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CHAPTER 1 STAT 509, J. TEBBS

1 Introduction

Definition: Statistics is the science of data; how to interpret data, analyze data, and

design studies to collect data.

• Statistics is used in all disciplines; not just in engineering.

• “Statisticians get to play in everyone else’s back yard.” (John Tukey)

Examples:

1. In a reliability (time to event) study, engineers are interested in describing the time

until failure for a jet engine fan blade.

2. In a genetics study involving patients with Alzheimer’s disease (AD), researchers

wish to identify genes that are differentially expressed (when compared to non-AD

patients).

3. In an agricultural experiment, researchers want to know which of four fertilizers

(which vary in their nitrogen contents) produces the highest corn yield.

4. In a clinical trial, physicians want to determine which of two drugs is more effective

for treating HIV in the early stages of the disease.

5. In a public health study involving “at-risk” teenagers, epidemiologists want to know

whether smoking is more common in a particular demographic class.

6. A food scientist is interested in determining how different feeding schedules (for

pigs) could affect the spread of salmonella during the slaughtering process.

7. A pharmacist is concerned that administering caffeine to premature babies will

increase the incidence of necrotizing enterocolitis.

8. A research dietician wants to determine if academic achievement is related to body

mass index (BMI) among African American students in the fourth grade.
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CHAPTER 1 STAT 509, J. TEBBS

What we do: Statisticians use their skills in mathematics and computing to formulate

statistical models and analyze data for a specific problem at hand. These models are

then used to estimate important quantities of interest, to test the validity of proposed

conjectures, and to predict future behavior. Being able to identify and model sources of

variability is an important part of this process.

Definition: A deterministic model is one that makes no attempt to explain variability.

For example, in chemistry, the ideal gas law states that

PV = nRT,

where P = pressure of a gas, V = volume, n = the amount of substance of gas (number

of moles), R = Boltzmann’s constant, and T = temperature. In circuit analysis, Ohm’s

law states that

V = IR,

where V = voltage, I = current, and R = resistance.

• In both of these models, the relationship among the variables is completely de-

termined without ambiguity.

• In real life, this is rarely true for the obvious reason: there is natural variation that

arises in the measurement process.

• For example, a common electrical engineering experiment involves setting up a

simple circuit with a known resistance R. For a given current I, different students

will then measure the voltage V .

– With a sample of n = 20 students, conducting the experiment in succession,

we might very well get 20 different measured voltages!

– A deterministic model is too simplistic; it does not acknowledge the inherent

variability that arises in the measurement process.

Usefulness: Statistical models are not deterministic. They incorporate variability.

They can also be used to predict future outcomes.
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Example 1.1. Suppose that I am trying to predict

Y = MATH 141 final course percentage

for incoming freshmen enrolled in MATH 141. For each freshmen student, I will record

the following variables:

x1 = SAT MATH score

x2 = high school GPA.

Here are SAT/HS GPA data on n = 50 freshmen and their final MATH 141 scores:
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Figure 1.1: Three-dimensional scatterplot (point cloud) of USC freshmen data.

Note: In this example, a deterministic model would take the form

Y = f(x1, x2).

This model suggests that for a student with values x1 and x2, we could compute Y exactly

if the function f was known. Clearly, this is neither realistic nor remotely supported by

the data above.
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Note: A statistical model for Y might look like something like this:

Y = β0 + β1x1 + β2x2 + ϵ,

where ϵ is a term that accounts for not only measurement error (e.g., incorrect student

information, data entry errors, grading errors, etc.) but also

• all of the other variables not accounted for (e.g., major, difficulty of schedule, study

habits, natural ability, etc.) and

• the error induced by assuming a linear relationship between Y and x1 and x2

when, in fact, the relationship may not be.

Discussion:

• Is this sample of students representative of some larger population? After all, we

would like our model/predictions to be useful on a larger scale (and not simply for

these 50 students).

– This is the idea behind statistical inference. We would like to use sample

information to make statements about a larger (relevant) population.

• How should we estimate β0, β1, and β2 in the model above?

– If we can do this, then we can produce predictions of Y on a student-by-

student basis (e.g., for future students, etc.).

– This may be of interest to academic advisers who are trying to model the

success of their incoming students.

– We can also characterize numerical uncertainty with our predictions.

• Probability is the “mathematics of uncertainty” and forms the basis for all of

statistics. Therefore, we start here.
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2 Probability

2.1 Sample spaces and events

Terminology: Probability is a measure of one’s belief in the occurrence of a future

event. Here are some events to which we may wish to assign a probability:

• tomorrow’s temperature exceeding 80 degrees

• manufacturing a defective part

• concluding one fertilizer is superior to another when it isn’t

• the NASDAQ losing 5 percent of its value.

• you being diagnosed with prostate/cervical cancer in the next 20 years.

Terminology: The set of all possible outcomes for a given random experiment is called

the sample space, denoted by S.

• The number of outcomes in S is denoted by nS.

Example 2.1. In each of the following random experiments, we write out a correspond-

ing sample space.

(a) The Michigan state lottery calls for a three-digit integer to be selected:

S = {000, 001, 002, ..., 998, 999}.

The size of the set of all possible outcomes is nS = 1000.

(b) A USC undergraduate student is tested for chlamydia (0 = negative, 1 = positive):

S = {0, 1}.

The size of the set of all possible outcomes is nS = 2.
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(c) Four equally qualified applicants (a, b, c, d) are competing for two positions. If the

positions are identical (so that selection order does not matter), then

S = {ab, ac, ad, bc, bd, cd}.

The size of the set of all possible outcomes is nS = 6. If the positions are different (e.g.,

project leader, assistant project leader, etc.), then

S = {ab, ba, ac, ca, ad, da, bc, cb, bd, db, cd, dc}.

In this case, the size of the set of all possible outcomes is nS = 12.

Terminology: Suppose that S is a sample space for a random experiment. We would

like to assign probability to an event A. This will quantify how likely the event is. The

probability that the event A occurs is denoted by P (A).

Terminology: Suppose that a sample space S contains nS < ∞ outcomes, each of which

is equally likely. If the event A contains nA outcomes, then

P (A) =
nA

nS

.

This is called an equiprobability model. Its main requirement is that all outcomes in

S are equally likely.

• Important: If the outcomes in S are not equally likely, then this result is not

applicable.

Example 2.1 (continued). In the random experiments from Example 2.1, we use the

previous result to assign probabilities to events (if applicable).

(a) The Michigan state lottery calls for a three-digit integer to be selected:

S = {000, 001, 002, ..., 998, 999}.

There are nS = 1000 outcomes possible. Let the event

A = {000, 005, 010, 015, ..., 990, 995}

= {winning number is a multiple of 5}.
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There are nA = 200 outcomes in A. It is reasonable to assume that each outcome in S

is equally likely. Therefore,

P (A) =
200

1000
= 0.20.

(b) A USC undergraduate student is tested for chlamydia (0 = negative, 1 = positive):

S = {0, 1}.

There are nS = 2 outcomes possible. However, is it reasonable to assume that each

outcome in S (0 = negative, 1 = positive) is equally likely?

• The prevalence of chlamydia among college age students is much less than 50 per-

cent (in SC, this prevalence is probably somewhere between 1-5 percent).

• Therefore, it would be illogical to assign probabilities using an equiprobability

model.

(c) Four equally qualified applicants (a, b, c, d) are competing for two positions. If the

positions are identical (so that selection order does not matter), then

S = {ab, ac, ad, bc, bd, cd}.

There are nS = 6 outcomes possible. If A is the event that applicant d is selected for one

of the two positions, then

A = {ad, bd, cd}

= {applicant d is chosen}.

There are nA = 3 outcomes in A. If each applicant has the same chance of being selected

(an assumption), then each of the nS = 6 outcomes in S is equally likely. Therefore,

P (A) =
3

6
= 0.50.

Again, this calculation is valid only if the outcomes in S are equally likely.
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Interpretation: What does P (A) measure? There are two main interpretations:

• P (A) measures the likelihood that A will occur on any given experiment.

• If the experiment is performed many times, then P (A) can be interpreted as the

percentage of times that A will occur “over the long run.” This is called the relative

frequency interpretation.

Example 2.2. Suppose a baseball’s team winning percentage is 0.571. We can interpret

this as the probability that the team will win a particular game. We can also interpret

this as the “long-run” percentage of games won (over the course of a season, say). I used

R to simulate this team’s winning percentages over the course of a 162-game season.
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Figure 2.1: Plot of baseball team’s winning percentage over 162 games. A horizontal line

at 0.571 has been added.
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Curiosity: Why did I pick 0.571? This was the winning percentage of the Oakland A’s

during the 2002 season after 119 games (68-51). If you have seen Moneyball, you know

that the A’s then went on a 20-game winning streak (“The Streak”). To get an idea of

how amazing this run was, let’s simulate 20 game outcomes assuming that 0.571 is the

correct winning percentage for each game:

> games = rbinom(20,1,0.571)

> games

[1] 1 0 0 1 1 1 1 1 0 0 0 1 1 1 0 1 1 1 0 1

> sum(games)

[1] 13

In this simulation, the A’s won 13 games out of 20.

Now, let’s simulate the process of playing 20 games 1000 times. Let’s keep track of the

number of times (out of 1000) that the team would win 20 games in a row:

> games = rbinom(1000,20,0.571)

> length(games[games>19])

[1] 0

In 1000 simulated 20-game stretches, the team never won 20 games in a row.

Let’s simulate 10,000 20-game stretches:

> games = rbinom(10000,20,0.571)

> length(games[games>19])

[1] 0

In 10,000 simulated 20-game stretches, the team never won 20 games in a row.

Let’s simulate 1,000,000 20-game stretches:

> games = rbinom(1000000,20,0.571)

> length(games[games>19])

[1] 13
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In 1,000,000 simulated 20-game stretches, the team won 20 games in a row 13 times.

Using the relative frequency interpretation of probability, we could say that

P (winning 20 games in a row) ≈ 0.0000013.

2.2 Unions and intersections

Terminology: The null event, denoted by ∅, is an event that contains no outcomes

(therefore, the null event cannot occur). The null event has probability P (∅) = 0.

Terminology: The union of two events A and B contains all outcomes ω in either event

or in both. We denote the union of two events A and B by

A ∪B = {ω : ω ∈ A or ω ∈ B}.

Terminology: The intersection of two events A and B contains all outcomes ω in

both events. We denote the intersection of two events A and B by

A ∩B = {ω : ω ∈ A and ω ∈ B}.

Terminology: If the events A and B contain no common outcomes, we say the events

are mutually exclusive (or disjoint). In this case,

P (A ∩B) = P (∅) = 0.

Example 2.3. Hemophilia is a sex-linked hereditary blood defect of males characterized

by delayed clotting of the blood. When a woman is a carrier of classical hemophilia,

there is a 50 percent chance that a male child will inherit this disease. If a carrier gives

birth to two males (not twins), what is the probability that either will have the disease?

both will have the disease?

Solution. We can envision the process of having two male children as an experiment

with sample space

S = {++,+−,−+,−−},
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where “+” means the male offspring has the disease; “−” means the male does not have

the disease. To compute the probabilities, we will assume that each outcome

in S is equally likely. Define the events:

A = {first child has disease} = {++,+−}

B = {second child has disease} = {++,−+}.

The union and intersection of A and B are, respectively,

A ∪B = {either child has disease} = {++,+−,−+}

A ∩B = {both children have disease} = {++}.

The probability that either male child will have the disease is

P (A ∪B) =
nA∪B

nS

=
3

4
= 0.75.

The probability that both male children will have the disease is

P (A ∩B) =
nA∩B

nS

=
1

4
= 0.25.

2.3 Axioms of probability

Kolmogorov’s Axioms: For any sample space S, a probability P must satisfy

(1) 0 ≤ P (A) ≤ 1, for any event A

(2) P (S) = 1

(3) If A1, A2, ..., An are pairwise mutually exclusive events, then

P

(
n∪

i=1

Ai

)
=

n∑
i=1

P (Ai).

• The term “pairwise mutually exclusive” means that Ai ∩ Aj = ∅, for all i ̸= j.

• The event
n∪

i=1

Ai = A1 ∪ A2 ∪ · · · ∪ An

means “at least one Ai occurs.”
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2.4 Conditional probability and independence

Note: In some situations, we may have prior knowledge about the likelihood of other

events related to the event of interest. We can then incorporate this information into a

probability calculation.

Terminology: Let A and B be events in a sample space S with P (B) > 0. The

conditional probability of A, given that B has occurred, is

P (A|B) =
P (A ∩B)

P (B)
.

Similarly,

P (B|A) = P (A ∩B)

P (A)
.

Example 2.4. In a company, 36 percent of the employees have a degree from a SEC

university, 22 percent of those employees with a degree from the SEC are engineers, and

30 percent of the employees are engineers. An employee is selected at random.

(a) Compute the probability that the employee is an engineer and is from the SEC.

(b) Compute the conditional probability that the employee is from the SEC, given

that s/he is an engineer.

