 20.1 and 28.1 kg/plot. ¤
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8.9.2 Difference of two population means

TWO-SAMPLE SETTING : Suppose that we have two independent samples:

Sample 1 : Y11, Y12, ..., Y1n1 ∼ iid N (µ1, σ
2
1)

Sample 2 : Y21, Y22, ..., Y2n2 ∼ iid N (µ2, σ
2
2)

and that we would like to construct a 100(1 − α) percent confidence interval for the

difference of population means µ1 − µ2. As before, we define the statistics

Y 1+ =
1

n1

n1∑
j=1

Y1j = sample mean for sample 1

Y 2+ =
1

n2

n2∑
j=1

Y2j = sample mean for sample 2

S2
1 =

1

n1 − 1

n1∑
j=1

(Y1j − Y 1+)2 = sample variance for sample 1

S2
2 =

1

n2 − 1

n2∑
j=1

(Y2j − Y 2+)2 = sample variance for sample 2.

We know that

Y 1+ ∼ N
(

µ1,
σ2

1

n1

)
and Y 2+ ∼ N

(
µ2,

σ2
2

n2

)
.

Furthermore, since Y 1+ and Y 2+ are both normally distributed, the difference Y 1+−Y 2+

is too since it is just a linear combination of Y 1+ and Y 2+. By straightforward calculation,

it follows that

Y 1+ − Y 2+ ∼ N
(

µ1 − µ2,
σ2

1

n1

+
σ2

2

n2

)
.

Standardizing, we get

Z =
(Y 1+ − Y 2+)− (µ1 − µ2)√

σ2
1

n1
+

σ2
2

n2

∼ N (0, 1).

Also recall that (n1 − 1)S2
1/σ

2
1 ∼ χ2(n1 − 1) and that (n2 − 1)S2

2/σ
2
2 ∼ χ2(n2 − 1). It

follows that
(n1 − 1)S2

1

σ2
1

+
(n2 − 1)S2

2

σ2
2

∼ χ2(n1 + n2 − 2).
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REMARK : The population variances are nuisance parameters in the sense that they

are not the parameters of interest here. Still, they have to be estimated. We want to write

a confidence interval for µ1−µ2, but exactly how this interval is constructed depends on

the true values of σ2
1 and σ2

2. In particular, we consider two cases:

• σ2
1 = σ2

2 = σ2; that is, the two population variances are equal

• σ2
1 6= σ2

2; that is, the two population variances are not equal.

EQUAL-VARIANCE ASSUMPTION : When σ2
1 = σ2

2 = σ2, we have

Z =
(Y 1+ − Y 2+)− (µ1 − µ2)√

σ2
1

n1
+

σ2
2

n2

=
(Y 1+ − Y 2+)− (µ1 − µ2)

σ
√

1
n1

+ 1
n2

∼ N (0, 1)

and

(n1 − 1)S2
1

σ2
1

+
(n2 − 1)S2

2

σ2
2

=
(n1 − 1)S2

1 + (n2 − 1)S2
2

σ2
∼ χ2(n1 + n2 − 2).

Thus,

(Y 1+−Y 2+)−(µ1−µ2)

σ
√

1
n1

+ 1
n2√

(n1−1)S2
1+(n2−1)S2

2

σ2 /(n1 + n2 − 2)
=

“N (0, 1)”

“χ2(n1 + n2 − 2)”/(n1 + n2 − 2)
∼ t(n1 + n2 − 2).

The last distribution results because the numerator and denominator are independent

(why?). But, algebraically, the last expression reduces to

T =
(Y 1+ − Y 2+)− (µ1 − µ2)

Sp

√
1
n1

+ 1
n2

∼ t(n1 + n2 − 2),

where

S2
p =

(n1 − 1)S2
1 + (n2 − 1)S2

2

n1 + n2 − 2

is the pooled sample variance estimator of the common population variance σ2.

PIVOTAL QUANTITY : Since T has a sampling distribution that is free of all unknown

parameters, it is a pivotal quantity. We can use this fact to construct a 100(1−α) percent
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confidence interval for mean difference µ1−µ2. In particular, because T ∼ t(n1 +n2−2),

we can find the value tn1+n2−2,α/2 that satisfies

P (−tn1+n2−2,α/2 < T < tn1+n2−2,α/2) = 1− α.

Substituting T into the last expression and performing the usual algebraic manipulations

(verify!), we can conclude that

(Y 1+ − Y 2+)± tn1+n2−2,α/2Sp

√
1

n1

+
1

n2

is an exact 100(1− α) percent confidence interval for the mean difference µ1 − µ2. ¤

Example 8.20. In the vicinity of a nuclear power plant, marine biologists at the EPA

would like to determine whether there is a difference between the mean weight in two

species of a certain fish. To do this, they will construct a 90 percent confidence interval

for the mean difference µ1− µ2. Two independent random samples were taken, and here

are the recorded weights (in ounces):

• Species 1: 29.9, 11.4, 25.3, 16.5, 21.1

• Species 2: 26.6, 23.7, 28.5, 14.2, 17.9, 24.3

Out of necessity, the scientists assume that each sample arises from a normal distribution

with σ2
1 = σ2

2 = σ2 (i.e., they assume a common population variance). Here, we have

n1 = 5, n2 = 6, n1 + n2 − 2 = 9, and t9,0.05 = 1.833. Straightforward computations show

that y1+ = 20.84, s2
1 = 52.50, y2+ = 22.53, s2

2 = 29.51, and that

s2
p =

4(52.50) + 5(29.51)

9
= 39.73.

Thus, the 90 percent confidence interval for µ1 − µ2, based on these data, is given by

(20.84− 22.53)± 1.833
√

39.73

√
1

5
+

1

6
=⇒ (−8.69, 5.31).

We are 90 percent confident that the mean difference µ1 − µ2 is between −8.69 and 5.31

ounces. Since this interval includes 0, this analysis does not suggest that the mean species

weights, µ1 and µ2, are truly different. ¤
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UNEQUAL-VARIANCE ASSUMPTION : When σ2
1 6= σ2

2, the problem of constructing a

100(1− α) percent confidence interval for µ1− µ2 becomes markedly more difficult. The

reason why this is true stems from the fact that there is no “obvious” pivotal quantity to

construct (go back to the equal-variance case and see how this assumption simplified the

derivation). However, in this situation, we can still write an approximate confidence

interval for µ1 − µ2; this interval is given by

(Y 1+ − Y 2+)± tν,α/2

√
S2

1

n1

+
S2

2

n2

,

where the degree of freedom parameter ν is approximated by

ν =

(
S2

1

n1
+

S2
2

n2

)2

(
S2
1

n1

)2

n1−1
+

(
S2
2

n2

)2

n2−1

.

This formula for ν is called Satterwaite’s formula. The derivation of this interval is

left to another day.

8.9.3 Robustness of the t procedures

REMARK : In the derivation of the one and two-sample confidence intervals for normal

means (based on the t distribution), we have explicitly assumed that the underlying

population distribution(s) was/were normal. Under the normality assumption,

Y ± tn−1,α/2

(
S√
n

)

is an exact 100(1−α) percent confidence interval for the population mean µ. Under the

normal, independent sample, and constant variance assumptions,

(Y 1+ − Y 2+)± tn1+n2−2,α/2Sp

√
1

n1

+
1

n2

is an exact 100(1 − α) percent confidence interval for the mean difference µ1 − µ2. Of

course, the natural question arises:

“What if the data are not normally distributed?”
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ROBUSTNESS : A statistical inference procedure (like constructing a confidence interval)

is said to be robust if the quality of the procedure is not affected by a departure from

the assumptions made.

IMPORTANT : The t confidence interval procedures are based on the population distri-

bution being normal. However, these procedures are fairly robust to departures from

normality; i.e., even if the population distribution(s) is/are nonnormal, we can still use

the t procedures and get approximate results. The following guidelines are common:

• n < 15: Use t procedures only if the population distribution appears normal and

there are no outliers.

• 15 ≤ n ≤ 40: Be careful about using t procedures if there is strong skewness and/or

outliers present.

• n > 40: t procedures should be fine regardless of the population distribution shape.

REMARK : These are just guidelines and should not be taken as “truth.” Of course, if

we know the distribution of Y1, Y2, ..., Yn (e.g., Poisson, exponential, etc.), then we might

be able to derive an exact 100(1 − α) percent confidence interval for the mean directly

by finding a suitable pivotal quantity. In such cases, it may be better to avoid the t

procedures altogether.

8.10 Confidence intervals for variances

MOTIVATION : In many experimental settings, the researcher is concerned not with

the mean of the underlying population, but with the population variance σ2 instead.

For example, in a laboratory setting, chemists might wish to estimate the variability

associated with a measurement system (e.g., scale, caliper, etc.) or to estimate the

unit-to-unit variation of vitamin tablets. In large-scale field trials, agronomists are often

likely to compare variability levels for different cultivars or genetically-altered varieties.