Solution: Define the events

A = {employee is an engineer}

B = {employee is from the SEC}.

From the information in the problem, we are given:

P (A) = 0.30

P (B) = 0.36

P (A|B) = 0.22.
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In part (a), we want P (A ∩B). Note that

0.22 = P (A|B) =
P (A ∩B)

P (B)
=

P (A ∩B)

0.36
.

Therefore,

P (A ∩B) = 0.22(0.36) = 0.0792.

In part (b), we want P (B|A). From the definition of conditional probability:

P (B|A) = P (A ∩B)

P (A)
=

0.0792

0.30
= 0.264.

Important: Note that, in this example, the conditional probability P (B|A) and the

unconditional probability P (B) are not equal.

• In other words, knowledge that A “has occurred” has changed the likelihood that

B occurs.

• In other situations, it might be that the occurrence (or non-occurrence) of a com-

panion event has no effect on the probability of the event of interest. This leads us

to the definition of independence.

Terminology: When the occurrence or non-occurrence of B has no effect on whether

or not A occurs, and vice-versa, we say that the events A and B are independent.

Mathematically, we define A and B to be independent if and only if

P (A ∩B) = P (A)P (B).

Note that if A and B are independent,

P (A|B) =
P (A ∩B)

P (B)
=

P (A)P (B)

P (B)
= P (A)

and

P (B|A) = P (B ∩ A)

P (A)
=

P (B)P (A)

P (A)
= P (B).

These results only apply if A and B are independent.

PAGE 13



CHAPTER 2 STAT 509, J. TEBBS

Example 2.5. In an engineering system, two components are placed in a series; that is,

the system is functional as long as both components are. Each component is functional

with probability 0.95. Define the events

A1 = {component 1 is functional}

A2 = {component 2 is functional}

so that P (A1) = P (A2) = 0.95. Because we need both components to be functional, the

probability that the system is functional is given by P (A1 ∩ A2).

• If the components operate independently, then A1 and A2 are independent events

and the system reliability is

P (A1 ∩ A2) = P (A1)P (A2) = 0.95(0.95) = 0.9025.

• If the components do not operate independently; e.g., failure of one component

“wears on the other,” we can not compute P (A1∩A2) without additional knowledge.

Extension: The notion of independence extends to any finite collection of events

A1, A2, ..., An. Mutual independence means that the probability of the intersection of

any sub-collection of A1, A2, ..., An equals the product of the probabilities of the events

in the sub-collection. For example, if A1, A2, A3, and A4 are mutually independent, then

P (A1 ∩ A2) = P (A1)P (A2)

P (A1 ∩ A2 ∩ A3) = P (A1)P (A2)P (A3)

P (A1 ∩ A2 ∩ A3 ∩ A4) = P (A1)P (A2)P (A3)P (A4).

2.5 Probability rules

Terminology: Suppose S is a sample space and that A is an event. The complement

of A, denoted by A, is the collection of all outcomes in S not in A. That is,

A = {ω ∈ S : ω /∈ A}.
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1. Complement rule: Suppose that A is an event.

P (A) = 1− P (A).

2. Additive law: Suppose that A and B are two events.

P (A ∪B) = P (A) + P (B)− P (A ∩B).

3. Multiplicative law: Suppose that A and B are two events.

P (A ∩B) = P (B|A)P (A)

= P (A|B)P (B).

4. Law of Total Probability (LOTP): Suppose that A and B are two events.

P (A) = P (A|B)P (B) + P (A|B)P (B).

5. Bayes’ Rule: Suppose that A and B are two events.

P (B|A) = P (A|B)P (B)

P (A)
=

P (A|B)P (B)

P (A|B)P (B) + P (A|B)P (B)
.

Example 2.6. The probability that train 1 is on time is 0.95. The probability that train

2 is on time is 0.93. The probability that both are on time is 0.90. Define the events

A1 = {train 1 is on time}

A2 = {train 2 is on time}.

We are given that P (A1) = 0.95, P (A2) = 0.93, and P (A1 ∩ A2) = 0.90.

(a) What is the probability that train 1 is not on time?

P (A1) = 1− P (A1)

= 1− 0.95 = 0.05.

(b) What is the probability that at least one train is on time?

P (A1 ∪ A2) = P (A1) + P (A2)− P (A1 ∩ A2)

= 0.95 + 0.93− 0.90 = 0.98.
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(c) What is the probability that train 1 is on time given that train 2 is on time?

P (A1|A2) =
P (A1 ∩ A2)

P (A2)

=
0.90

0.93
≈ 0.968.

(d) What is the probability that train 2 is on time given that train 1 is not on time?

P (A2|A1) =
P (A1 ∩ A2)

P (A1)

=
P (A2)− P (A1 ∩ A2)

1− P (A1)

=
0.93− 0.90

1− 0.95
= 0.60.

(e) Are A1 and A2 independent events?

Answer: They are not independent because

P (A1 ∩ A2) ̸= P (A1)P (A2).

Equivalently, note that P (A1|A2) ̸= P (A1). In other words, knowledge that A2 has

occurred changes the likelihood that A1 occurs.

Example 2.7. An insurance company classifies people as “accident-prone” and “non-

accident-prone.” For a fixed year, the probability that an accident-prone person has an

accident is 0.4, and the probability that a non-accident-prone person has an accident is

0.2. The population is estimated to be 30 percent accident-prone. Define the events

A = {policy holder has an accident}

B = {policy holder is accident-prone}.

We are given that

P (B) = 0.3

P (A|B) = 0.4

P (A|B) = 0.2.
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(a) What is the probability that a new policy-holder will have an accident?

Solution: By the Law of Total Probability,

P (A) = P (A|B)P (B) + P (A|B)P (B)

= 0.4(0.3) + 0.2(0.7) = 0.26.

(b) Suppose that the policy-holder does have an accident. What is the probability that

s/he was “accident-prone?”

Solution: We want P (B|A). By Bayes’ Rule,

P (B|A) =
P (A|B)P (B)

P (A|B)P (B) + P (A|B)P (B)

=
0.4(0.3)

0.4(0.3) + 0.2(0.7)
≈ 0.46.

2.6 Random variables

Terminology: A random variable Y is a variable whose value is determined by chance.

The distribution of a random variable consists of two parts:

1. an elicitation of the set of all possible values of Y (called the support)

2. a function that describes how to assign probabilities to events involving Y .

Notation: By convention, we denote random variables by upper case letters towards

the end of the alphabet; e.g., W , X, Y , Z, etc. A possible value of Y (i.e., a value in the

support) is denoted generically by the lower case version y. In words,

P (Y = y)

is read, “the probability that the random variable Y equals the value y.”

Terminology: If a random variable Y can assume only a finite (or countable) number

of values, we call Y a discrete random variable. If it makes more sense to envision Y as

assuming values in an interval of numbers, we call Y a continuous random variable.
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Example 2.8. Classify the following random variables as discrete or continuous and

specify the support of each random variable.

V = number of unbroken eggs in a randomly selected carton (dozen)

W = pH of an aqueous solution

X = length of time between accidents at a factory

Y = whether or not you pass this class

Z = number of aircraft arriving tomorrow at CAE.

• The random variable V is discrete. It can assume values in

{v : v = 0, 1, 2, ..., 12}.

• The random variable W is continuous. It most certainly assumes values in

{w : −∞ < w < ∞}.

Of course, with most solutions, it is more likely that W is not negative (although

this is possible) and not larger than, say, 15 (a very reasonable upper bound).

• The random variable X is continuous. It can assume values in

{x : x > 0}.

The key feature here is that a time cannot be negative. In theory, it is possible

that X can be very large.

• The random variable Y is discrete. It can assume values in

{y : y = 0, 1},

where I have arbitrarily labeled “1” for passing and “0” for failing. Random vari-

ables that can assume exactly 2 values (e.g., 0, 1) are called binary.

• The random variable Z is discrete. It can assume values in

{z : z = 0, 1, 2, ..., }.

I have allowed for the possibility of a very large number of aircraft arriving.
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3 Discrete Distributions

3.1 Introduction

Terminology: Suppose that Y is a discrete random variable. The function

pY (y) = P (Y = y)

is called the probability mass function (pmf) for Y . The pmf pY (y) is a function

that assigns probabilities to each possible value of Y .

Properties: A pmf pY (y) for a discrete random variable Y satisfies the following:

1. 0 < pY (y) < 1, for all possible values of y

2. The sum of the probabilities, taken over all possible values of Y , must equal 1; i.e.,∑
all y

pY (y) = 1.

Example 3.1. A mail-order computer business has six telephone lines. Let Y denote

the number of lines in use at a specific time. Suppose that the probability mass function

(pmf) of Y is given by

y 0 1 2 3 4 5 6

pY (y) 0.10 0.15 0.20 0.25 0.20 0.06 0.04

• Figure 3.1 (left) displays pY (y), the probability mass function (pmf) of Y .

– The height of the bar above y is equal to pY (y) = P (Y = y).

– If y is not equal to 0, 1, 2, 3, 4, 5, 6, then pY (y) = 0.

• Figure 3.1 (right) displays the cumulative distribution function (cdf) of Y .

FY (y) = P (Y ≤ y).
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Figure 3.1: PMF (left) and CDF (right) of Y in Example 3.1.

– The cdf FY (y) is a nondecreasing function.

– 0 ≤ FY (y) ≤ 1; this makes sense since FY (y) = P (Y ≤ y) is a probability.

– The cdf FY (y) in this example (Y is discrete) takes a “step” at each possible

value of Y and stays constant otherwise.

– The height of the step at a particular y is equal to pY (y) = P (Y = y).

(a) What is the probability that exactly two lines are in use?

pY (2) = P (Y = 2) = 0.20.

(b) What is the probability that at most two lines are in use?

P (Y ≤ 2) = P (Y = 0) + P (Y = 1) + P (Y = 2)

= pY (0) + pY (1) + pY (2)

= 0.10 + 0.15 + 0.20 = 0.45.

Note: This is also equal to FY (2) = 0.45 (see graph above).
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(c) What is the probability that at least five lines are in use?

P (Y ≥ 5) = P (Y = 5) + P (Y = 6)

= pY (5) + pY (6) = 0.06 + 0.04 = 0.10.

We could have also computed

P (Y ≥ 5) = 1− P (Y ≤ 4)

= 1− FY (4) = 1− 0.90 = 0.10.

Terminology: Let Y be a discrete random variable with pmf pY (y). The expected

value of Y is given by

µ = E(Y ) =
∑
all y

ypY (y).

The expected value for a discrete random variable Y is a weighted average of the possible

values of Y . Each value y is weighted by its probability pY (y). In statistical applications,

µ = E(Y ) is called the population mean.

Example 3.1 (continued). In Example 3.1, we examined the distribution of Y , the

number of lines in use at a specified time. The probability mass function (pmf) of Y is

y 0 1 2 3 4 5 6

pY (y) 0.10 0.15 0.20 0.25 0.20 0.06 0.04

The expected value of Y is

µ = E(Y ) =
∑
all y

ypY (y)

= 0(0.10) + 1(0.15) + 2(0.20) + 3(0.25) + 4(0.20) + 5(0.06) + 6(0.04)

= 2.64.

Interpretation: On average, we would expect 2.64 calls at the specified time.

Interpretation: Over the long run, if we observed many values of Y at this specified

time, then the average of these Y observations would be close to 2.64.
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Interpretation: Place an “×” at µ = 2.64 in Figure 3.1 (left). This represents the

“balance point” of the probability mass function.

Result: Let Y be a discrete random variable with pmf pY (y). Suppose that g is a

real-valued function. Then, g(Y ) is a random variable and

E[g(Y )] =
∑
all y

g(y)pY (y).

Properties: Let Y be a discrete random variable with pmf pY (y). Suppose that

g, g1, g2, ..., gk are real-valued functions, and let c be any real constant. Expectations

satisfy the following (linearity) properties:

(a) E(c) = c

(b) E[cg(Y )] = cE[g(Y )]

(c) E[
∑k

j=1 gj(Y )] =
∑k

j=1 E[gj(Y )].

Note: These rules are also applicable if Y is continuous (next chapter).

Example 3.2. In a one-hour period, the number of gallons of a certain toxic chemical

that is produced at a local plant, say Y , has the following pmf:

y 0 1 2 3

pY (y) 0.2 0.3 0.3 0.2

(a) Compute the expected number of gallons produced during a one-hour period.

Solution: The expected value of Y is

µ = E(Y ) =
∑
all y

ypY (y) = 0(0.2) + 1(0.3) + 2(0.3) + 3(0.2) = 1.5.

Therefore, we would expect 1.5 gallons of the toxic chemical to be produced per hour

(on average).
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Figure 3.2: PMF (left) and CDF (right) of Y in Example 3.2.

(b) The cost (in $100s) to produce Y gallons of this chemical per hour is

g(Y ) = 3 + 12Y + 2Y 2.

What is the expected cost in a one-hour period?