In clinical trials, the FDA is often concerned whether or not there is significant variation

among various clinic sites. We examine the one and two-sample problems here.
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8.10.1 One population variance

RECALL: Suppose Y1, Y2, ..., Yn is an iid sample from a N (µ, σ2) distribution. In this

case, we know

Q =
(n− 1)S2

σ2
∼ χ2(n− 1).

Because Q has a distribution that is free of all unknown parameters, Q is a pivot. We

will use this pivot to derive an exact 100(1− α) percent confidence interval for σ2.

DERIVATION : Let χ2
n−1,α/2 denote the upper α/2 quantile and let χ2

n−1,1−α/2 denote the

lower α/2 quantile of the χ2(n− 1) distribution; i.e., χ2
n−1,α/2 and χ2

n−1,1−α/2 satisfy

P [χ2(n− 1) > χ2
n−1,α/2] = α/2 and P [χ2(n− 1) < χ2

n−1,1−α/2] = α/2,

respectively. Then, because Q ∼ χ2(n− 1),

1− α = P

[
χ2

n−1,1−α/2 <
(n− 1)S2

σ2
< χ2

n−1,α/2

]

= P

[
1

χ2
n−1,1−α/2

>
σ2

(n− 1)S2
>

1

χ2
n−1,α/2

]

= P

[
(n− 1)S2

χ2
n−1,1−α/2

> σ2 >
(n− 1)S2

χ2
n−1,α/2

]
.

This argument shows that [
(n− 1)S2

χ2
n−1,α/2

,
(n− 1)S2

χ2
n−1,1−α/2

]

is an exact 100(1− α) percent confidence interval for the population variance σ2. ¤

NOTE : Taking the square root of both endpoints in the 100(1 − α) percent confidence

interval for σ2 gives a 100(1− α) percent confidence interval for σ.

Example 8.21. Entomologists studying the bee species Euglossa mandibularis Friese

measure the wing-stroke frequency for n = 4 bees for a fixed time. The data are

235 225 190 188

Assuming that these data are an iid sample from a N (µ, σ2) distribution, find a 90

percent confidence interval for σ2.
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Solution. Here, n = 4 and α = 0.10, so we need χ2
3,0.95 = 0.351846 and χ2

3,0.05 = 7.81473

(Table 6, WMS). I used R to compute s2 = 577.6667. The 90 percent confidence interval

is thus [
3(577.6667)

7.81473
,
3(577.6667)

0.351846

]
=⇒ (221.76, 4925.45).

That is, we are 90 percent confident that the true population variance σ2 is between

221.76 and 4925.45; i.e., that the true population standard deviation σ is between 14.89

and 70.18. Of course, both of these intervals are quite wide, but remember that n = 4,

so we shouldn’t expect notably precise intervals. ¤

8.10.2 Ratio of two variances

TWO-SAMPLE SETTING : Suppose that we have two independent samples:

Sample 1 : Y11, Y12, ..., Y1n1 ∼ iid N (µ1, σ
2
1)

Sample 2 : Y21, Y22, ..., Y2n2 ∼ iid N (µ2, σ
2
2)

and that we would like to construct a 100(1−α) percent confidence interval for θ = σ2
2/σ

2
1,

the ratio of the population variances. Under these model assumptions, we know that

(n1−1)S2
1/σ

2
1 ∼ χ2(n1−1), that (n2−1)S2

2/σ
2
2 ∼ χ2(n2−1), and that these two quantities

are independent. It follows that

F =

(n1−1)S2
1

σ2
1

/(n1 − 1)

(n2−1)S2
2

σ2
2

/(n2 − 1)
∼ “χ2(n1 − 1)”/(n1 − 1)

“χ2(n2 − 1)”/(n2 − 1)
∼ F (n1 − 1, n2 − 1).

Because F has a distribution that is free of all unknown parameters, F is a pivot, and we

can use it to derive 100(1−α) percent confidence interval for θ = σ2
2/σ

2
1. Let Fn1−1,n2−1,α/2

denote the upper α/2 quantile and let Fn1−1,n2−1,1−α/2 denote the lower α/2 quantile of

the F (n1 − 1, n2 − 1) distribution. Because F ∼ F (n1 − 1, n2 − 1), we can write

1− α = P
(
Fn1−1,n2−1,1−α/2 < F < Fn1−1,n2−1,α/2

)

= P

(
Fn1−1,n2−1,1−α/2 <

S2
1/σ

2
1

S2
2/σ

2
2

< Fn1−1,n2−1,α/2

)

= P

(
S2

2

S2
1

× Fn1−1,n2−1,1−α/2 <
σ2

2

σ2
1

<
S2

2

S2
1

× Fn1−1,n2−1,α/2

)
.
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This argument shows that

(
S2

2

S2
1

× Fn1−1,n2−1,1−α/2,
S2

2

S2
1

× Fn1−1,n2−1,α/2

)

is an exact 100(1− α) percent confidence interval for the ratio θ = σ2
2/σ

2
1. ¤

Example 8.22. Snout beetles cause millions of dollars worth of damage each year to

cotton crops. Two different chemical treatments are used to control this beetle population

using 13 randomly selected plots. Below are the percentages of cotton plants with beetle

damage (after treatment) for the plots:

• Treatment 1: 22.3, 19.5, 18.6, 24.3, 19.9, 20.4

• Treatment 2: 9.8, 12.3, 16.2, 14.1, 15.3, 10.8, 18.3

Under normality, and assuming that these two samples are independent, find a 95 percent

confidence interval for θ = σ2
2/σ

2
1, the ratio of the two treatment variances.

Solution. Here, n1 = 6, n2 = 7, and α = 0.05, so that F5,6,0.025 = 5.99 (WMS, Table

7). To find F5,6,0.975, we can use the fact that

F5,6,0.975 =
1

F6,5,0.025

=
1

6.98
≈ 0.14

(WMS, Table 7). Again, I used R to compute s2
1 = 4.40 and s2

2 = 9.27. Thus, a 95

percent confidence interval for θ = σ2
2/σ

2
1 is given by

(
9.27

4.40
× 0.14,

9.27

4.40
× 5.99

)
=⇒ (0.29, 12.62).

We are 95 percent confident that the ratio of variances θ = σ2
2/σ

2
1 is between 0.29 and

12.62. Since this interval includes 1, we can not conclude that the two treatment variances

are significantly different. ¤

NOTE : Unlike the t confidence intervals for means, the confidence interval procedures for

one and two population variances are not robust to departures from normality. Thus,

one who uses these confidence intervals is placing strong faith in the underlying normality

assumption.
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9 Properties of Point Estimators and Methods of Es-

timation

Complementary reading: Chapter 9 (WMS).

9.1 Introduction

RECALL: In many problems, we are able to observe an iid sample Y1, Y2, ..., Yn from a

population distribution fY (y; θ), where θ is regarded as an unknown parameter that

is to be estimated with the observed data. From the last chapter, we know that a “good”

estimator θ̂ = T (Y1, Y2, ..., Yn) has the following properties:

• θ̂ is unbiased; i.e., E(θ̂) = θ, for all θ

• θ̂ has small variance.

In our quest to find a good estimator for θ, we might have several “candidate estimators”

to consider. For example, suppose that θ̂1 = T1(Y1, Y2, ..., Yn) and θ̂2 = T2(Y1, Y2, ..., Yn)

are two estimators for θ. Which estimator is better? Is there a “best” estimator available?

If so, how do we find it? This chapter largely addresses this issue.

TERMINOLOGY : Suppose that θ̂1 and θ̂2 are unbiased estimators for θ. We call

eff(θ̂1, θ̂2) =
V (θ̂2)

V (θ̂1)

the relative efficiency of θ̂2 to θ̂1. This is simply a ratio of the variances. If

V (θ̂1) = V (θ̂2) ⇐⇒ eff(θ̂1, θ̂2) = 1

V (θ̂1) > V (θ̂2) ⇐⇒ eff(θ̂1, θ̂2) < 1

V (θ̂1) < V (θ̂2) ⇐⇒ eff(θ̂1, θ̂2) > 1.

NOTE : It only makes sense to use this measure when both θ̂1 and θ̂2 are unbiased.
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Example 9.1. Suppose that Y1, Y2, Y3 is an iid sample of n = 3 Poisson observations

with mean θ. Consider the two candidate estimators:

θ̂1 = Y

θ̂2 =
1

6
(Y1 + 2Y2 + 3Y3).

It is easy to see that both θ̂1 and θ̂2 are unbiased estimators of θ (verify!). In deciding

which estimator is better, we thus should compare V (θ̂1) and V (θ̂2). Straightforward

calculations show that V (θ̂1) = V (Y ) = θ/3 and

V (θ̂2) =
1

36
(θ + 4θ + 9θ) =

7θ

18
.