Solution: We want to compute E[g(Y )]. We first compute E(Y 2):

E(Y 2) =
∑
all y

y2pY (y) = 02(0.2) + 12(0.3) + 22(0.3) + 32(0.2) = 3.3.

Therefore,

E[g(Y )] = E(3 + 12Y + 2Y 2) = 3 + 12E(Y ) + 2E(Y 2)

= 3 + 12(1.5) + 2(3.3) = 27.6.

The expected hourly cost is $2, 760.00.

Terminology: Let Y be a discrete random variable with pmf pY (y) and expected value

E(Y ) = µ. The variance of Y is given by

σ2 = var(Y ) = E[(Y − µ)2]

=
∑
all y

(y − µ)2pY (y).
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The standard deviation of Y is the positive square root of the variance:

σ =
√
σ2 =

√
var(Y ).

Facts: The variance σ2 satisfies the following:

(a) σ2 ≥ 0. σ2 = 0 if and only if the random variable Y has a degenerate distribu-

tion; i.e., all the probability mass is located at one support point.

(b) The larger (smaller) σ2 is, the more (less) spread in the possible values of Y about

the population mean µ = E(Y ).

(c) σ2 is measured in (units)2 and σ is measured in the original units.

Computing Formula: Let Y be a random variable with mean E(Y ) = µ. An alterna-

tive “computing formula” for the variance is

var(Y ) = E[(Y − µ)2]

= E(Y 2)− [E(Y )]2.

This formula is easy to remember and can make calculations easier.

Example 3.2 (continued). In Example 3.2, we examined the pmf for Y , the number of

gallons of a toxic chemical that is produced per hour. We computed

E(Y ) = 1.5

E(Y 2) = 3.3.

The variance of Y is

σ2 = var(Y ) = E(Y 2)− [E(Y )]2

= 3.3− (1.5)2 = 1.05 (gallons)2

The standard deviation of Y is

σ =
√
σ2 =

√
1.05 ≈ 1.025 gallons.
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3.2 Binomial distribution

Bernoulli trials: Many experiments can be envisioned as consisting of a sequence of

“trials,” where

1. each trial results in a “success” or a “failure,”

2. the trials are independent, and

3. the probability of “success,” denoted by p, 0 < p < 1, is the same on every trial.

Examples:

• When circuit boards used in the manufacture of Blue Ray players are tested, the

long-run percentage of defective boards is 5 percent.

– circuit board = “trial”

– defective board is observed = “success”

– p = P (“success”) = P (defective board) = 0.05.

• Ninety-eight percent of all air traffic radar signals are correctly interpreted the first

time they are transmitted.

– radar signal = “trial”

– signal is correctly interpreted = “success”

– p = P (“success”) = P (correct interpretation) = 0.98.

• Albino rats used to study the hormonal regulation of a metabolic pathway are

injected with a drug that inhibits body synthesis of protein. The probability that

a rat will die from the drug before the study is complete is 0.20.

– rat = “trial”

– dies before study is over = “success”

– p = P (“success”) = P (dies early) = 0.20.
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Terminology: Suppose that n Bernoulli trials are performed. Define

Y = the number of successes (out of n trials performed).

We say that Y has a binomial distribution with number of trials n and success prob-

ability p. Notation: Y ∼ b(n, p).

PMF: If Y ∼ b(n, p), then the probability mass function of Y is given by

pY (y) =


(
n

y

)
py(1− p)n−y, y = 0, 1, 2, ..., n

0, otherwise.

MEAN/VARIANCE: If Y ∼ b(n, p), then

E(Y ) = np

var(Y ) = np(1− p).

Example 3.3. In an agricultural study, it is determined that 40 percent of all plots

respond to a certain treatment. Four plots are observed. In this situation, we interpret

• plot of land = “trial”

• plot responds to treatment = “success”

• p = P (“success”) = P (responds to treatment) = 0.4.

If the Bernoulli trial assumptions hold (independent plots, same response probability for

each plot), then

Y = the number of plots which respond ∼ b(n = 4, p = 0.4).

(a) What is the probability that exactly two plots respond?

P (Y = 2) = pY (2) =

(
4

2

)
(0.4)2(1− 0.4)4−2

= 6(0.4)2(0.6)2 = 0.3456.
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Figure 3.3: PMF (left) and CDF (right) of Y ∼ b(n = 4, p = 0.4) in Example 3.3.

(b) What is the probability that at least one plot responds?

P (Y ≥ 1) = 1− P (Y = 0) = 1−
(
4

0

)
(0.4)0(1− 0.4)4−0

= 1− 1(1)(0.6)4 = 0.8704.

(c) What are E(Y ) and var(Y )?

E(Y ) = np = 4(0.4) = 1.6

var(Y ) = np(1− p) = 4(0.4)(0.6) = 0.96.

Example 3.4. An electronics manufacturer claims that 10 percent of its power supply

units need servicing during the warranty period. Technicians at a testing laboratory

purchase 30 units and simulate usage during the warranty period. We interpret

• power supply unit = “trial”

• supply unit needs servicing during warranty period = “success”

• p = P (“success”) = P (supply unit needs servicing) = 0.1.
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Figure 3.4: PMF (left) and CDF (right) of Y ∼ b(n = 30, p = 0.1) in Example 3.4.

If the Bernoulli trial assumptions hold (independent units, same probability of needing

service for each unit), then

Y = the number of units requiring service during warranty period

∼ b(n = 30, p = 0.1).

BINOMIAL R CODE: Suppose that Y ∼ b(n, p).

pY (y) = P (Y = y) FY (y) = P (Y ≤ y)

dbinom(y,n,p) pbinom(y,n,p)

(a) What is the probability that exactly five of the 30 power supply units require

servicing during the warranty period?

pY (5) = P (Y = 5) =

(
30

5

)
(0.1)5(1− 0.1)30−5

dbinom(5,30,0.1) = 0.1023048.
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(b) What is the probability at most five of the 30 power supply units require service?

FY (5) = P (Y ≤ 5) =
5∑

y=0

(
30

y

)
(0.1)y(1− 0.1)30−y

pbinom(5,30,0.1) = 0.9268099.

(c) What is the probability at least five of the 30 power supply units require service?

P (Y ≥ 5) = 1− P (Y ≤ 4) = 1−
4∑

y=0

(
30

y

)
(0.1)y(1− 0.1)30−y

1-pbinom(4,30,0.1) = 0.1754949.

(d) What is P (2 ≤ Y ≤ 8)?

P (2 ≤ Y ≤ 8) =
8∑

y=2

(
30

y

)
(0.1)y(1− 0.1)30−y.

One way to get this in R is to use the command:

> sum(dbinom(2:8,30,0.1))

[1] 0.8142852

The dbinom(2:8,30,0.1) command creates a vector containing pY (2), pY (3), ..., pY (8),

and the sum command adds them. Another way to calculate this probability in R is

> pbinom(8,30,0.1)-pbinom(1,30,0.1)

[1] 0.8142852

3.3 Geometric distribution

Note: The geometric distribution also arises in experiments involving Bernoulli trials:

1. Each trial results in a “success” or a “failure.”

2. The trials are independent.

3. The probability of “success,” denoted by p, 0 < p < 1, is the same on every trial.
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Terminology: Suppose that Bernoulli trials are continually observed. Define

Y = the number of trials to observe the first success.

We say that Y has a geometric distribution with success probability p. Notation:

Y ∼ geom(p).

PMF: If Y ∼ geom(p), then the probability mass function of Y is given by

pY (y) =

 (1− p)y−1p, y = 1, 2, 3, ...

0, otherwise.

MEAN/VARIANCE: If Y ∼ geom(p), then

E(Y ) =
1

p

var(Y ) =
1− p

p2
.

Example 3.5. Biology students are checking the eye color of fruit flies. For each fly, the

probability of observing white eyes is p = 0.25. We interpret

• fruit fly = “trial”

• fly has white eyes = “success”

• p = P (“success”) = P (white eyes) = 0.25.

If the Bernoulli trial assumptions hold (independent flies, same probability of white eyes

for each fly), then

Y = the number of flies needed to find the first white-eyed

∼ geom(p = 0.25).

(a) What is the probability the first white-eyed fly is observed on the fifth fly checked?

pY (5) = P (Y = 5) = (1− 0.25)5−1(0.25)

= (0.75)4(0.25) ≈ 0.079.
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Figure 3.5: PMF (left) and CDF (right) of Y ∼ geom(p = 0.25) in Example 3.5.

(b) What is the probability the first white-eyed fly is observed before the fourth fly is

examined? Note: For this to occur, we must observe the first white-eyed fly (success)

on either the first, second, or third fly.

FY (3) = P (Y ≤ 3) = P (Y = 1) + P (Y = 2) + P (Y = 3)

= (1− 0.25)1−1(0.25) + (1− 0.25)2−1(0.25) + (1− 0.25)3−1(0.25)

= 0.25 + 0.1875 + 0.140625 ≈ 0.578.

GEOMETRIC R CODE: Suppose that Y ∼ geom(p).

pY (y) = P (Y = y) FY (y) = P (Y ≤ y)

dgeom(y-1,p) pgeom(y-1,p)

> dgeom(5-1,0.25) ## Part (a)

[1] 0.07910156

> pgeom(3-1,0.25) ## Part (b)

[1] 0.578125
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3.4 Negative binomial distribution

Note: The negative binomial distribution also arises in experiments involving Bernoulli

trials:

1. Each trial results in a “success” or a “failure.”

2. The trials are independent.

3. The probability of “success,” denoted by p, 0 < p < 1, is the same on every trial.

Terminology: Suppose that Bernoulli trials are continually observed. Define

Y = the number of trials to observe the rth success.

We say that Y has a negative binomial distribution with waiting parameter r and

success probability p. Notation: Y ∼ nib(r, p).

Remark: The negative binomial distribution is a generalization of the geometric. If

r = 1, then the nib(r, p) distribution reduces to the geom(p).

PMF: If Y ∼ nib(r, p), then the probability mass function of Y is given by

pY (y) =


(
y − 1

r − 1

)
pr(1− p)y−r, y = r, r + 1, r + 2, ...

0, otherwise.

MEAN/VARIANCE: If Y ∼ nib(r, p), then

E(Y ) =
r

p

var(Y ) =
r(1− p)

p2
.

Example 3.6. At an automotive paint plant, 15 percent of all batches sent to the lab

for chemical analysis do not conform to specifications. In this situation, we interpret

• batch = “trial”
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Figure 3.6: PMF (left) and CDF (right) of Y ∼ nib(r = 3, p = 0.15) in Example 3.6.

• batch does not conform = “success”

• p = P (“success”) = P (not conforming) = 0.15.

If the Bernoulli trial assumptions hold (independent batches, same probability of non-

conforming for each batch), then

Y = the number of batches needed to find the third nonconforming

∼ nib(r = 3, p = 0.15).

(a) What is the probability the third nonconforming batch is observed on the tenth batch

sent to the lab?

pY (10) = P (Y = 10) =

(
10− 1

3− 1

)
(0.15)3(1− 0.15)10−3

=

(
9

2

)
(0.15)3(0.85)7 ≈ 0.039.

(b) What is the probability no more than two nonconforming batches will be observed

among the first 30 batches sent to the lab? Note: This means the third nonconforming
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batch must be observed on the 31st batch tested, the 32nd, the 33rd, etc.

P (Y ≥ 31) = 1− P (Y ≤ 30)

= 1−
30∑
y=3

(
y − 1

3− 1

)
(0.15)3(0.85)y−3 ≈ 0.151.

NEGATIVE BINOMIAL R CODE: Suppose that Y ∼ nib(r, p).

pY (y) = P (Y = y) FY (y) = P (Y ≤ y)

dnbinom(y-r,r,p) pnbinom(y-r,r,p)

> dnbinom(10-3,3,0.15) ## Part (a)

[1] 0.03895012

> 1-pnbinom(30-3,3,0.15) ## Part (b)

[1] 0.1514006

3.5 Hypergeometric distribution

Setting: Consider a population of N objects and suppose that each object belongs to

one of two dichotomous classes: Class 1 and Class 2. For example, the objects (classes)

might be people (infected/not), parts (conforming/not), plots of land (respond to treat-

ment/not), etc. In the population of interest, we have

N = total number of objects

r = number of objects in Class 1

N − r = number of objects in Class 2.

Envision taking a sample n objects from the population (objects are selected at random

and without replacement). Define

Y = the number of objects in Class 1 (out of the n selected).

We say that Y has a hypergeometric distribution. Notation: Y ∼ hyper(N, n, r).
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PMF: If Y ∼ hyper(N, n, r), then the probability mass function of Y is given by

pY (y) =



(
r

y

)(
N − r

n− y

)
(
N

n

) , y ≤ r and n− y ≤ N − r

0, otherwise.

MEAN/VARIANCE: If Y ∼ hyper(N,n, r), then

E(Y ) = n
( r

N

)
var(Y ) = n

( r

N

)(N − r

N

)(
N − n

N − 1

)
.

Example 3.7. A supplier ships parts to a company in lots of 100 parts. The company

has an acceptance sampling plan which adopts the following acceptance rule:

“....sample 5 parts at random and without replacement. If there are no de-

fectives in the sample, accept the entire lot; otherwise, reject the entire lot.”

The population size is N = 100. The sample size is n = 5. Define the random variable

Y = the number of defectives in the sample

∼ hyper(N = 100, n = 5, r).

(a) If r = 10, what is the probability that the lot will be accepted? Note: The lot will

be accepted only if Y = 0.

pY (0) = P (Y = 0) =

(
10

0

)(
90

5

)
(
100

5

) =
1(43949268)

75287520
≈ 0.584.

(b) If r = 10, what is the probability that at least 3 of the 5 parts sampled are defective?

P (Y ≥ 3) = 1− P (Y ≤ 2)

= 1− [P (Y = 0) + P (Y = 1) + P (Y = 2]

= 1−


(
10

0

)(
90

5

)
(
100

5

) +

(
10

1

)(
90

4

)
(
100

5

) +

(
10

2

)(
90

3

)
(
100

5

)


≈ 1− (0.584 + 0.339 + 0.070) = 0.007.
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Figure 3.7: PMF (left) and CDF (right) of Y ∼ hyper(N = 100, n = 5, r = 10) in

Example 3.7.

HYPERGEOMETRIC R CODE: Suppose that Y ∼ hyper(N,n, r).

pY (y) = P (Y = y) FY (y) = P (Y ≤ y)

dhyper(y,r,N-r,n) phyper(y,r,N-r,n)

> dhyper(0,10,100-10,5) ## Part (a)

[1] 0.5837524

> 1-phyper(2,10,100-10,5) ## Part (b)

[1] 0.006637913

3.6 Poisson distribution

Note: The Poisson distribution is commonly used to model counts, such as

1. the number of customers entering a post office in a given hour
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2. the number of machine breakdowns per month

3. the number of insurance claims received per day

4. the number of defects on a piece of raw material.

Terminology: In general, we define

Y = the number of “occurrences” over a unit interval of time (or space).

A Poisson distribution for Y emerges if “occurrences” obey the following postulates:

P1. The number of occurrences in non-overlapping intervals are independent.

P2. The probability of an occurrence is proportional to the length of the interval.

P3. The probability of 2 or more occurrences in a sufficiently short interval is zero.

We say that Y has a Poisson distribution. Notation: Y ∼ Poisson(λ). A process

that produces occurrences according to these postulates is called a Poisson process.

PMF: If Y ∼ Poisson(λ), then the probability mass function of Y is given by

pY (y) =


λye−λ

y!
, y = 0, 1, 2, ...

0, otherwise.

MEAN/VARIANCE: If Y ∼ Poisson(λ), then

E(Y ) = λ

var(Y ) = λ.

Example 3.8. Let Y denote the number of times per month that a detectable amount

of radioactive gas is recorded at a nuclear power plant. Suppose that Y follows a Poisson

distribution with mean λ = 2.5 times per month.

(a) What is the probability that there are exactly three times a detectable amount of

gas is recorded in a given month?

P (Y = 3) = pY (3) =
(2.5)3e−2.5

3!

=
15.625e−2.5

6
≈ 0.214.
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Figure 3.8: PMF (left) and CDF (right) of Y ∼ Poisson(λ = 2.5) in Example 3.8.

(b) What is the probability that there are no more than four times a detectable

amount of gas is recorded in a given month?

P (Y ≤ 4) = P (Y = 0) + P (Y = 1) + P (Y = 2) + P (Y = 3) + P (Y = 4)

=
(2.5)0e−2.5

0!
+

(2.5)1e−2.5

1!
+

(2.5)2e−2.5

2!
+

(2.5)3e−2.5

3!
+

(2.5)4e−2.5

4!

≈ 0.891.

POISSON R CODE: Suppose that Y ∼ Poisson(λ).

pY (y) = P (Y = y) FY (y) = P (Y ≤ y)

dpois(y,λ) ppois(y,λ)

> dpois(3,2.5) ## Part (a)

[1] 0.213763

> ppois(4,2.5) ## Part (b)

[1] 0.891178
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4 Continuous Distributions

4.1 Introduction

Recall: A random variable Y is called continuous if it can assume any value in an

interval of real numbers.

• Contrast this with a discrete random variable whose values can be “counted.”

• For example, if Y = time (seconds), then the set of all possible values of Y is

{y : y > 0}.

If Y = temperature (deg C), the set of all possible values of Y (ignoring absolute

zero and physical upper bounds) might be described as

{y : −∞ < y < ∞}.

Neither of these sets of values can be “counted.”

Important: Assigning probabilities to events involving continuous random variables

is different than in discrete models. We do not assign positive probability to specific

values (e.g., Y = 3, etc.) like we did with discrete random variables. Instead, we assign

positive probability to events which are intervals (e.g., 2 < Y < 4, etc.).

Terminology: Every continuous random variable we will discuss in this course has a

probability density function (pdf), denoted by fY (y). This function has the following

characteristics:

1. fY (y) ≥ 0, that is, fY (y) is nonnegative.

2. The area under any pdf is equal to 1, that is,∫ ∞

−∞
fY (y)dy = 1.
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Terminology: The cumulative distribution function (cdf) of Y is given by

FY (y) = P (Y ≤ y) =

∫ y

−∞
fY (t)dt.

Result: If a and b are specific values of interest (a ≤ b), then

P (a ≤ Y ≤ b) =

∫ b

a

fY (y)dy

= FY (b)− FY (a).

Result: If a is a specific value, then P (Y = a) = 0. In other words, in continuous prob-

ability models, specific points are assigned zero probability. An immediate consequence

of this is that if Y is continuous,

P (a ≤ Y ≤ b) = P (a ≤ Y < b) = P (a < Y ≤ b) = P (a < Y < b)

and each is equal to ∫ b

a

fY (y)dy.

This is not true if Y has a discrete distribution because positive probability is assigned

to specific values of Y .

Remark: Evaluating a pdf at a specific value a, that is, computing fY (a), does not give

you a probability. That is,

fY (a) ̸= a probability (of any type).

Compare this to calculating FY (a), which gives the cumulative probability P (Y ≤ a).

Example 4.1. Suppose that Y has the pdf

fY (y) =

 3y2, 0 < y < 1

0, otherwise.

(a) Find the cumulative distribution function (cdf) of Y .

Solution. Before you do any calculations, first note that

• if y ≤ 0, then FY (y) = 0.

• if y ≥ 1, then FY (y) = 1.
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Figure 4.1: PDF (left) and CDF (right) of Y in Example 4.1.

For 0 < y < 1,

FY (y) =

∫ y

−∞
fY (t)dt =

∫ y

0

3t2dt = t3
∣∣∣y
0
= y3.

Therefore, the cdf of Y is

FY (y) =


0, y ≤ 0

y3, 0 < y < 1

1, y ≥ 1.

The cdf is plotted in Figure 4.1 (right).

(b) Calculate P (Y < 0.3).

Solution. Using the pdf of Y , we calculate

P (Y < 0.3) =

∫ 0.3

0

3y2dy = y3
∣∣∣0.3
0

= (0.3)3 − 03 = 0.027.

Note also that, using the cdf of Y ,

P (Y < 0.3) = P (Y ≤ 0.3)

= FY (0.3) = (0.3)3 = 0.027.

We get the same answer, as we should.

PAGE 41



CHAPTER 4 STAT 509, J. TEBBS

(c) Calculate P (0.3 ≤ Y ≤ 0.8).

Solution. Using the pdf of Y , we calculate

P (0.3 ≤ Y ≤ 0.8) =

∫ 0.8

0.3

3y2dy = y3
∣∣∣0.8
0.3

= (0.8)3 − (0.3)3 = 0.485.

Note also that, using the cdf of Y ,

P (0.3 ≤ Y ≤ 0.8) = FY (0.8)− FY (0.3)

= (0.8)3 − (0.3)3 = 0.485.

Terminology: Let Y be a continuous random variable with pdf fY (y). The expected

value (or mean) of Y is given by

µ = E(Y ) =

∫ ∞

−∞
yfY (y)dy.

The limits of the integral in this definition, while technically correct, will always be the

lower and upper limits corresponding to the nonzero part of the pdf.

Result: Let Y be a continuous random variable with pdf fY (y). Suppose that g is a

real-valued function. Then, g(Y ) is a random variable and

E[g(Y )] =

∫ ∞

−∞
g(y)fY (y)dy.

Terminology: Let Y be a continuous random variable with pdf fY (y) and expected

value E(Y ) = µ. The variance of Y is given by

σ2 = var(Y ) = E[(Y − µ)2]

=

∫ ∞

−∞
(y − µ)2fY (y)dy.

The “computing formula” is still

var(Y ) = E(Y 2)− [E(Y )]2.

The standard deviation of Y is the positive square root of the variance:

σ =
√
σ2 =

√
var(Y ).

Exercise: Calculate E(Y ) and var(Y ) in Example 4.1.
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Figure 4.2: PDF (left) and CDF (right) of Y in Example 4.2.

Example 4.2. Let Y denote the diameter of a hole drilled in a sheet metal component.

The target diameter is 12.5 mm and can never be lower than this. However, minor

random disturbances to the drilling process always result in larger diameters. Suppose

that Y is modeled using the pdf

fY (y) =

 20e−20(y−12.5), y > 12.5

0, otherwise.

The cdf of Y (verify) is given by

FY (y) =

 0, y ≤ 12.5

1− e−20(y−12.5), y > 12.5.

The pdf (left) and cdf (right) of Y are graphed in Figure 4.2. The expected value of Y

is given by

µ = E(Y ) =

∫ ∞

12.5

yfY (y)dy

=

∫ ∞

12.5

20ye−20(y−12.5)dy = 12.55.

To do this integral, I used the integrate function in R:
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> # Calculate E(Y)

> integrand.1 <- function(y){y*20*exp(-20*(y-12.5))}

> integrate(integrand.1,lower=12.5,upper=Inf)

12.55 with absolute error < 1.3e-07

The variance of Y is given by

σ2 = var(Y ) =

∫ ∞

12.5

(y − µ)2fY (y)dy

=

∫ ∞

12.5

20(y − 12.55)2e−20(y−12.5)dy = 0.0025.

> # Calculate var(Y)

> integrand.2 <- function(y){(y-12.55)^2*20*exp(-20*(y-12.5))}

> integrate(integrand.2,lower=12.5,upper=Inf)

0.0025 with absolute error < 4.1e-08

Exercise: In Example 4.2, what proportion of diameters will exceed 12.65 mm?

Terminology: Suppose Y is a continuous random variable and let 0 < p < 1. The pth

quantile of the distribution of Y , denoted by ϕp, solves

FY (ϕp) = P (Y ≤ ϕp) =

∫ ϕp

−∞
fY (y)dy = p.

The median of Y is the p = 0.5 quantile. That is, the median ϕ0.5 solves

FY (ϕ0.5) = P (Y ≤ ϕ0.5) =

∫ ϕ0.5

−∞
fY (y)dy = 0.5.

Another name for the pth quantile is the 100pth percentile.

Example 4.2 (continued). Find the median diameter ϕ0.5 in Example 4.2.

Solution. We set

FY (ϕ0.5) = 1− e−20(ϕ0.5−12.5) set
= 0.5

and solve for ϕ0.5. We obtain ϕ0.5 ≈ 12.535. Therefore, 50 percent of the diameters will

be less than 12.535 mm (of course, 50 percent will be greater than this value too).
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4.2 Exponential distribution

Terminology: A random variable Y is said to have an exponential distribution with

parameter λ > 0 if its pdf is given by

fY (y) =

 λe−λy, y > 0

0, otherwise.

Notation: Y ∼ exponential(λ). The exponential distribution is used to model the

distribution of positive quantities (e.g., lifetimes, etc.).
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Figure 4.3: Exponential pdfs with different values of λ.

MEAN/VARIANCE: If Y ∼ exponential(λ), then

E(Y ) =
1

λ

var(Y ) =
1

λ2
.
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Figure 4.4: PDF (left) and CDF (right) of Y ∼ exponential(λ = 0.4) in Example 4.3.

CDF: If Y ∼ exponential(λ), then the cdf of Y exists in closed form and is given by

FY (y) =

 0, y ≤ 0

1− e−λy, y > 0.

Example 4.3. Experience with fans used in diesel engines has suggested that the expo-

nential distribution provides a good model for time until failure (i.e., lifetime). Suppose

that the lifetime of a fan, denoted by Y (measured in 10000s of hours), follows an expo-

nential distribution with λ = 0.4.

(a) What is the probability that a fan lasts longer than 30,000 hours?

Solution. Using the pdf of Y , we calculate

P (Y > 3) =

∫ ∞

3

0.4e−0.4ydy = 0.4

(
− 1

0.4
e−0.4y

∣∣∣∣∣
∞

3

)

= −e−0.4y

∣∣∣∣∣
∞

3

= e−1.2 ≈ 0.301.
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Using the cdf of Y ,

P (Y > 3) = 1− P (Y ≤ 3) = 1− FY (3)

= 1− [1− e−0.4(3)]

= e−1.2 ≈ 0.301.