Thus,

eff(θ̂1, θ̂2) =
V (θ̂2)

V (θ̂1)
=

7θ/18

θ/3
=

7

6
≈ 1.17.

Since this value is larger than 1, θ̂1 is a better estimator than θ̂2. In other words, the

estimator θ̂2 is only 100(6/7) ≈ 86 percent as efficient as θ̂1. ¤

NOTE : There is not always a clear-cut winner when comparing two (or more) estimators.

One estimator may perform better for certain values of θ, but be worse for other values

of θ. Of course, it would be nice to have an estimator perform uniformly better than all

competitors. This begs the question: Can we find the best estimator for the parameter

θ? How should we define “best?”

CONVENTION : We will define the “best” estimator as one that is unbiased and has

the smallest possible variance among all unbiased estimators.

9.2 Sufficiency

INTRODUCTION : No concept in the theory of point estimation is more important than

that of sufficiency. Suppose that Y1, Y2, ..., Yn is an iid sample from fY (y; θ) and that the

goal is to find the best estimator for θ based on Y1, Y2, ..., Yn. We will soon see that best

estimators, if they exist, are always functions of sufficient statistics. For now, we will

assume that θ is a scalar (we’ll relax this assumption later).
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TERMINOLOGY : Suppose that Y1, Y2, ..., Yn is an iid sample from the population distri-

bution fY (y; θ). We call U = g(Y1, Y2, ..., Yn) a sufficient statistic for θ if the conditional

distribution of Y = (Y1, Y2, ..., Yn), given U , does not depend on θ.

ESTABLISHING SUFFICIENCY DIRECTLY : To show that U is sufficient, it suffices

to show that the ratio

fY |U(y|u) =
fY (y; θ)

fU(u; θ)

does not depend on θ. Recall that since Y1, Y2, ..., Yn is an iid sample, the joint distribution

of Y is the product of the marginal density (mass) functions; i.e.,

fY (y; θ) =
n∏

i=1

fY (yi; θ).

Example 9.2. Suppose that Y1, Y2, ..., Yn is an iid sample of Poisson observations with

mean θ. Show that U =
∑n

i=1 Yi is a sufficient statistic for θ.

Solution. A moment-generating function argument shows that U ∼ Poisson(nθ); thus,

the pdf of U is given by

fU(u; θ) =





(nθ)ue−nθ

u!
, u = 0, 1, 2, ...,

0, otherwise.

The joint distribution of the data Y = (Y1, Y2, ..., Yn) is the product of the marginal

Poisson mass functions; i.e.,

fY (y; θ) =
n∏

i=1

fY (yi; θ) =
n∏

i=1

θyie−θ

yi!
=

θ
∑n

i=1 yie−nθ

∏n
i=1 yi!

,

Therefore, the conditional distribution of Y , given U , is equal to

fY |U(y|u) =
fY (y; θ)

fU(u; θ)

=

θue−nθ∏n
i=1 yi!

(nθ)ue−nθ/u!

=
u!

nu
∏n

i=1 yi!
.

Since fY |U(y|u) does not depend on the unknown parameter θ, it follows (from the

definition of sufficiency) that U =
∑n

i=1 Yi is a sufficient statistic for θ. ¤
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HEURISTIC INTERPRETATION : In a profound sense, sufficient statistics summarize

all the information about the unknown parameter θ. That is, we can reduce our sample

Y1, Y2, ..., Yn to a sufficient statistic U and not lose any information about θ. To illustrate,

in Example 9.2, suppose that we have two experimenters:

• Experimenter 1 keeps Y1, Y2, ..., Yn; i.e., s/he keeps all the data

• Experimenter 2 records Y1, Y2, ..., Yn, but only keeps U =
∑n

i=1 Yi; i.e., s/he keeps

the sum, but forgets the original values of Y1, Y2, ..., Yn.

RESULT : If both experimenters wanted to estimate θ, Experimenter 2 has just as much

information with U as Experimenter 1 does with the entire sample of data!

9.2.1 The likelihood function

BACKGROUND : Suppose that Y1, Y2, ..., Yn is an iid sample from fY (y; θ). After we

observe the data y1, y2, ..., yn; i.e., the realizations of Y1, Y2, ..., Yn, we can think of the

function

fY (y; θ) =
n∏

i=1

fY (yi; θ)

in two different ways:

(1) as the multivariate probability density/mass function of Y = (Y1, Y2, ..., Yn), for a

fixed (but unknown) value of θ, or

(2) as a function of θ, given the observed data y = (y1, y2, ..., yn).

In (1), we write

fY (y; θ) =
n∏

i=1

fY (yi; θ).

In (2), we write

L(θ|y) = L(θ|y1, y2, ..., yn) =
n∏

i=1

fY (yi; θ).
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Table 9.5: Number of stoplights until the first stop is required. These observations are

modeled as n = 10 realizations from geometric distribution with parameter θ.

4 3 1 3 6 5 4 2 7 1

REALIZATION : The two functions fY (y; θ) and L(θ|y) are the same function! The

only difference is in the interpretation of it. In (1), we fix the parameter θ and think

of fY (y; θ) as a multivariate function of y. In (2), we fix the data y and think of L(θ|y)

as a function of the parameter θ.

TERMINOLOGY : Suppose that Y1, Y2, ..., Yn is an iid sample from fY (y; θ) and that

y1, y2, ..., yn are the n observed values. The likelihood function for θ is given by

L(θ|y) ≡ L(θ|y1, y2, ..., yn) =
n∏

i=1

fY (yi; θ).

Example 9.3. Suppose that Y1, Y2, ..., Yn is an iid sample of geometric random variables

with parameter 0 < θ < 1; i.e., Yi counts the number of Bernoulli trials until the 1st

success is observed. Recall that the geometric(θ) pmf is given by

fY (y; θ) =





θ(1− θ)y−1, y = 1, 2, ...,

0, otherwise.

The likelihood function for θ, given the data y = (y1, y2, ..., yn), is

L(θ|y) =
n∏

i=1

fY (yi; θ) =
n∏

i=1

θ(1− θ)yi−1 = θn(1− θ)
∑n

i=1 yi−n.

Using the data from Table 9.5, we have n = 10 and
∑10

i=1 yi = 36. Thus, the likelihood

function L(θ|y), for 0 < θ < 1, is given by

L(θ|y) = L(θ|y1, y2, ..., y10) = θ10(1− θ)36−10

= θ10(1− θ)26.

This likelihood function is plotted in Figure 9.7. In a sense, the likelihood function

describes which values of θ are more consistent with the observed data y. Which values

of θ are more consistent with the data in Example 9.3?
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Figure 9.7: Likelihood function L(θ|y) in Example 9.3.

9.2.2 Factorization Theorem

RECALL: Suppose that Y1, Y2, ..., Yn is an iid sample from fY (y; θ). We have already

learned how to directly show that a statistic U is sufficient for θ; namely, we can show

that the conditional distribution of the data Y = (Y1, Y2, ..., Yn), given U , does not

depend on θ. It turns out that there is an easier way to show that a statistic U is

sufficient for θ.

FACTORIZATION THEOREM : Suppose that Y1, Y2, ..., Yn is an iid sample from fY (y; θ)

and that U is a statistic. If the likelihood function for θ, L(θ|y), can be expressed as the

product of two nonnegative functions g(u, θ) and h(y1, y2, ..., yn), where

• g(u, θ) is only a function of u and θ, and

• h(y1, y2, ..., yn) is only a function of y1, y2, ..., yn,

then U is a sufficient statistic for θ.
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REMARK : The Factorization Theorem makes getting sufficient statistics easy! All we

have to do is be able to write the likelihood function

L(θ|y) = g(u, θ)× h(y1, y2, ..., yn)

for nonnegative functions g and h. Now that we have the Factorization Theorem, there

will rarely be a need to work directly with the conditional distribution fY |U(y|u); i.e., to

establish sufficiency using the definition.

Example 9.4. Suppose that Y1, Y2, ..., Yn is an iid sample of Poisson observations with

mean θ. Our goal is to show that U =
∑n

i=1 Yi is a sufficient statistic for θ using the

Factorization Theorem. You’ll recall that in Example 9.2, we showed that U =
∑n

i=1 Yi

is sufficient by appealing to the definition of sufficiency directly. The likelihood function

for θ is given by

L(θ|y) =
n∏

i=1

fY (yi; θ) =
n∏

i=1

θyie−θ

yi!

=
θ

∑n
i=1 yie−nθ

∏n
i=1 yi!

= θ
∑n

i=1 yie−nθ︸ ︷︷ ︸
g(u,θ)

×
(

n∏
i=1

yi!

)−1

︸ ︷︷ ︸
h(y1,y2,...,yn)

.