We get the same answer, as we should.

(b) What is the probability that a fan will last between 20,000 and 50,000 hours?

Solution. Using the pdf of Y , we calculate

P (2 < Y < 5) =

∫ 5

2

0.4e−0.4ydy = 0.4

− 1

0.4
e−0.4y

∣∣∣∣∣
5

2


= −e−0.4y

∣∣∣∣∣
5

2

= −[e−0.4(5) − e−0.4(2)]

= e−0.8 − e−2 ≈ 0.314.

Using the cdf of Y ,

P (2 < Y < 5) = FY (5)− FY (2)

= [1− e−0.4(5)]− [1− e−0.4(2)]

= e−0.8 − e−2 ≈ 0.314.

MEMORYLESS PROPERTY: Suppose that Y ∼ exponential(λ), and let r and s be

positive constants. Then

P (Y > r + s|Y > r) = P (Y > s).

If Y measures time (e.g., time to failure, etc.), then the memoryless property says that

the distribution of additional lifetime (s time units beyond time r) is the same as the

original distribution of the lifetime. In other words, the fact that Y has “made it” to

time r has been “forgotten.” For example, in Example 4.3,

P (Y > 5|Y > 2) = P (Y > 3) ≈ 0.301.
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POISSON RELATIONSHIP: Suppose that we are observing “occurrences” over time

according to a Poisson distribution with rate λ. Define the random variable

Y = the time until the first occurrence.

Then, Y ∼ exponential(λ).

Example 4.4. Suppose customers arrive at a check-out according to a Poisson process

with mean λ = 12 per hour.

(a) What is the probability that we will have to wait longer than 10 minutes to see the

first customer? Note: 10 minutes is 1/6th of an hour.

Solution. The time until the first arrival, say Y , follows an exponential distribution

with λ = 12. The cdf of Y , for y > 0, is FY (y) = 1− e−12y. The desired probability is

P (Y > 1/6) = 1− P (Y ≤ 1/6) = 1− FY (1/6)

= 1− [1− e−12(1/6)] = e−2 ≈ 0.135.

(b) Ninety percent of all first-customer waiting times will be less than what value?

Solution. We want ϕ0.9, the 90th percentile (p = 0.9 quantile) of the distribution of Y .

We set

FY (ϕ0.9) = 1− e−12ϕ0.9 set
= 0.9

and solve for ϕ0.9. Doing so gives ϕ0.9 ≈ 0.192. This means that 90 percent of all

first-customer waiting times will be less than 0.192 hours (only 10 percent will exceed).

EXPONENTIAL R CODE: Suppose that Y ∼ exponential(λ).

FY (y) = P (Y ≤ y) ϕp

pexp(y,λ) qexp(p,λ)

> 1-pexp(1/6,12) ## P(Y>1/6) in Example 4.4

[1] 0.1353353

> qexp(0.9,12) ## 0.9 quantile in Example 4.4

[1] 0.1918821
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4.3 Gamma distribution

Terminology: The gamma function is a real function defined by

Γ(α) =

∫ ∞

0

yα−1e−ydy,

for all α > 0. The gamma function satisfies the recursive relationship

Γ(α) = (α− 1)Γ(α− 1),

for α > 1. Therefore, if α is an integer, then

Γ(α) = (α− 1)!.

Terminology: A random variable Y is said to have a gamma distribution with

parameters α > 0 and λ > 0 if its pdf is given by

fY (y) =


λα

Γ(α)
yα−1e−λy, y > 0

0, otherwise.

Notation: Y ∼ gamma(α, λ).

• By changing the values of α and λ, the gamma pdf can assume many shapes; see

examples in Figure 4.5.

• This makes the gamma distribution popular for modeling positive random variables

(it is more flexible than the exponential).

• Note that when α = 1, the gamma pdf reduces to the exponential(λ) pdf.

MEAN/VARIANCE: If Y ∼ gamma(α, λ), then

E(Y ) =
α

λ

var(Y ) =
α

λ2
.
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Figure 4.5: Gamma pdfs with different values of α and λ.

CDF: The cdf of a gamma random variable does not exist in closed form. Therefore,

probabilities involving gamma random variables and gamma quantilesmust be computed

numerically (e.g., using R, etc.).

GAMMA R CODE: Suppose that Y ∼ gamma(α, λ).

FY (y) = P (Y ≤ y) ϕp

pgamma(y,α,λ) qgamma(p,α,λ)

Example 4.5. When a certain transistor is subjected to an accelerated life test, the

lifetime Y (in weeks) is modeled by a gamma distribution with α = 4 and λ = 1/6.
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Figure 4.6: PDF (left) and CDF (right) of Y ∼ gamma(α = 4, λ = 1/6) in Example 4.5.

(a) Find the probability that a transistor will last at least 50 weeks.

P (Y ≥ 50) = 1− P (Y < 50) = 1− FY (50)

= 1-pgamma(50,4,1/6)

= 0.03377340.

(b) Find the probability that a transistor will last between 12 and 24 weeks.

P (12 ≤ Y ≤ 24) = FY (24)− FY (12)

= pgamma(24,4,1/6)-pgamma(12,4,1/6)

= 0.4236533.

(c) Twenty percent of the transistor lifetimes will be below which time? Note: I am

asking for the 0.20 quantile (20th percentile) of the lifetime distribution.

> qgamma(0.2,4,1/6)

[1] 13.78072

Therefore, 20 percent of the resistors will fail before 13.78 weeks.
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POISSON RELATIONSHIP: Suppose that we are observing “occurrences” over time

according to a Poisson distribution with rate λ. Define the random variable

Y = the time until the αth occurrence.

Then, Y ∼ gamma(α, λ).

Exercise: In Example 4.4 (pp 48), what is the distribution of the time until the 2nd

customer arrives? the 3rd? Find the probability that we have to wait longer than 30

minutes for the 5th customer to arrive.

4.4 Normal distribution

Terminology: A random variable Y is said to have a normal distribution if its pdf

is given by

fY (y) =


1√
2πσ

e−(y−µ)2/2σ2

, −∞ < y < ∞

0, otherwise.

Notation: Y ∼ N (µ, σ2). This is also known as the Guassian distribution.

MEAN/VARIANCE: If Y ∼ N (µ, σ2), then

E(Y ) = µ

var(Y ) = σ2.

Remark: The normal distribution serves as a very good model for a wide range of mea-

surements; e.g., reaction times, fill amounts, part dimensions, weights/heights, measures

of intelligence/test scores, economic indicators, etc.

CDF: The cdf of a normal random variable does not exist in closed form. Probabilities

involving normal random variables and normal quantiles can be computed numerically

(e.g., using R, etc.). There are other antiquated methods of calculating normal proba-

bilities/quantiles using probability tables (we will avoid like the plague).
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Figure 4.7: Normal pdfs with different values of µ and σ2.

NORMAL R CODE: Suppose that Y ∼ N (µ, σ2).

FY (y) = P (Y ≤ y) ϕp

pnorm(y,µ,σ) qnorm(p,µ,σ)

Example 4.6. The time it takes for a driver to react to the brake lights on a decelerating

vehicle is critical in helping to avoid rear-end collisions. For a population of drivers (e.g.,

drivers in SC, etc.), suppose that

Y = the reaction time to brake during in-traffic driving (measured in seconds),

follows a normal distribution with mean µ = 1.5 and variance σ2 = 0.16.
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Figure 4.8: PDF (left) and CDF (right) of Y ∼ N (µ = 1.5, σ2 = 0.16) in Example 4.6.

(a) What is the probability that reaction time is less than 1 second?

P (Y < 1) = FY (1)

= pnorm(1,1.5,sqrt(0.16))

= 0.1056498.

(b) What is the probability that reaction time is between 1.1 and 2.5 seconds?

P (1.1 < Y < 2.5) = FY (2.5)− FY (1.1)

= pnorm(2.5,1.5,sqrt(0.16))-pnorm(1.1,1.5,sqrt(0.16))

= 0.835135.

(c) Five percent of all reaction times will exceed which time? Note: I am asking for

the 0.95 quantile (95th percentile) of the reaction time distribution.

> qnorm(0.95,1.5,sqrt(0.16))

[1] 2.157941

Therefore, the slowest 5 percent of the population will have reaction times larger than

2.16 seconds.
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Empirical Rule: For any N (µ, σ2) distribution,

• about 68% of the distribution is between µ− σ and µ+ σ

• about 95% of the distribution is between µ− 2σ and µ+ 2σ

• about 99.7% of the distribution is between µ− 3σ and µ+ 3σ.

This is also called the 68-95-99.7% rule. This rule allows for us to make statements

like this (referring to Example 4.6, where µ = 1.5 and σ = 0.4):

“About 68 percent of all reaction times will be between 1.1 and 1.9 seconds.”

“About 95 percent of all reaction times will be between 0.7 and 2.3 seconds.”

“About 99.7 percent of all reaction times will be between 0.3 and 2.7 seconds.”

Terminology: A random variable Z is said to have a standard normal distribution

if its pdf is given by

fZ(z) =


1√
2π

e−z2/2, −∞ < z < ∞

0, otherwise.

Notation: Z ∼ N (0, 1). A standard normal distribution is simply a “special” normal

distribution, that is, a normal distribution with mean µ = 0 and variance σ2 = 1. The

variable Z is called a standard normal random variable.

Result: If Y ∼ N (µ, σ2), then

Z =
Y − µ

σ
∼ N (0, 1).

The result says that Z follows a standard normal distribution; i.e., Z ∼ N (0, 1). In this

context, Z is called the standardized value of Y . For example,

• if the standardized value of y is z = 1.5, this means that y is 1.5 standard deviations

above the mean µ.

• if the standardized value of y is z = −1.5, this means that y is 1.5 standard

deviations below the mean µ.
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5 Reliability and Lifetime Distributions

Terminology: Reliability analysis deals with failure time (i.e., lifetime, time-to-event)

data. For example,

T = time from start of product service until failure

T = time until a warranty claim

T = number of hours in use/cycles until failure.

We call T a lifetime random variable if it measures the time to an “event;” e.g.,

failure, death, eradication of some infection/condition, etc. Engineers are often involved

with reliability studies, because reliability is strongly related to product quality.

Note: There are many well known lifetime distributions, including

• exponential

• Weibull

• Others: gamma, lognormal, inverse Gaussian, Gompertz-Makeham, Birnbaum-

Sanders, extreme value, log-logistic, etc.

5.1 Weibull distribution

Terminology: A random variable T is said to have a Weibull distribution with

parameters β > 0 and η > 0 if its pdf is given by

fT (t) =


β

η

(
t

η

)β−1

e−(t/η)β , t > 0

0, otherwise.

Notation: T ∼ Weibull(β, η). We call

β = shape parameter

η = scale parameter.
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Figure 5.1: Weibull pdfs with different values of β and η.

• As you can see in Figure 5.1, by changing the values of β and η, the Weibull pdf

can assume many shapes. Because of this flexibility (and for other reasons), the

Weibull distribution is very popular among engineers in reliability applications.

• When β = 1, the Weibull pdf reduces to the exponential(λ = 1/η) pdf.

MEAN/VARIANCE: If T ∼ Weibull(β, η), then

E(T ) = ηΓ

(
1 +

1

β

)
var(T ) = η2

{
Γ

(
1 +

2

β

)
−
[
Γ

(
1 +

1

β

)]2}
.
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Figure 5.2: PDF (left) and CDF (right) of T ∼ Weibull(β = 2, η = 10) in Example 5.1.

CDF: Suppose that T ∼ Weibull(β, η). The cdf of T exists in closed form and is given

by

FT (t) =

 0, t ≤ 0

1− e−(t/η)β , t > 0.

Example 5.1. The lifetime of a rechargeable battery under constant usage conditions,

denoted by T (measured in hours), follows a Weibull distribution with parameters β = 2

and η = 10.

(a) What is the mean time to failure?

E(T ) = 10Γ

(
3

2

)
≈ 8.862 hours.

(b) What is the probability that a battery is still functional at time t = 20?

P (T ≥ 20) = 1− P (T < 20) = 1− FT (20)

= 1− [1− e−(20/10)2 ]

≈ 0.018.
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(c) What is the probability that a battery is still functional at time t = 20 given that

the battery is functional at time t = 10?

Solution. This is a conditional probability. We are given that the battery has “sur-

vived” to at least 10 hours.

P (T ≥ 20|T ≥ 10) =
P (T ≥ 20 and T ≥ 10)

P (T ≥ 10)
=

P (T ≥ 20)

P (T ≥ 10)

=
1− FT (20)

1− FT (10)

=
e−(20/10)2

e−(10/10)2
≈ 0.050.

Remark: Note that

0.050 ≈ P (T ≥ 20|T ≥ 10) ̸= P (T ≥ 10) = e−(10/10)2 ≈ 0.368.

Therefore, the Weibull distribution does not satisfy the memoryless property.

(d) What is the 99th percentile of this lifetime distribution? We set

FT (ϕ0.99) = 1− e−(ϕ0.99/10)2 set
= 0.99.

Solving for ϕ0.99 gives ϕ0.99 ≈ 21.460 hours. Only one percent of the battery lifetimes

will exceed this value.

WEIBULL R CODE: Suppose that T ∼ Weibull(β, η).

FT (t) = P (T ≤ t) ϕp

pweibull(t,β,η) qweibull(p,β,η)

> 10*gamma(3/2) ## Part (a)

[1] 8.86227

> 1-pweibull(20,2,10) ## Part (b)

[1] 0.01831564

> (1-pweibull(20,2,10))/(1-pweibull(10,2,10)) ## Part (c)

[1] 0.04978707

> qweibull(0.99,2,10) ## Part (d)

[1] 21.45966
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5.2 Reliability functions

Description: We now describe some different, but equivalent, ways of defining the

distribution of a (continuous) lifetime random variable T .

• The cumulative distribution function (cdf)

FT (t) = P (T ≤ t).

This can be interpreted as the proportion of units that have failed by time t.

• The survivor function

ST (t) = P (T > t) = 1− FT (t).

This can be interpreted as the proportion of units that have not failed by time t;

e.g., the unit is still functioning, a warranty claim has not been made, etc.

• The probability density function (pdf)

fT (t) =
d

dt
FT (t) = − d

dt
ST (t).

Also, recall that

FT (t) =

∫ t

0

fT (u)du

and

ST (t) =

∫ ∞

t

fT (u)du.

Terminology: The hazard function of a lifetime random variable T is

hT (t) = lim
ϵ→0

P (t ≤ T < t+ ϵ|T ≥ t)

ϵ
.

The hazard function is not a probability; rather, it is a probability rate. Therefore, it

is possible that a hazard function may exceed one.

Interpretation: The hazard function offers a very useful interpretation of a lifetime

distribution. It indicates how the rate of failure varies with time.
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• Distributions with increasing hazard functions are seen in units where some kind

of aging or “wear out” takes place. The population gets weaker over time.

• Distributions with decreasing hazard functions correspond to the population getting

stronger over time. For example, certain types of units (e.g., electronic devices,

etc.) may display a decreasing hazard function, at least in the early stages.

• In some populations, the hazard function decreases initially, stays constant for a

period of time, and then increases. This corresponds to a population whose units

get stronger initially (defective individuals “die out” early), exhibit random failures

for a period of time (constant hazard), and then eventually the population weakens

(e.g., due to old age, etc.). These hazard functions are bathtub-shaped.

Result: The hazard function can be calculated if we know the pdf fT (t) and the survivor

function ST (t). To see why, note that

hT (t) = lim
ϵ→0

P (t ≤ T < t+ ϵ|T ≥ t)

ϵ

= lim
ϵ→0

P (t ≤ T < t+ ϵ)

ϵ P (T ≥ t)

=
1

P (T ≥ t)
lim
ϵ→0

FT (t+ ϵ)− FT (t)

ϵ︸ ︷︷ ︸
= d

dt
FT (t)

=
fT (t)

ST (t)
.

We can therefore describe the distribution of T by using either fT (t), FT (t), ST (t), or

hT (t). If we know one of these functions, we can retrieve the other three.

Example 5.2. In this example, we find the hazard function for T ∼ Weibull(β, η).

Recall that the pdf of T is

fT (t) =


β

η

(
t

η

)β−1

e−(t/η)β , t > 0

0, otherwise.

The cdf of T is

FT (t) =

 0, t ≤ 0

1− e−(t/η)β , t > 0.
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Figure 5.3: Weibull hazard functions with η = 1. Upper left: β = 3. Upper right:

β = 1.5. Lower left: β = 1. Lower right: β = 0.5.

The survivor function of T is

ST (t) = 1− FT (t) =

 1, t ≤ 0

e−(t/η)β , t > 0.

Therefore, the hazard function of T is

hT (t) =
fT (t)

ST (t)
=

β

η

(
t

η

)β−1

e−(t/η)β

e−(t/η)β
=

β

η

(
t

η

)β−1

.
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Interpretation: Plots of Weibull hazard functions are given in Figure 5.3. It is easy to

show that for a Weibull distribution:

• hT (t) is increasing if β > 1 (wear out; population gets weaker)

• hT (t) is constant if β = 1 (random failures; exponential distribution)

• hT (t) is decreasing if β < 1 (infant mortality; population gets stronger).

5.3 Example: Weibull analysis

Example 5.3. The data below are times, denoted by T (measured in months), to the

first failure for 20 electric carts used for internal delivery and transportation in a large

manufacturing facility.

3.9 4.2 5.4 6.5 7.0 8.8 9.2 11.4 14.3 15.1

15.3 15.5 17.9 18.0 19.0 19.0 23.9 24.8 26.0 34.2

In this example, we will assume a Weibull(β, η) model for

T = time to cart failure (in months).

Because the model parameters β and η are not given to us, our first task is to estimate

them using the data above. We would like to find the values of β and η that “most

closely agree” with the data. To do this, we form the likelihood function

L(β, η) =
20∏
i=1

fT (ti) =
20∏
i=1

β

η

(
ti
η

)β−1

e−(ti/η)
β

=

(
β

ηβ

)20
(

20∏
i=1

ti

)β−1

e−
∑20

i=1(ti/η)
β

,

where t1, t2, ..., t20 are the 20 times above. The values of β and η that “most closely

agree” with the data are the values of β and η that maximize L(β, η).

Definition: Let β̂ and η̂ denote the values of β and η, respectively, that maximize

L(β, η). We call β̂ and η̂ the maximum likelihood estimates of β and η.
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Calculation: We can use R to find the maximum likelihood estimates:

> cart.data = c(3.9,4.2,5.4,6.5,7.0,8.8,9.2,11.4,14.3,15.1,15.3,15.5,17.9,

18.0,19.0,19.0,23.9,24.8,26.0,34.2)

> fitdistr(cart.data,densfun="weibull")

shape scale

1.9889187 16.9359807

(0.3504024) (2.0081518)

For the cart data, the maximum likelihood estimates of β and η are

β̂ ≈ 1.99

η̂ ≈ 16.94.

The β̂ ≈ 1.99 estimate suggests that there is “wear out” taking place among the carts;

that is, the population of carts gets weaker as time passes (see the estimated hazard

function on the next page).

Note: I have plotted the estimated pdf, the estimated cdf, the estimated survivor func-

tion, and the estimated hazard function in Figure 5.4. We use the term “estimated,”

because these functions are constructed using the estimates β̂ ≈ 1.99 and η̂ ≈ 16.94.

(a) Using the estimated Weibull(β̂ ≈ 1.99, η̂ ≈ 16.94) distribution as a model for future

cart lifetimes, find the probability that a cart will “survive” past 20 months.

P (T > 20) = 1− P (T ≤ 20) = 1− FT (20)

= 1− [1− e−(20/16.94)1.99 ] ≈ 0.249.

(b) Use the estimated distribution to find the 90th percentile of the cart lifetimes.

FT (ϕ0.90) = 1− e−(ϕ0.90/16.94)1.99 set
= 0.90.

Solving for ϕ0.90 gives ϕ0.90 ≈ 25.75 months. Only ten percent of the cart lifetimes will

exceed this value.
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Figure 5.4: Cart data in Example 5.3. Estimated Weibull functions with β̂ = 1.99 and

η̂ ≈ 16.94. Upper left: PDF. Upper right: CDF. Lower left: Survivor function. Lower

right: Hazard function.
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Note: Here is the R code for answering the questions on page 64:

> 1-pweibull(20,1.99,16.94) ## Part (a)

[1] 0.248679

> qweibull(0.9,1.99,16.94) ## Part (b)

[1] 25.75914

5.4 Quantile-quantile plots

Terminology: A quantile-quantile plot (qq plot) is a graphical display that can help

assess the appropriateness of a model (distribution). Here is how the plot is constructed:

• On the vertical axis, we plot the observed data, ordered from low to high.

• On the horizontal axis, we plot the (ordered) theoretical quantiles from the distri-

bution (model) assumed for the observed data.

Our intuition should suggest the following:

• If the observed data “agree” with the distribution’s theoretical quantiles, then the

qq plot should look like a straight line (the distribution is a good choice).

• If the observed data do not “agree” with the theoretical quantiles, then the qq plot

should have curvature in it (the distribution is not a good choice).

Important: When you interpret qq plots, you are looking for general agreement.

The observed data will never line up perfectly with the model’s quantiles (due to natural

variability). In other words, don’t be “too picky” when interpreting these plots, especially

with small sample sizes (like n = 20).

Cart data: I constructed the Weibull qq plot for the cart lifetime data in Example 5.3;

see Figure 5.5 on the next page.
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Figure 5.5: Cart data: Weibull qq plot. The observed data are plotted versus the

theoretical quantiles from a Weibull distribution with β̂ ≈ 1.99 and η̂ ≈ 16.94.

• There is a general agreement with the observed data and the quantiles from the

Weibull distribution. This suggests that the Weibull model is reasonable for the

cart data.

• The straight line is formed from the 25th and 75th percentiles of the observed data

and the assumed model (here, a Weibull model with β̂ ≈ 1.99 and η̂ ≈ 16.94).

• The bands about the line can be used to

– get an idea of the variability “allowed” in the plot. If all of the data fall within

the bands, then there is no reason to suspect the model.

– detect outlier observations (i.e., observations that are grossly inconsistent

with the assumed model).
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6 Statistical Inference

6.1 Populations and samples

Overview: We now focus on statistical inference. This deals with making (probabilis-

tic) statements about a population of individuals based on information that is contained

in a sample taken from the population.

Example 6.1. Suppose we are studying the performance of lithium batteries used in

a certain calculator. We would like to learn about the lifetime of these batteries so

we can place a limited warranty on them in the future. Because this type of battery

has not been used in this calculator before, no one (except the Oracle) can tell us the

distribution of Y , the battery’s lifetime. In fact, not only is the distribution not known,

but all parameters which index this distribution aren’t known either.

Terminology: A population refers to the entire group of “individuals” (e.g., parts,

people, batteries, etc.) about which we would like to make a statement (e.g., proportion

defective, median IQ score, mean lifetime, etc.).

• It is generally accepted that the entire population can not be measured. It is too

large and/or it would be too time consuming to do so.

• To draw inferences (make statements) about a population, we therefore observe a

sample of individuals from the population.

• We will assume that the sample of individuals constitutes a random sample.

Mathematically, this means that all observations are independent and follow the

same probability distribution. Informally, this means that each sample (of the same

size) has the same chance of being selected.

• Taking a random sample of individuals is our best hope of obtaining individuals

that are “representative” of the entire population.
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Notation: We will denote a random sample of observations by

Y1, Y2, ..., Yn.

That is, Y1 is the value of Y for the first individual in the sample, Y2 is the value of Y

for the second individual in the sample, and so on. The sample size tells us how many

individuals are in the sample and is denoted by n. We refer to the set of observations

Y1, Y2, ..., Yn generically as data. Lower case notation y1, y2, ..., yn is used when citing

numerical values.

Example 6.1 (continued). Consider the following random sample of n = 50 battery

lifetimes y1, y2, ..., y50 measured in hours:

4285 2066 2584 1009 318 1429 981 1402 1137 414

564 604 14 4152 737 852 1560 1786 520 396

1278 209 349 478 3032 1461 701 1406 261 83

205 602 3770 726 3894 2662 497 35 2778 1379

3920 1379 99 510 582 308 3367 99 373 454

In Figure 6.1, we display a histogram and boxplot of the battery lifetime data. We see

that the (empirical) distribution of the battery lifetimes is skewed towards the high side.

• Which continuous probability distribution seems to display the same type of pattern

that we see in the histogram?

• An exponential(λ) model seems reasonable here (based on the histogram shape).

What is λ?

• In this example, λ is called a (population) parameter. It describes the distribution

which is used to model the entire population of batteries.

• In general, (population) parameters which index probability distributions (like the

exponential) are unknown.
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Figure 6.1: Histogram (left) and boxplot (right) of the battery lifetime data (measured

in hours) in Example 6.1.

• All the probability distributions we have discussed so far are meant to describe

population-level behavior.

6.2 Parameters and statistics

Terminology: A parameter is a numerical quantity that describes a population. In

general, population parameters are unknown. Some very common examples are:

µ = population mean

σ2 = population variance

p = population proportion.

Connection: All of the probability distributions that we talked about in Chapters 3-5

were indexed by population (model) parameters.
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For example,

• the N (µ, σ2) distribution is indexed by two parameters, the population mean µ and

the population variance σ2.

• the Poisson(λ) distribution is indexed by one parameter, the population mean λ.

• the Weibull(β, η) distribution is indexed by two parameters, the shape parameter

β and the scale parameter η.