Both g(u, θ) and h(y1, y2, ..., yn) are nonnegative functions. Thus, by the Factorization

Theorem, U =
∑n

i=1 Yi is a sufficient statistic for θ. ¤

Example 9.5. Suppose that Y1, Y2, ..., Yn is an iid sample of N (0, σ2) observations. The

likelihood function for σ2 is given by

L(σ2|y) =
n∏

i=1

fY (yi; σ
2) =

n∏
i=1

1√
2πσ

e−y2
i /2σ2

=

(
1√
2π

)n

︸ ︷︷ ︸
h(y1,y2,...,yn)

×
(
σ−ne−

∑n
i=1 y2

i /2σ2
)

︸ ︷︷ ︸
g(u,σ2)

.

Both g(u, σ2) and h(y1, y2, ..., yn) are nonnegative functions. Thus, by the Factorization

Theorem, U =
∑n

i=1 Y 2
i is a sufficient statistic for σ2. ¤
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Example 9.6. Suppose that Y1, Y2, ..., Yn is an iid sample from a beta(1, θ) distribution.

The likelihood function for θ is given by

L(θ|y) =
n∏

i=1

fY (yi; θ) =
n∏

i=1

θ(1− yi)
θ−1

= θn

n∏
i=1

(1− yi)
θ−1

= θn

[
n∏

i=1

(1− yi)

]θ

︸ ︷︷ ︸
g(u,θ)

×
[

n∏
i=1

(1− yi)

]−1

︸ ︷︷ ︸
h(y1,y2,...,yn)

.

Both g(u, θ) and h(y1, y2, ..., yn) are nonnegative functions. Thus, by the Factorization

Theorem, U =
∏n

i=1(1− Yi) is a sufficient statistic for θ. ¤

SOME NOTES ON SUFFICIENCY :

(1) The sample itself Y = (Y1, Y2, ..., Yn) is always sufficient for θ, of course, but this

provides no data reduction!

(2) The order statistics Y(1) ≤ Y(2) ≤ · · · ≤ Y(n) are sufficient for θ.

(3) If g is a one-to-one function over the set of all possible values of θ and if U is a

sufficient statistic, then g(U) is also sufficient.

Example 9.7. In Example 9.4, we showed that U =
∑n

i=1 Yi is a sufficient statistic for

θ, the mean of Poisson distribution. Thus,

Y =
1

n

n∑
i=1

Yi

is also a sufficient statistic for θ since g(u) = u/n is a one-to-one function. In Example

9.6, we showed that U =
∏n

i=1(1−Yi) is a sufficient statistic for θ in the beta(1, θ) family.

Thus,

log

[
n∏

i=1

(1− Yi)

]
=

n∑
i=1

log(1− Yi)

is also a sufficient statistic for θ since g(u) = log u is a one-to-one function. ¤
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MULTIDIMENSIONAL EXTENSION : As you might expect, we can generalize the Fac-

torization Theorem to the case wherein θ is vector-valued. To emphasize this, we will

write θ = (θ1, θ2, ..., θp), a p-dimensional parameter. Suppose that Y1, Y2, ..., Yn is an iid

sample from fY (y; θ). The likelihood function for θ = (θ1, θ2, ..., θp) is given by

L(θ|y) ≡ L(θ|y1, y2, ..., yn) =
n∏

i=1

fY (yi; θ).

If one can express L(θ|y) as

L(θ|y) = g(u1, u2, ..., up; θ)× h(y1, y2, ..., yn),

where g is a nonnegative function of u1, u2, ..., up and θ alone, and h is a nonnegative

function of the data only, then we call U = (U1, U2, ..., Up) a sufficient statistic for θ. In

other words, U1, U2, ..., Up are p jointly sufficient statistics for θ1, θ2, ..., θp.

Example 9.8. Suppose that Y1, Y2, ..., Yn is an iid sample of gamma(α, β) observations.

We would like to find a p = 2 dimensional sufficient statistic for θ = (α, β). The likelihood

function for θ is given by

L(θ|y) =
n∏

i=1

fY (yi; α, β) =
n∏

i=1

1

Γ(α)βα
yα−1

i e−yi/β

=

[
1

Γ(α)βα

]n
(

n∏
i=1

yi

)α−1

e−
∑n

i=1 yi/β

=

(
n∏

i=1

yi

)−1

︸ ︷︷ ︸
h(y1,y2,...,yn)

×
[

1

Γ(α)βα

]n
(

n∏
i=1

yi

)α

e−
∑n

i=1 yi/β

︸ ︷︷ ︸
g(u1,u2;α,β)

.

Both g(u1, u2; α, β) and h(y1, y2, ..., yn) are nonnegative functions. Thus, by the Factor-

ization Theorem, U = (
∏n

i=1 Yi,
∑n

i=1 Yi) is a sufficient statistic for θ = (α, β). ¤

Example 9.9. Suppose that Y1, Y2, ..., Yn is an iid N (µ, σ2) sample. We can use the

multidimensional Factorization Theorem to show U = (
∑n

i=1 Yi,
∑n

i=1 Y 2
i ) is a sufficient

statistic for θ = (µ, σ2). Because U ∗ = (Y , S2) is a one-to-one function of U , it follows

that U ∗ is also sufficient for θ = (µ, σ2). ¤
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9.3 The Rao-Blackwell Theorem

PREVIEW : One of the main goals of this chapter is to find the best possible estimator

for θ based on an iid sample Y1, Y2, ..., Yn from fY (y; θ). The Rao-Blackwell Theorem will

help us see how to find a best estimator, provided that it exists.

RAO-BLACKWELL: Suppose that Y1, Y2, ..., Yn is an iid sample from fY (y; θ), and let θ̂

be an unbiased estimator of θ; i.e.,

E(θ̂) = θ.

In addition, suppose that U is a sufficient statistic for θ, and define

θ̂∗ = E(θ̂|U),

the conditional expectation of θ̂ given U (which we know, most importantly, is a function

of U). Then, for all θ, E(θ̂∗) = θ and V (θ̂∗) ≤ V (θ̂).

Proof. That E(θ̂∗) = θ (i.e., that θ̂∗ is unbiased) follows from the iterated law for

expectation (see Section 5.11 WMS):

E(θ̂∗) = E
[
E(θ̂|U)

]
= E(θ̂) = θ.

That V (θ̂∗) ≤ V (θ̂) follows from Adam’s Rule (i.e., the iterated law for variances; see

Section 5.11 WMS):

V (θ̂) = E
[
V (θ̂|U)

]
+ V

[
E(θ̂|U)

]
= E

[
V (θ̂|U)

]
+ V (θ̂∗).

Since V (θ̂|U) ≥ 0, this implies that E
[
V (θ̂|U)

] ≥ 0 as well. Thus, V (θ̂) ≥ V (θ̂∗), and

the result follows. ¤

INTERPRETATION : What does the Rao-Blackwell Theorem tell us? To use the result,

some students think that they have to find θ̂, an unbiased estimator for θ, obtain the

conditional distribution of θ̂ given U , and then compute the mean of this conditional

distribution. This is not the case at all! The Rao-Blackwell Theorem simply convinces us

that in our search for the best possible estimator for θ, we can restrict our search to those
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estimators that are functions of sufficient statistics. That is, best estimators, provided

they exist, will always be functions of sufficient statistics.

TERMINOLOGY : The minimum-variance unbiased estimator (MVUE) for θ is the

best estimator for θ. The two conditions for an estimator θ̂ to be MVUE are that

• the estimator θ̂ is unbiased; i.e., E(θ̂) = θ,

• among all unbiased estimators of θ, θ̂ has the smallest possible variance.

REMARK : If an MVUE exists (in some problems it may not), it is unique. The proof

of this claim is slightly beyond the scope of this course. In practice, how do we find the

MVUE for θ, or the MVUE for τ(θ), a function of θ?

STRATEGY FOR FINDING MVUE’s : The Rao-Blackwell Theorem says that best es-

timators are always functions of the sufficient statistic U . Thus, first find a sufficient

statistic U (this is the starting point).

• Then, find a function of U that is unbiased for the parameter θ. This function of

U is the MVUE for θ.

• If we need to find the MVUE for a function of θ, say, τ(θ), then find a function of

U that unbiased for τ(θ); this function will then the MVUE for τ(θ).

MATHEMATICAL ASIDE : You should know that this strategy works often (it will work

for the examples we consider in this course). However, there are certain situations where

this approach fails. The reason that it can fail is that the sufficient statistic U may not

be complete. The concept of completeness is slightly beyond the scope of this course

too, but, nonetheless, it is very important when finding MVUE’s. This is not an issue

we will discuss again, but you should be aware that in higher-level discussions (say, in

a graduate-level theory course), this would be an issue. For us, we will only consider

examples where completeness is guaranteed. Thus, we can adopt the strategy above for

finding best estimators (i.e., MVUEs).
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Example 9.10. Suppose that Y1, Y2, ..., Yn are iid Poisson observations with mean θ. We

have already shown (in Examples 9.2 and 9.4) that U =
∑n

i=1 Yi is a sufficient statistic

for θ. Thus, Rao-Blackwell says that the MVUE for θ is a function of U . Consider

Y =
1

n

n∑
i=1

Yi,

the sample mean. Clearly, Y is a function of the sufficient statistic U . Furthermore, we

know that E(Y ) = θ. Since Y is unbiased and is a function of the sufficient statistic, it

must be the MVUE for θ. ¤

Example 9.11. Suppose that Y1, Y2, ..., Yn is an iid sample of N (0, σ2) observations.

From Example 9.5, we know that U =
∑n

i=1 Y 2
i is a sufficient statistic for σ2. Thus,

Rao-Blackwell says that the MVUE for σ2 is a function of U . Let’s first compute E(U):

E(U) = E

(
n∑

i=1

Y 2
i

)
=

n∑
i=1

E(Y 2
i ).

Now, for each i,

E(Y 2
i ) = V (Yi) + [E(Yi)]

2 = σ2 + 02 = σ2.

Thus,

E(U) =
n∑

i=1

E(Y 2
i ) =

n∑
i=1

σ2 = nσ2

which implies that

E

(
U

n

)
= E

(
1

n

n∑
i=1

Y 2
i

)
= σ2.

Since 1
n

∑n
i=1 Y 2

i is a function of the sufficient statistic U , and is unbiased, it must be the

MVUE for σ2. ¤

Example 9.12. Suppose that Y1, Y2, ..., Yn is an iid sample of exponential observations

with mean θ and that the goal is to find the MVUE for τ(θ) = θ2, the population variance.

We start by finding U , a sufficient statistic. The likelihood function for θ is given by

L(θ|y) =
n∏

i=1

fY (yi; θ) =
n∏

i=1

(
1

θ

)
e−yi/θ

=
1

θn
e−

∑n
i=1 yi/θ

︸ ︷︷ ︸
g(u,θ)

× h(y),
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where h(y) = 1. Thus, by the Factorization Theorem, U =
∑n

i=1 Yi is a sufficient statistic

for θ. Now, to estimate τ(θ) = θ2, consider the “candidate estimator” Y
2

(clearly, Y
2

is

a function of U). It follows that

E(Y
2
) = V (Y ) + [E(Y )]2 =

θ2

n
+ θ2 =

(
n + 1

n

)
θ2.

Thus,

E

(
nY

2

n + 1

)
=

(
n

n + 1

)
E(Y

2
) =

(
n

n + 1

)(
n + 1

n

)
θ2 = θ2.

Since nY
2
/(n + 1) is unbiased for τ(θ) = θ2 and is a function of the sufficient statistic

U , it must be the MVUE for τ(θ) = θ2. ¤

Example 9.13. Suppose that Y1, Y2, ..., Yn is an iid sample of N (µ, σ2) observations.

Try to prove each of these results:

• If σ2 is known, then Y is MVUE for µ.

• If µ is known, then
1

n

n∑
i=1

(Yi − µ)2

is MVUE for σ2.

• If both µ and σ2 are unknown, then (Y , S2) is MVUE for θ = (µ, σ2). ¤

SUMMARY : Sufficient statistics are very good statistics to deal with because they con-

tain all the information in the sample. Best (point) estimators are always functions of

sufficient statistics. Not surprisingly, the best confidence intervals and hypothesis tests

(STAT 513) almost always depend on sufficient statistics too. Statistical procedures

which are not based on sufficient statistics usually are not the best available procedures.

PREVIEW : We now turn our attention to studying two additional techniques which

provide point estimators:

• method of moments

• method of maximum likelihood.
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9.4 Method of moments estimators

METHOD OF MOMENTS : Suppose that Y1, Y2, ..., Yn is an iid sample from fY (y; θ),

where θ is a p-dimensional parameter. The method of moments (MOM) approach to

point estimation says to equate population moments to sample moments and solve the

resulting system for all unknown parameters. To be specific, define the kth population

moment to be

µ′k = E(Y k),

and the kth sample moment to be

m′
k =

1

n

n∑
i=1

Y k
i .

Let p denote the number of parameters to be estimated; i.e., p equals the dimension of

θ. The method of moments (MOM) procedure uses the following system of p equations

and p unknowns:

µ′1 = m′
1

µ′2 = m′
2

...

µ′p = m′
p.

Estimators are obtained by solving the system for θ1, θ2, ..., θp (the population moments

µ′1, µ
′
2, ..., µ

′
p will almost always be functions of θ). The resulting estimators are called

method of moments estimators. If θ is a scalar (i.e., p = 1), then we only need one

equation. If p = 2, we will need 2 equations, and so on.

Example 9.14. Suppose that Y1, Y2, ..., Yn is an iid sample of U(0, θ) observations. Find

the MOM estimator for θ.

Solution. The first population moment is µ′1 = µ = E(Y ) = θ/2, the population mean.

The first sample moment is

m′
1 =

1

n

n∑
i=1

Yi = Y ,
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the sample mean. To find the MOM estimator of θ, we simply set

µ′1 =
θ

2
set
= Y = m′

1

and solve for θ. The MOM estimator for θ is θ̂ = 2Y . ¤

Example 9.15. Suppose that Y1, Y2, ..., Yn is an iid sample of gamma(α, β) observations.

Here, there are p = 2 unknown parameters. The first two population moments are

µ′1 = E(Y ) = αβ

µ′2 = E(Y 2) = V (Y ) + [E(Y )]2 = αβ2 + (αβ)2.

Our 2× 2 system becomes

αβ
set
= Y

αβ2 + (αβ)2 set
= m′

2,

where m′
2 = 1

n

∑n
i=1 Y 2

i . Substituting the first equation into the second, we get

αβ2 = m′
2 − Y

2
.

Solving for β in the first equation, we get β = Y /α; substituting this into the last

equation, we get

α̂ =
Y

2

m′
2 − Y

2 .

Substituting α̂ into the original system (the first equation), we get

β̂ =
m′

2 − Y
2

Y
.

These are the MOM estimators of α and β, respectively. From Example 9.8 (notes), we

can see that α̂ and β̂ are not functions of the sufficient statistic U = (
∏n

i=1 Yi,
∑n

i=1 Yi);

i.e., if you knew the value of U , you could not compute α̂ and β̂. From Rao-Blackwell,

we know that the MOM estimators are not the best available estimators of α and β. ¤

REMARK : The method of moments approach is one of the oldest methods of finding

estimators. It is a “quick and dirty” approach (we are simply equating sample and

population moments); however, it is sometimes a good place to start. Method of moments

estimators are usually not functions of sufficient statistics, as we have just seen.
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9.5 Maximum likelihood estimation

INTRODUCTION : The method of maximum likelihood is, by far, the most popular

technique for estimating parameters in practice. The method is intuitive; namely, we

estimate θ with θ̂, the value that maximizes the likelihood function L(θ|y). Loosely

speaking, L(θ|y) can be thought of as “the probability of the data,” (in the discrete case,

this makes sense; in the continuous case, this interpretation is somewhat awkward), so,

we are choosing the value of θ that is “most likely” to have produced the data y1, y2, ..., yn.

MAXIMUM LIKELIHOOD : Suppose that Y1, Y2, ..., Yn is an iid sample from the popula-

tion distribution fY (y; θ). The maximum likelihood estimator (MLE) for θ, denoted

θ̂, is the value of θ that maximizes the likelihood function L(θ|y); that is,

θ̂ = arg max
θ

L(θ|y).

Example 9.16. Suppose that Y1, Y2, ..., Yn is an iid N (θ, 1) sample. Find the MLE of θ.

Solution. The likelihood function of θ is given by

L(θ|y) =
n∏

i=1

fY (yi; θ) =
n∏

i=1

1√
2π

e−
1
2
(yi−θ)2

=

(
1√
2π

)n

e−
1
2

∑n
i=1(yi−θ)2 .

Taking derivatives with respect to θ, we get

∂

∂θ
L(θ|y) =

(
1√
2π

)n

e−
1
2

∑n
i=1(yi−θ)2

︸ ︷︷ ︸
this is always positive

×
n∑

i=1

(yi − θ).

The only value of θ that makes this derivative equal to 0 is y; this is true since

n∑
i=1

(yi − θ) = 0 ⇐⇒ θ = y.

Furthermore, it is possible to show that

∂2

∂θ2
L(θ|y)

∣∣∣∣
θ=y

< 0,

(verify!) showing us that, in fact, y maximizes L(θ|y). We have shown that θ̂ = Y is the

maximum likelihood estimator (MLE) of θ. ¤
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MAXIMIZING TRICK : For all x > 0, the function r(x) = ln x is an increasing function.

This follows since r′(x) = 1/x > 0 for x > 0. How is this helpful? When maximizing a

likelihood function L(θ|y), we will often be able to use differentiable calculus (i.e., find

the first derivative, set it equal to zero, solve for θ, and verify the solution is a maximizer

by verifying appropriate second order conditions). However, it will often be “friendlier”

to work with ln L(θ|y) instead of L(θ|y). Since the log function is increasing, L(θ|y) and

ln L(θ|y) are maximized at the same value of θ; that is,

θ̂ = arg max
θ

L(θ|y) = arg max
θ

ln L(θ|y).