• the b(n, p) distribution is indexed by one parameter, the population proportion of

successes p.

Terminology: Suppose that Y1, Y2, ..., Yn is a random sample from a population. The

sample mean is

Y =
1

n

n∑
i=1

Yi.

The sample variance is

S2 =
1

n− 1

n∑
i=1

(Yi − Y )2.

The sample standard deviation is the positive square root of the sample variance;

i.e.,

S =
√
S2 =

√√√√ 1

n− 1

n∑
i=1

(Yi − Y )2.

Important: Unlike their population analogues (which are unknown), these quantities

can be computed from the sample Y1, Y2, ..., Yn.

Terminology: A statistic is a numerical quantity that can be calculated from a sample

of data. Some very common examples are:

Y = sample mean

S2 = sample variance

p̂ = sample proportion.
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For example, with the battery lifetime data (a random sample of n = 50 lifetimes),

y = 1274.14 hours

s2 = 1505156 (hours)2

s ≈ 1226.85 hours.

> mean(battery) ## sample mean

[1] 1274.14

> var(battery) ## sample variance

[1] 1505156

> sd(battery) ## sample standard deviation

[1] 1226.848

• y = 1274.14 is an estimate of the population mean µ.

• s2 = 1505156 is an estimate of the population variance σ2.

• s = 1226.848 is an estimate of the population standard deviation σ.

Summary: The table below succinctly summarizes the differences between a population

and a sample (a parameter and a statistic):

Group of individuals Numerical quantity Status

Population (Not observed) Parameter Unknown

Sample (Observed) Statistic Calculated from sample data

Statistical inference deals with making (probabilistic) statements about a population

of individuals based on information that is contained in a sample taken from the popu-

lation. We do this by

(a) estimating unknown population parameters with sample statistics

(b) quantifying the uncertainty (variability) that arises in the estimation process.
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6.3 Point estimators and sampling distributions

Remark: To keep our discussion as general as possible (as the material in this subsection

can be applied to many situations), we will let θ denote a population parameter.

• For example, θ could denote a population mean, a population variance, a population

proportion, a Weibull or gamma model parameter, etc. It could also denote a

parameter in a regression context (Chapters 10-12).

Terminology: A point estimator θ̂ is a statistic that is used to estimate a population

parameter θ. Common examples of point estimators are:

Y −→ a point estimator for µ (population mean)

S2 −→ a point estimator for σ2 (population variance)

S −→ a point estimator for σ (population standard deviation).

Critical point: A point estimator θ̂ is a statistic, so it depends on the sample of data

Y1, Y2, ..., Yn.

• The data Y1, Y2, ..., Yn come from the sampling process; e.g., different random sam-

ples will yield different data sets Y1, Y2, ..., Yn.

• In this light, because the sample values Y1, Y2, ..., Yn will vary from sample to sam-

ple, the value of θ̂ will too. It therefore makes perfect sense to think about the

distribution of θ̂ itself.

Terminology: The distribution of an estimator θ̂ is called its sampling distribution.

A sampling distribution describes how the estimator θ̂ varies in repeated sampling.

Terminology: We say that θ̂ is an unbiased estimator of θ if and only if

E(θ̂) = θ.
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In other words, the mean of the sampling distribution of θ̂ is equal to θ. Unbiasedness is a

characteristic describing the center of a sampling distribution. This deals with accuracy.

Result: Mathematics shows that when Y1, Y2, ..., Yn is a random sample,

E(Y ) = µ

E(S2) = σ2.

That is, Y and S2 are unbiased estimators of their population analogues.

Goal: Not only do we desire to use point estimators θ̂ which are unbiased, but we would

also like for them to have small variability. In other words, when θ̂ “misses” θ, we would

like for it to “not miss by much.” This deals with precision.

Main point: Accuracy and precision are the two main mathematical characteristics

that arise when evaluating the quality of a point estimator θ̂. We desire point estimators

θ̂ which are unbiased (perfectly accurate) and have small variance (highly precise).

Terminology: The standard error of a point estimator θ̂ is equal to

se(θ̂) =

√
var(θ̂).

In other words, the standard error is equal to the standard deviation of the sampling

distribution of θ̂. An estimator’s standard error measures the amount of variability in

the point estimator θ̂. Therefore,

smaller se(θ̂) ⇐⇒ θ̂ more precise.

Illustration: In Example 5.3 (last chapter), we fit a Weibull model to the cart data:

> fitdistr(cart.data,densfun="weibull")

shape scale

1.9889187 16.9359807

(0.3504024) (2.0081518)
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• The values β̂ = 1.99 and η̂ = 16.94 are point estimates of β and η, respectively.

• The values underneath each (i.e., 0.35 and 2.01) are the associated standard errors.

• Point estimates and standard errors are used to construct confidence intervals

(which we will start in the next chapter).

6.4 Sampling distribution of Y

Result 1: Suppose that Y1, Y2, ..., Yn is a random sample from a N (µ, σ2) distribution.

The sample mean Y has the following sampling distribution:

Y ∼ N
(
µ,

σ2

n

)
.

• This result reminds us that

E(Y ) = µ.

That is, the sample mean Y is an unbiased estimator of the population mean µ.

• This result also shows that the standard error of Y (as a point estimator) is

se(Y ) =

√
var(Y ) =

√
σ2

n
=

σ√
n
.

Example 6.2. In Example 4.6 (pp 53), we examined the distribution of

Y = time (in seconds) to react to brake lights during in-traffic driving.

We assumed that Y ∼ N (µ = 1.5, σ2 = 0.16).We call this the population distribution,

because it describes the distribution of values of Y for all individuals in the population

(here, in-traffic drivers).

(a) Suppose that we take a random sample of n = 5 drivers from the population with

times Y1, Y2, ..., Y5. What is the distribution of the sample mean Y ?

Solution. If the sample size is n = 5, then with µ = 1.5 and σ2 = 0.16, we have

Y ∼ N
(
µ,

σ2

n

)
=⇒ Y ∼ N (1.5, 0.032).
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Figure 6.2: Braking time example. Population distribution: Y ∼ N (µ = 1.5, σ2 = 0.16).

Also depicted are the sampling distributions of Y when n = 5 and n = 25.

This distribution describes the values of Y we would expect to see in repeated sampling,

that is, if we repeatedly sampled n = 5 individuals from this population of in-traffic

drivers and calculated the sample mean Y each time.

(b) Suppose that we take a random sample of n = 25 drivers from the population with

times Y1, Y2, ..., Y25. What is the distribution of the sample mean Y ?

Solution. If the sample size is n = 25, then with µ = 1.5 and σ2 = 0.16, we have

Y ∼ N
(
µ,

σ2

n

)
=⇒ Y ∼ N (1.5, 0.0064).

The sampling distribution of Y when n = 5 and when n = 25 is shown in Figure 6.2.
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6.5 Central Limit Theorem

Result 2: Suppose that Y1, Y2, ..., Yn is a random sample from a population distribution

with mean µ and variance σ2 (not necessarily a normal distribution). When the sample

size n is large, the sample mean

Y ∼ AN
(
µ,

σ2

n

)
.

The symbol AN is read “approximately normal.” This result is called theCentral Limit

Theorem (CLT).

• Result 1 guarantees that when the underlying population distribution is N (µ, σ2),

the sample mean

Y ∼ N
(
µ,

σ2

n

)
.

• The Central Limit Theorem (Result 2) says that even if the population distribution

is not normal (Guassian), the sampling distribution of the sample mean Y will be

approximately normal (Gaussian) when the sample size is sufficiently large.

Example 6.3. The time to death for rats injected with a toxic substance, denoted by

Y (measured in days), follows an exponential distribution with λ = 1/5. That is,

Y ∼ exponential(λ = 1/5).

This is the population distribution. It describes the time to death for all rats in the

population.

• In Figure 6.3, I have shown the exponential(λ = 1/5) population distribution (solid

curve). I have also depicted the theoretical sampling distributions of Y when n = 5

and when n = 25.

• Notice how the sampling distribution of Y begins to (albeit distantly) resemble a

normal distribution when n = 5. When n = 25, the sampling distribution of Y

looks very much to be normal (Gaussian).
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Figure 6.3: Rat death times. Population distribution: Y ∼ exponential(λ = 1/5). Also

depicted are the sampling distributions of Y when n = 5 and n = 25.

• This is a consequence of the CLT. The larger the sample size n, the better a normal

(Gaussian) distribution represents the sampling distribution of Y .

Example 6.4. When a batch of a chemical product is prepared, the amount of an

impurity in the batch (measured in grams) is a random variable Y with:

µ = 4.0g

σ2 = (1.5g)2.

Suppose that n = 50 batches are prepared (independently). What is the probability that

the sample mean impurity amount Y will be greater than 4.2 grams?

PAGE 78



CHAPTER 6 STAT 509, J. TEBBS

Solution. With n = 50, µ = 4, and σ2 = (1.5)2, the CLT says that

Y ∼ AN
(
µ,

σ2

n

)
=⇒ Y ∼ AN (4, 0.045).

Therefore,

P (Y > 4.2) = 1− P (Y ≤ 4.2)

≈ 1-pnorm(4.2,4,sqrt(0.045))

= 0.1728893.

Important: Note that in making this (approximate) probability calculation, we never

made an assumption about the underlying population distribution. A sample of size

n = 50 is probably large enough for the Central Limit Theorem to “take effect” regardless

of what the population distribution is.

Exercise: How large should the sample size n be to guarantee P (Y > 4.2) < 0.05?

6.6 The t distribution

Result 3: Suppose that Y1, Y2, ..., Yn is a random sample from a N (µ, σ2) distribution.

Recall that Result 1 says the sample mean Y has the following sampling distribution:

Y ∼ N
(
µ,

σ2

n

)
.

If we standardize Y (see last result on page 55), we obtain

Z =
Y − µ

σ/
√
n

∼ N (0, 1).

If we replace the population standard deviation σ with the sample standard deviation S,

we get a new sampling distribution:

t =
Y − µ

S/
√
n

∼ t(n− 1),

a t distribution with degrees of freedom ν = n− 1.
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Figure 6.4: Probability density functions of N (0, 1), t(2), and t(10).

Facts: The t pdf has the following characteristics:

• It is continuous and symmetric about 0 (just like the standard normal pdf).

• It is indexed by a value ν called the degrees of freedom. In practice, ν is often

an integer (related to the sample size).

• As ν → ∞, t(ν) → N (0, 1); thus, when ν becomes larger, the t(ν) pdf and the

N (0, 1) pdf look more alike.

• When compared to the standard normal pdf, the t pdf, in general, is less peaked

and has more probability (area) in the tails.
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Remark: The t pdf formula is complicated and is unnecessary for our purposes. R will

compute probabilities and quantiles from the t distribution.

t R CODE: Suppose that T ∼ t(ν).

FT (t) = P (T ≤ t) ϕp

pt(t,ν) qt(p,ν)

Example 6.5. Hollow pipes are to be used in an electrical wiring project. In testing

“1-inch” pipes, the data below were collected by a design engineer. The data are mea-

surements of Y , the outside diameter of this type of pipe (measured in inches). These

n = 25 pipes were randomly selected and measured−all in the same location.

1.296 1.320 1.311 1.298 1.315

1.305 1.278 1.294 1.311 1.290

1.284 1.287 1.289 1.292 1.301

1.298 1.287 1.302 1.304 1.301

1.313 1.315 1.306 1.289 1.291

The manufacturers of this pipe claim that the population distribution is normal (Gaus-

sian) and that the mean outside diameter is µ = 1.29 inches. Under this assumption

(which may or may not be true), calculate the value of

t =
y − µ

s/
√
n
.

Solution. We use R to find the sample mean y and the sample standard deviation s:

> mean(pipes) ## sample mean

[1] 1.29908

> sd(pipes) ## sample standard deviation

[1] 0.01108272
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Figure 6.5: t(24) probability density function. An “×” at t = 4.096 has been added.

We compute

t =
1.299− 1.29

0.011/
√
25

≈ 4.096.

Analysis. If the manufacturer’s claim is true (that is, if µ = 1.29 inches), then

t =
y − µ

s/
√
n

should come from a t(24) distribution. The t(24) pdf is displayed above in Figure 6.5. I

placed an “×” at the value t = 4.096.

Discussion: Does t = 4.096 seem like a value you would expect to see from this dis-

tribution? Recall that t was computed under the assumption that µ = 1.29 inches (the

manufacturer’s claim). This value of t looks to be more consistent with a value of µ that

is larger than 1.29 inches.
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6.7 Normal quantile-quantile plots

Recall: Result 3 says that if Y1, Y2, ..., Yn is a random sample from a N (µ, σ2) distribu-

tion, then

t =
Y − µ

S/
√
n

∼ t(n− 1).

An obvious question therefore arises:

“What if Y1, Y2, ..., Yn are non-normal (i.e., non-Gaussian)? Does the sampling

distribution result above still hold?”

Answer: The t distribution result still approximately holds, even if the underlying

population distribution is not perfectly normal. The approximation is best when

• the sample size is larger

• the population distribution is more symmetric (not highly skewed).