So, without loss, we can work with ln L(θ|y) instead if it simplifies the calculus.

Example 9.17. Suppose that Y1, Y2, ..., Yn is an iid sample of Poisson observations with

mean θ. Find the MLE of θ.

Solution. The likelihood function of θ is given by

L(θ|y) =
n∏

i=1

fY (yi; θ) =
n∏

i=1

θyie−θ

yi!

=
θ

∑n
i=1 yie−nθ

∏n
i=1 yi!

.

This function is difficult to maximize analytically. It is much easier to work with the

log-likelihood function; i.e.,

ln L(θ|y) =
n∑

i=1

yi ln θ − nθ − ln

(
n∏

i=1

yi!

)
.

Its derivative is equal to

∂

∂θ
ln L(θ|y) =

∑n
i=1 yi

θ
− n

set
= 0.

Setting this derivative equal to 0 and solving for θ, we get

θ̂ =
1

n

n∑
i=1

yi = y.

REMINDER: Whenever we derive an MLE, we should always check the appropriate

second-order conditions to verify that our solution is, indeed, a maximum, and not a

minimum. It suffices to calculate the second derivative of ln L(θ|y) and show that

∂2

∂θ2
ln L(θ|y)

∣∣∣∣
θ=θ̂

< 0.

PAGE 102



CHAPTER 9 STAT 512, J. TEBBS

In this example, it is easy to show that

∂2

∂θ2
ln L(θ|y)

∣∣∣∣
θ=y

= −
∑n

i=1 yi

y2 = −n

y
< 0.

Thus, we know that y is, indeed, a maximizer (as opposed to being a minimizer). We

have shown that θ̂ = Y is the maximum likelihood estimator (MLE) of θ. ¤

Example 9.18. Suppose that Y1, Y2, ..., Yn is an iid sample from a gamma distribution

with parameters α = 2 and β = θ; i.e., the pdf of Y is given by

fY (y; θ) =





1
θ2 ye−y/θ, y > 0

0, otherwise.

Find the MLE of θ.

Solution. The likelihood function for θ is given by

L(θ|y) =
n∏

i=1

fY (yi; θ) =
n∏

i=1

1

θ2
yie

−yi/θ

=

(
1

θ2

)n
(

n∏
i=1

yi

)
e−

∑n
i=1 yi/θ.

This function is very difficult to maximize analytically. It is much easier to work with

the log-likelihood function; i.e.,

ln L(θ|y) = −2n ln θ + ln

(
n∏

i=1

yi

)
−

∑n
i=1 yi

θ
.

Its derivative is equal to

∂

∂θ
ln L(θ|y) =

−2n

θ
+

∑n
i=1 yi

θ2

set
= 0 =⇒ −2nθ +

n∑
i=1

yi = 0.

Solving this equation gives

θ̂ =
1

2n

n∑
i=1

yi = y/2.

Because
∂2

∂θ2
ln L(θ|y)

∣∣∣∣
θ=θ̂

< 0,

(verify!) it follows that θ̂ = Y /2 is the maximum likelihood estimator (MLE) of θ. ¤
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Example 9.19. Suppose that Y1, Y2, ..., Yn is an iid sample from a U(0, θ) distribution.

The likelihood function for θ is given by

L(θ|y) =
n∏

i=1

fY (yi; θ) =
n∏

i=1

1

θ
=

1

θn
,

for 0 < yi < θ, and 0, otherwise. In this example, we can not differentiate the likelihood

(or the log-likelihood) because the derivative will never be zero. We have to obtain the

MLE in another way. Note that L(θ|y) is a decreasing function of θ, since

∂

∂θ
L(θ|y) = −n/θn+1 < 0,

for θ > 0. Furthermore, we know that if any yi value exceeds θ, the likelihood function

is equal to zero, since the value of fY (yi; θ) for that particular yi would be zero. So, we

have a likelihood function that is decreasing, but is only nonzero as long as θ > y(n),

the largest order statistic. Thus, the likelihood function must attain its maximum value

when θ = y(n). This argument shows that θ̂ = Y(n) is the MLE of θ. ¤

LINK WITH SUFFICIENCY : Are maximum likelihood estimators good estimators? It

turns out that they are always functions of sufficient statistics. Suppose that U is a

sufficient statistic for θ. We know by the Factorization Theorem that the likelihood

function for θ can be written as

L(θ|y) =
n∏

i=1

fY (yi; θ) = g(u, θ)× h(y),

for nonnegative functions g and h. Thus, when we maximize L(θ|y), or its logarithm, we

see that the MLE will always depend on U through the g function.

PUNCHLINE : In our quest to find the MVUE for a parameter θ, we could simply (1)

derive the MLE for θ and (2) try to find a function of the MLE that is unbiased. Since

the MLE will always be a function of the sufficient statistic U , this unbiased function

will be the MVUE for θ.

MULTIDIMENSIONAL SITUATION : Suppose that Y1, Y2, ..., Yn is an iid sample from

the population distribution fY (y; θ), where the parameter vector θ = (θ1, θ2, ..., θp). Con-

ceptually, finding the MLE of θ is the same as when θ is a scalar parameter; namely, we
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still maximize the log-likelihood function ln L(θ|y). This can be done by solving

∂

∂θ1

ln L(θ|y) = 0

∂

∂θ2

ln L(θ|y) = 0

...

∂

∂θp

ln L(θ|y) = 0

jointly for θ1, θ2, ..., θp. The solution to this system, say θ̂ = (θ̂1, θ̂2, ..., θ̂p), is the maxi-

mum likelihood estimator of θ, provided that appropriate second-order conditions hold.

Example 9.20. Suppose that Y1, Y2, ..., Yn is an iid N (µ, σ2) sample, where both pa-

rameters are unknown. Find the MLE of θ = (µ, σ2).

Solution. The likelihood function of θ = (µ, σ2) is given by

L(θ|y) = L(µ, σ2|y) =
n∏

i=1

fY (yi; µ, σ2) =
n∏

i=1

1√
2πσ2

e−
1

2σ2 (yi−µ)2

=

(
1√

2πσ2

)n

e−
1

2σ2

∑n
i=1(yi−µ)2 .

The log-likelihood function of θ = (µ, σ2) is

ln L(µ, σ2|y) = −n

2
ln(2πσ2)− 1

2σ2

n∑
i=1

(yi − µ)2,

and the two partial derivatives of ln L(µ, σ2|y) are

∂

∂µ
ln L(µ, σ2|y) =

1

σ2

n∑
i=1

(yi − µ)

∂

∂σ2
ln L(µ, σ2|y) = − n

2σ2
+

1

2σ4

n∑
i=1

(yi − µ)2.

Setting the first equation equal to zero and solving for µ we get µ̂ = y. Plugging µ̂ = y

into the second equation, we are then left to solve

− n

2σ2
+

1

2σ4

n∑
i=1

(yi − y)2 = 0

for σ2; this solution is σ̂2 = 1
n

∑n
i=1(yi − y)2. One can argue that

µ̂ = y

σ̂2 =
1

n

n∑
i=1

(yi − y)2 ≡ s2
b
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Table 9.6: Maximum 24-hour precipitation recorded for 36 inland hurricanes (1900-1969).

Year Location Precip. Year Location Precip.

1969 Tye River, VA 31.00 1932 Ceasars Head, SC 4.75

1968 Hickley, NY 2.82 1932 Rockhouse, NC 6.85

1965 Haywood Gap, NC 3.98 1929 Rockhouse, NC 6.25

1960 Cairo, NY 4.02 1928 Roanoke, VA 3.42

1959 Big Meadows, VA 9.50 1928 Ceasars Head, SC 11.80

1957 Russels Point, OH 4.50 1923 Mohonk Lake, NY 0.80

1955 Slide, Mt., NY 11.40 1923 Wappingers Falls, NY 3.69

1954 Big Meadows, VA 10.71 1920 Landrum, SC 3.10

1954 Eagles Mere, PA 6.31 1916 Altapass, NC 22.22

1952 Bloserville, PA 4.95 1916 Highlands, NC 7.43

1949 North Ford, NC 5.64 1915 Lookout Mt., TN 5.00

1945 Crossnore, NC 5.51 1915 Highlands, NC 4.58

1942 Big Meadows, VA 13.40 1912 Norcross, GA 4.46

1940 Rodhiss Dam, NC 9.72 1906 Horse Cove, NC 8.00

1939 Ceasars Head, SC 6.47 1902 Sewanee, TN 3.73

1938 Hubbardston, MA 10.16 1901 Linville, NC 3.50

1934 Balcony Falls, VA 4.21 1900 Marrobone, KY 6.20

1933 Peekamoose, NY 11.60 1900 St. Johnsbury, VT 0.67

is indeed a maximizer (although I’ll omit the second order details). This argument shows

that θ̂ = (Y , S2
b ) is the MLE of θ = (µ, σ2). ¤

REMARK : In some problems, the likelihood function (or log-likelihood function) can not

be maximized analytically because its derivative(s) does/do not exist in closed form. In

such situations (which are common in real life), maximum likelihood estimators must be

computed numerically.

Example 9.21. The U.S. Weather Bureau confirms that during 1900-1969, a total of

36 hurricanes moved as far inland as the Appalachian Mountains. The data in Table 9.6

are the 24-hour precipitation levels (in inches) recorded for those 36 storms during the

time they were over the mountains. Suppose that we decide to model these data as iid

gamma(α, β) realizations. The likelihood function for θ = (α, β) is given by

L(α, β|y) =
36∏
i=1

1

Γ(α)βα
yα−1

i e−yi/β =

[
1

Γ(α)βα

]36
(

36∏
i=1

yi

)α−1

e−
∑36

i=1 yi/β.
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The log-likelihood function is given by

ln L(α, β|y) = −36 ln Γ(α)− 36α ln β + (α− 1)
36∑
i=1

ln yi −
∑36

i=1 yi

β
.

This log-likelihood can not be maximized analytically; the gamma function Γ(·) messes

things up. However, we can maximize ln L(α, β|y) numerically using R.

############################################################

## Name: Joshua M. Tebbs

## Date: 7 Apr 2007

## Purpose: Fit gamma model to hurricane data

############################################################

# Enter data

y<-c(31,2.82,3.98,4.02,9.5,4.5,11.4,10.71,6.31,4.95,5.64,5.51,13.4,9.72,

6.47,10.16,4.21,11.6,4.75,6.85,6.25,3.42,11.8,0.8,3.69,3.1,22.22,7.43,5,

4.58,4.46,8,3.73,3.5,6.2,0.67)

## Second sample (uncentred) moment; needed for MOM

m2<-(1/36)*sum(y**2)

# MOM estimates (see Example 9.15 notes)

alpha.mom<-(mean(y))**2/(m2-(mean(y))**2)

beta.mom<-(m2-(mean(y))**2)/mean(y)

# Sufficient statistics

t1<-sum(log(y))

t2<-sum(y)

# Negative loglikelihood function (to be minimised)

# x1 = alpha

# x2 = beta

loglike<-function(x){

x1<-x[1]

x2<-x[2]

36*log(gamma(x1))+36*x1*log(x2)-t1*(x1-1)+t2/x2

}

# Use "optim" function to maximise the loglikelihood function

mle<-optim(par=c(alpha.mom,beta.mom),fn=loglike)

# look at the qq-plot to assess the fit of the gamma model

plot(qgamma(ppoints(y),mle$par[1],1/mle$par[2]),sort(y),pch=16,

PAGE 107



CHAPTER 9 STAT 512, J. TEBBS

xlab="gamma percentiles",ylab="observed values")

Here is the output from running the program:

> alpha.mom

[1] 1.635001

> beta.mom

[1] 4.457183

> mle

$par

[1] 2.186535 3.332531

$value

[1] 102.3594
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Figure 9.8: Gamma qq-plot for the hurricane data in Example 9.21.

ANALYSIS : First, note the difference in the MOM and the maximum likelihood estimates

for these data. Which estimates would you rather report? Also, the two-parameter

gamma distribution is not a bad model for these data; note that the qq-plot is somewhat

linear (although there are two obvious outliers on each side). ¤
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INVARIANCE : Suppose that θ̂ is the MLE of θ, and let g be any real function, possibly

vector-valued. Then g(θ̂) is the MLE of g(θ).

Example 9.22. Suppose that Y1, Y2, ..., Yn is an iid sample of Poisson observations with

mean θ > 0. In Example 9.17, we showed that the MLE of θ is θ̂ = Y . The invariance

property of maximum likelihood estimators says, for example, that

• Y
2

is the MLE for θ2

• sin Y is the MLE for sin θ

• e−Y is the MLE for e−θ.

9.6 Asymptotic properties of point estimators

IMPORTANCE : In many problems, exact (i.e., finite-sample) distributional results are

not available. In the absence of exact calculations, or when finite sample results are

intractable, one may be able to obtain approximate results by using large-sample the-

ory. Statistical methods based on large-sample theory are pervasive in research and

practice. To emphasize a point estimator’s dependence on the sample size n, we often

write θ̂ = θ̂n. This is common notation when discussing asymptotic results.

9.6.1 Consistency and the Weak Law of Large Numbers

TERMINOLOGY : An estimator θ̂n is said to be a consistent estimator of θ if, for all

ε > 0,

lim
n→∞

P (|θ̂n − θ| > ε) = 0;

that is, the sequence of real numbers P (|θ̂n − θ| > ε) → 0, as n → ∞. Consistency

is a desirable large-sample property. If θ̂n is consistent, then the probability that the

estimator θ̂n differs from the true θ becomes small as the sample size n increases. On the

other hand, if you have an estimator that is not consistent, then no matter how many

data you collect, the estimator θ̂n may never “converge” to θ.
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TERMINOLOGY : If an estimator θ̂n is consistent, we say that θ̂n converges in prob-

ability to θ and write θ̂n
p−→ θ.

Example 9.23. Suppose that Y1, Y2, ..., Yn is an iid sample from a shifted-exponential

distribution

fY (y; θ) =





e−(y−θ), y > θ

0, otherwise.

Show that the first order statistic θ̂n = Y(1) is a consistent estimator of θ.

Solution. As you might suspect, we first have to find the pdf of Y(1). Recall from

Chapter 6 (WMS) that

fY(1)
(y; θ) = nfY (y; θ)[1− FY (y; θ)]n−1.

It is easy to show (verify!) that the cdf of Y is

FY (y; θ) =





0, y ≤ θ

1− e−(y−θ), y > θ.

Thus, the pdf of Y(1), for y > θ, is

fY(1)
(y; θ) = ne−(y−θ)

{
1− [

1− e−(y−θ)
]}n−1

= ne−n(y−θ).

Using the definition of consistency, for ε > 0, we have that

P (|Y(1) − θ| > ε) = P (Y(1) < θ − ε)︸ ︷︷ ︸
=0

+P (Y(1) > θ + ε)

=

∫ ∞

θ+ε

ne−n(y−θ)dy

= n

[
− 1

n
e−n(y−θ)

∣∣∣∣
∞

θ+ε

]

= e−n(y−θ)
∣∣θ+ε

∞ = e−n(θ+ε−θ) − 0 = e−nε → 0,

as n →∞. Thus, θ̂n = Y(1) is a consistent estimator for θ. ¤

RESULT : Suppose that θ̂n is an estimator of θ. If both B(θ̂n) → 0 and V (θ̂n) → 0,

as n → ∞, then θ̂n is a consistent estimator for θ. In many problems, it will be
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much easier to show that B(θ̂n) → 0 and V (θ̂n) → 0, as n → ∞, rather than showing

P (|θ̂n − θ| > ε) → 0; i.e., appealing directly to the definition of consistency.

THE WEAK LAW OF LARGE NUMBERS : Suppose that Y1, Y2, ..., Yn is an iid sample

from a population with mean µ and variance σ2 < ∞. Then, the sample mean Y n is a

consistent estimator for µ; that is, Y n
p−→ µ, as n →∞.

Proof. Clearly, B(Y n) = 0, since Y n is an unbiased estimator of µ. Also, V (Y n) =

σ2/n → 0, as n →∞. ¤

RESULT : Suppose that θ̂n
p−→ θ and θ̂′n

p−→ θ′. Then,

(a) θ̂n + θ̂′n
p−→ θ + θ′

(b) θ̂nθ̂′n
p−→ θθ′

(c) θ̂n/θ̂′n
p−→ θ/θ′, for θ′ 6= 0

(d) g(θ̂n)
p−→ g(θ), for any continuous function g.

NOTE : We will omit the proofs of the above facts. Statements (a), (b), and (c) can be

shown by appealing to the limits of sequences of real numbers. Proving statement (d) is

somewhat more involved.

Example 9.24. Suppose that Y1, Y2, ..., Yn is an iid sample of gamma(2, θ) observations

and that we want to find a consistent estimator for the scale parameter θ > 0. From the

Weak Law of Large Numbers (WLLN), we know that Y n is a consistent estimator for

µ = 2θ; i.e., Y n
p−→ 2θ. Since g(s) = s/2 is a continuous function, as n →∞,

Y n/2 = g(Y n)
p−→ g(2θ) = θ.

That is, Y n/2 is consistent for θ. Furthermore,

Y
2

n

2
= 2

(
Y n

2

)2
p−→ 2θ2,

since h(t) = 2t2 is a continuous function. Thus, Y
2

n/2 is a consistent estimator of the

population variance σ2 = 2θ2. ¤
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9.6.2 Slutsky’s Theorem

SLUTSKY’S THEOREM : Suppose that Un is a sequence of random variables that con-

verges in distribution to a standard normal distribution; i.e., Un
d−→ N (0, 1), as

n → ∞. In addition, suppose that Wn
p−→ 1, as n → ∞. Then, Un/Wn converges to a

standard normal distribution as well; that is, Un/Wn
d−→ N (0, 1), as n →∞.

RECALL: When we say that “Un converges in distribution to a N (0, 1) distribution,” we

mean that the distribution function of Un, FUn(t), viewed as a sequence of real functions

indexed by n, converges pointwise to the cdf of the N (0, 1) distribution, for all t; i.e.,

FUn(t) →
∫ t

−∞

1√
2π

e−y2/2dy,

as n → ∞, for all −∞ < t < ∞. Slutsky’s Theorem says that, in the limit, Un and

Un/Wn will have the same distribution.

Example 9.25. Suppose that Y1, Y2, ..., Yn is an iid sample from a population with mean

µ and variance σ2. Let S2 denote the usual sample variance. By the CLT, we know that

Un =
√

n

(
Y − µ

σ

)
d−→ N (0, 1),

as n → ∞. From Example 9.3 (WMS) we know that S2 p−→ σ2 and S2/σ2 p−→ 1, as

n →∞. Since g(t) =
√

t is a continuous function, for t > 0,

Wn = g

(
S2

σ2

)
=

√
S2

σ2
=

S

σ

p−→ g(1) = 1.

Finally, by Slutsky’s Theorem,

√
n

(
Y − µ

S

)
=

√
n

(
Y−µ

σ

)

S/σ

d−→ N (0, 1),

as n →∞. This result provides the theoretical justification as to why

Y ± zα/2

(
S√
n

)

serves as an approximate 100(1−α) percent confidence interval for the population mean

µ when the sample size is large.
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REMARK : Slutsky’s Theorem can also be used to explain why

p̂± zα/2

√
p̂(1− p̂)

n

serves as an approximate 100(1−α) percent confidence interval for a population propor-

tion p when the sample size is large.

9.6.3 Large-sample properties of maximum likelihood estimators

REMARK : Another advantage of maximum likelihood estimators is that, under suitable

“regularity conditions,” they have very desirable large-sample properties. Succinctly put,

maximum likelihood estimators are consistent and asymptotically normal.

IMPORTANT : Suppose that Y1, Y2, ..., Yn is an iid sample from the population distri-

bution fY (y; θ) and that θ̂ is the MLE for θ. It can be shown (under certain regularity

conditions which we will omit) that

• θ̂
p−→ θ, as n →∞; i.e., θ̂ is a consistent estimator of θ

• θ̂ ∼ AN (θ, σ2
θ̂
), where

σ2
θ̂

=

{
nE

[
− ∂2

∂θ2
ln fY (Y ; θ)

]}−1

,

for large n. That is, θ̂ is approximately normal when the sample size is large.

The quantity {
nE

[
− ∂2

∂θ2
ln fY (Y ; θ)

]}−1

is called the Cramer-Rao Lower Bound. This quantity has great theoretical

importance in upper-level discussions on MLE theory.

LARGE-SAMPLE CONFIDENCE INTERVALS : To construct a large-sample confidence

interval for θ, we need to be able to find a good large-sample estimator of σ2
θ̂
. Define

σ̂2
θ̂

=

{
nE

[
− ∂2

∂θ2
ln fY (Y ; θ)

]}−1
∣∣∣∣∣
θ=θ̂

.
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Since θ̂
p−→ θ, it follows (by continuity) that

E

[
− ∂2

∂θ2
ln fY (Y ; θ)

]∣∣∣∣∣
θ=θ̂

p−→ E

[
− ∂2

∂θ2
ln fY (Y ; θ)

]

so that σθ̂/σ̂θ̂

p−→ 1. Slutsky’s Theorem allows us to conclude

Qn =
θ̂ − θ

σ̂θ̂

=
θ̂ − θ

σθ̂

(
σθ̂

σ̂θ̂

)
d−→ N (0, 1);

i.e., Qn is asymptotically pivotal, so that

P

(
−zα/2 <

θ̂ − θ

σ̂θ̂

< zα/2

)
≈ 1− α.

It follows that

θ̂ ± zα/2σ̂θ̂

is an approximate 100(1− α) percent confidence interval for θ.

Example 9.26. Suppose that Y1, Y2, ..., Yn is an iid sample of Poisson observations with

mean θ > 0. In Example 9.17, we showed that the MLE of θ is θ̂ = Y . The natural

logarithm of the Poisson(θ) mass function, for y = 0, 1, 2, ..., is

ln f(y; θ) = y ln θ − θ − ln y!.

The first and second derivatives of ln f(y; θ) are, respectively,

∂

∂θ
ln f(y; θ) =

y

θ
− 1

∂2

∂θ2
ln f(y; θ) = − y

θ2
,

so that

E

[
− ∂2

∂θ2
ln f(Y ; θ)

]
= E

(
Y

θ2

)
=

1

θ
.

The Cramer-Rao Lower Bound is given by

σ2
θ̂

=

{
nE

[
− ∂2

∂θ2
ln fY (Y ; θ)

]}−1

=
θ

n
.

From the asymptotic properties of maximum likelihood estimators, we know that

Y ∼ AN
(

θ,
θ

n

)
.
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To find an approximate confidence interval for θ, note that Y
p−→ θ and that the esti-

mated large-sample variance of Y is

σ̂2
θ̂

=
Y

n
.

Thus, an approximate 100(1− α) percent confidence interval for θ is given by

Y ± zα/2

√
Y

n
.

9.6.4 Delta Method

DELTA METHOD : Suppose that Y1, Y2, ..., Yn is an iid sample from the population dis-

tribution fY (y; θ). In addition, suppose that θ̂ is the MLE of θ and let g be a real

differentiable function. It can be shown (under certain regularity conditions) that, for

large n,

g(θ̂) ∼ AN {
g(θ), [g′(θ)]2σ2

θ̂

}
,

where g′(θ) = ∂g(θ)/∂θ and

σ2
θ̂

=

{
nE

[
− ∂2

∂θ2
ln fY (Y ; θ)

]}−1

.

The Delta Method is a useful asymptotic result. It enables us to state large-sample

distributions of functions of maximum likelihood estimators.

LARGE-SAMPLE CONFIDENCE INTERVALS : The Delta Method makes getting

large-sample confidence intervals for g(θ) easy. We know that, for n large,

g(θ̂)− g(θ)

g′(θ)σθ̂

∼ AN (0, 1)

and that g′(θ)σθ̂ can be consistently estimated by g′(θ̂)σ̂θ̂. These two facts, along with

Slutsky’s Theorem, allow us to conclude that

g(θ̂)± zα/2[g
′(θ̂)σ̂θ̂]

is an approximate 100(1− α) percent confidence interval for g(θ).
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Example 9.27. Suppose that Y1, Y2, ..., Yn is an iid Bernoulli(p) sample of observations,

where 0 < p < 1. A quantity often used in categorical data analysis is the function

g(p) = ln

(
p

1− p

)
,

which is the log-odds. The goal of this example is to derive an approximate 100(1− α)

percent confidence interval for g(p).

Solution. We first derive the MLE of p. The likelihood function for p is

L(p|y) =
n∏

i=1

fY (yi; p) =
n∏

i=1

pyi(1− p)1−yi = p
∑n

i=1 yi(1− p)n−∑n
i=1 yi ,

and the log-likelihood function of p is

ln L(p|y) =
n∑

i=1

yi ln p +

(
n−

n∑
i=1

yi

)
ln(1− p).

The partial derivative of ln L(p|y) is given by

∂

∂p
ln L(p|y) =

∑n
i=1 yi

p
− n−∑n

i=1 yi

1− p
.

Setting this derivative equal to zero, and solving for p gives p̂ = y, the sample proportion.

The second-order conditions hold (verify!) so that p̂ = Y is the MLE of p. By invariance,

the MLE of the log-odds g(p) is given by

g(p̂) = ln

(
p̂

1− p̂

)
.

The derivative of g with respect to p is

g′(p) =
∂

∂p

[
ln

(
p

1− p

)]
=

1

p(1− p)
.

It can be shown (verify!) that

σ2
p̂ =

p(1− p)

n
;

thus, the large-sample variance of g(p̂) is

[g′(p)]2σ2
p̂ =

[
1

p(1− p)

]2

× p(1− p)

n
=

1

np(1− p)
,

which is estimated by 1/np̂(1− p̂). Thus,

ln

(
p̂

1− p̂

)
± zα/2

[
1√

np̂(1− p̂)

]

is an approximate 100(1− α) percent confidence interval for g(p) = ln[p/(1− p)]. ¤
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