Because normality (for the population distribution) is not absolutely critical for the t

sampling distribution, we say that this sampling distribution is robust to the normality

assumption.

Note: Robustness is a nice property. Here, it assures us that the underlying assump-

tion of normality is not an absolute requirement for Result 3 to hold. Other sampling

distribution results (coming up) are not always robust to normality departures.

Terminology: Just as we used Weibull qq plots to assess the Weibull model assumption

in the last chapter, we can use a normal quantile-quantile (qq) plot to assess the

normal distribution assumption. The plot is constructed as follows:

• On the vertical axis, we plot the observed data, ordered from low to high.

• On the horizontal axis, we plot the (ordered) theoretical quantiles from the distri-

bution (model) assumed for the observed data (here, normal).
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Figure 6.6: Pipe diameter data in Example 6.5. Normal qq plot. The observed data are

plotted versus the theoretical quantiles from a standard normal distribution. The line

added passes through the first and third quartiles.

• In the qqPlot function, it is “default” to take the assumed model to be the N (0, 1)

distribution (i.e., a normal distribution with mean 0 and variance 1).

• Therefore, we are really comparing the standardized values of the observed data

(here, the pipe diameter data) to the N (0, 1) quantiles.

• Linearity in the plot supports the normal assumption. Departures from linearity

refute it.

Pipe diameter data: Figure 6.6 shows the normal qq plot for the pipe diameter data

in Example 6.5. The plot does not set off any serious alarms.
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7 One-Sample Inference

Preview: In this chapter, we discuss one-sample inference procedures for three popula-

tion parameters:

• A population mean µ (Section 7.1)

• A population variance σ2 (Section 7.2)

• A population proportion p (Section 7.3).

Remember that these are population-level quantities, so they are unknown. Our goal is

to use sample information to estimate these quantities.

Relevance: To begin our discussion, suppose that we would like to estimate a pop-

ulation mean µ. To do so, suppose we have a random sample Y1, Y2, ..., Yn from a

population distribution (e.g., normal, exponential, Weibull, Poisson, etc.). Regardless of

what the population distribution is, we know that Y is an unbiased estimator for µ,

that is,

E(Y ) = µ.

However, reporting Y alone does not acknowledge that there is variability attached to

this estimator. For example, in Example 6.5 (pp 81), with the n = 25 measured pipes,

reporting

y ≈ 1.299 in

as an estimate of the population mean µ does not account for the fact that

• the 25 pipes measured were drawn randomly from a population of all pipes, and

• different samples would give different sets of pipes (and different values of y).

In other words, using Y only ignores important information; namely, how variable

the population of pipes is.
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Remedy: To address this problem, we therefore pursue the topic of interval esti-

mation (also known as confidence intervals). The main difference between a point

estimate (like y ≈ 1.299) and an interval estimate is that

• a point estimate is a “one-shot guess” at the value of the parameter; this ignores

the variability in the estimate.

• an interval estimate (i.e., confidence interval) is an interval of values. It is

formed by taking the point estimate and then adjusting it downwards and up-

wards to account for the point estimate’s variability. The end result is an “interval

estimate.”

7.1 Confidence interval for a population mean µ

Recall: We start our discussion by revisiting Result 3 in the last chapter (pp 79). Recall

that if Y1, Y2, ..., Yn is a random sample from a N (µ, σ2) distribution, then the quantity

t =
Y − µ

S/
√
n

∼ t(n− 1),

a t distribution with n− 1 degrees of freedom.

Goal: We will use this sampling distribution to create an interval estimate (i.e., a con-

fidence interval) for the population mean µ.

Notation: We introduce new notation that identifies quantiles from a t distribution with

n− 1 degrees of freedom. Define

tn−1,α/2 = upper α/2 quantile from t(n− 1) pdf

−tn−1,α/2 = lower α/2 quantile from t(n− 1) pdf

Because the t(n−1) pdf is symmetric about zero, these two quantiles are equal in absolute

value (the upper quantile is positive; the lower quantile is negative); see Figure 7.1.
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Figure 7.1: A t pdf with n−1 degrees of freedom. The upper α/2 and lower α/2 areas are

shaded. The associated quantiles, represented in the figure by dark circles, are denoted

by tn−1,α/2 (upper) and −tn−1,α/2 (lower), respectively.

Illustration: If n = 11 and α = 0.05 then

tn−1,α/2 = t10,0.025 ≈ 2.23

−tn−1,α/2 = −t10,0.025 ≈ −2.23

> qt(0.975,10) ## upper 0.025 quantile

[1] 2.228139

> qt(0.025,10) ## lower 0.025 quantile

[1] -2.228139
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Derivation: In general, for any value of α, 0 < α < 1, we can write

1− α = P

(
−tn−1,α/2 <

Y − µ

S/
√
n

< tn−1,α/2

)
= P

(
−tn−1,α/2

S√
n
< Y − µ < tn−1,α/2

S√
n

)
= P

(
tn−1,α/2

S√
n
> µ− Y > −tn−1,α/2

S√
n

)
= P

(
Y + tn−1,α/2

S√
n
> µ > Y − tn−1,α/2

S√
n

)
= P

(
Y − tn−1,α/2

S√
n
< µ < Y + tn−1,α/2

S√
n

)
.

We call (
Y − tn−1,α/2

S√
n
, Y + tn−1,α/2

S√
n

)
a 100(1− α) percent confidence interval for the population mean µ. This is written

more succinctly as

Y ± tn−1,α/2
S√
n
.

Discussion: Before we do an example, let’s discuss relevant issues about this confidence

interval.

• Note the form of the interval:

point estimate︸ ︷︷ ︸
Y

± quantile︸ ︷︷ ︸
tn−1,α/2

× standard error︸ ︷︷ ︸
S/

√
n

.

Many confidence intervals we will study follow this same general form.

• Here is how we interpret this interval: We say

“We are 100(1 − α) percent confident that the population mean µ is in

this interval.”

• Unfortunately, the word “confident” does not mean “probability.”

– The term “confidence” means that if we were able to sample from the popula-

tion over and over again, each time computing a 100(1−α) percent confidence
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interval for µ, then 100(1−α) percent of the intervals we would compute would

contain the population mean µ.

• In other words, “confidence” refers to “long term behavior” of many intervals; not

probability for a single interval. Because of this, we call 100(1−α) the confidence

level. Typical confidence levels are

– 90 percent (α = 0.10)

– 95 percent (α = 0.05)

– 99 percent (α = 0.01).

• The length of the 100(1− α) percent confidence interval

Y ± tn−1,α/2
S√
n

is equal to

2tn−1,α/2
S√
n
.

Therefore, other things being equal,

– the larger the sample size n, the smaller the interval length.

– the smaller the population variance σ2, the smaller the interval length. Recall

that S2 is an unbiased estimator for σ2.

– the larger the confidence level 100(1− α), the larger the interval length.

Remark: Clearly, shorter confidence intervals are preferred. They are more infor-

mative. Lower confidence levels will produce shorter intervals; however, you pay a

price. You have less confidence that your interval contains µ.

Example 7.1. Acute exposure to cadmium produces respiratory distress and kidney and

liver damage (and possibly death). For this reason, the level of airborne cadmium dust

and cadmium oxide fume in the air, denoted by Y (measured in milligrams of cadmium

per m3 of air), is closely monitored. A random sample of n = 35 measurements from a

large factory are given on the next page.
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0.044 0.030 0.052 0.044 0.046 0.020 0.066

0.052 0.049 0.030 0.040 0.045 0.039 0.039

0.039 0.057 0.050 0.056 0.061 0.042 0.055

0.037 0.062 0.062 0.070 0.061 0.061 0.058

0.053 0.060 0.047 0.051 0.054 0.042 0.051

Based on past experience, engineers assume a normal population distribution (for the

population of all cadmium measurements). Based on the data above, find a 99 percent

confidence interval for µ, the population mean level of airborne cadmium.

Solution. The interval is

Y ± tn−1,α/2
S√
n
.

We can use R to calculate the sample mean y and the sample standard deviation s:

> mean(cadmium) ## sample mean

[1] 0.04928571

> sd(cadmium) ## sample standard deviation

[1] 0.0110894

For a 99 percent confidence level; i.e., with α = 0.01, we use

t34,0.01/2 = t34,0.005 ≈ 2.728.

> qt(0.995,34) ## upper 0.005 quantile

[1] 2.728394

A 99 percent confidence interval for the population mean level of airborne cadmium µ is

y ± tn−1,α/2
s√
n

=⇒ 0.049± 2.728

(
0.011√

35

)
=⇒ (0.044, 0.054) mg/m3.

Interpretation: We are 99 percent confident that the population mean level of airborne

cadmium µ is between 0.044 and 0.054 mg/m3.
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Note: It is possible to implement the t interval procedure entirely in R using the t.test

function:

> t.test(cadmium,conf.level=0.99)$conf.int

[1] 0.04417147 0.05439996

Assumptions: The confidence interval

Y ± tn−1,α/2
S√
n

for the population mean µ was created based on the following assumptions:

1. Y1, Y2, ..., Yn is a random sample

2. The population distribution is N (µ, σ2).

For the confidence interval for the population mean µ to be meaningful, the random

sample assumption must be satisfied. However, recall from the last chapter that the t

sampling distribution result

t =
Y − µ

S/
√
n

∼ t(n− 1)

does still hold approximately even if the underlying population distribution is not per-

fectly normal. Therefore, the confidence interval (which was derived from this sampling

distribution) is also “robust to normality departures.”

• This means that even if the population distribution is mildly non-normal, the

confidence interval formula

Y ± tn−1,α/2
S√
n

can still be used to estimate the population mean µ.

• However, if there is strong evidence that the population distribution is grossly

non-normal, then you should exercise caution in using this confidence interval,

especially when the sample size n is small.
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Figure 7.2: Normal qq plot for the cadmium data in Example 7.1. The observed data

are plotted versus the theoretical quantiles from a normal distribution. The line added

passes through the first and third theoretical quartiles.

• Recall that you can use qq plots to check the normality assumption.

Cadmium data: The qq plot for the cadmium data in Figure 7.2 does not reveal any

serious departures from the normality assumption. We can feel comfortable reporting

(0.044, 0.054) mg/m3

as a 99 percent confidence interval for the population mean cadmium level µ.

Remark: As we have just seen, statistical inference procedures are derived from specific

assumptions. Going forward, it is important to know what these assumptions are, how

critical they are, and how to check them.
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7.2 Confidence interval for a population variance σ2

Relevance: In many situations, we are concerned not with the mean of a population,

but with the variance σ2 instead. If the population variance σ2 is excessively large, this

could point to a potential problem with a manufacturing process, for example, where

there is too much variation in the measurements produced. Elsewhere,

• in a laboratory setting, engineers might wish to estimate the variance σ2 attached

to a measurement system (e.g., scale, caliper, etc.).

• in field trials, agronomists are often interested in comparing the variability levels

for different cultivars or genetically-altered varieties.

• in clinical trials, physicians are often concerned if there are substantial differences

in the variation levels of patient responses at different clinic sites.

Result: If Y1, Y2, ..., Yn is a random sample from a N (µ, σ2) distribution, then the quan-

tity

Q =
(n− 1)S2

σ2
∼ χ2(n− 1),

a χ2 distribution with n− 1 degrees of freedom.

Goal: We will use this sampling distribution to create a confidence interval for the

population variance σ2.

Facts: The χ2 pdf has the following characteristics:

• It is continuous, skewed to the right, and always positive; see Figure 7.3.

• It is indexed by a value ν called the degrees of freedom. In practice, ν is often

an integer (related to the sample size).

• The χ2 pdf formula is unnecessary for our purposes. R will compute χ2 probabilities

and quantiles from the χ2 distribution.
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Figure 7.3: χ2 pdfs with different degrees of freedom.

χ2 R CODE: Suppose that Q ∼ χ2(ν).

FQ(q) = P (Q ≤ q) ϕp

pchisq(q,ν) qchisq(p,ν)

Notation: We introduce new notation that identifies quantiles from a χ2 distribution

with n− 1 degrees of freedom. Define

χ2
n−1,1−α/2 = upper α/2 quantile from χ2(n− 1) pdf

χ2
n−1,α/2 = lower α/2 quantile from χ2(n− 1) pdf
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Figure 7.4: A χ2 pdf with n − 1 degrees of freedom. The upper α/2 and lower α/2

areas are shaded. The associated quantiles, represented in the figure by dark circles, are

denoted by χ2
n−1,1−α/2 (upper) and χ2

n−1,α/2 (lower), respectively.

Illustration: If n = 11 and α = 0.05 then

χ2
n−1,1−α/2 = χ2

10,0.975 ≈ 20.48

χ2
n−1,α/2 = χ2

10,0.025 ≈ 3.25

> qchisq(0.975,10) ## upper 0.025 quantile

[1] 20.48318

> qchisq(0.025,10) ## lower 0.025 quantile

[1] 3.246973
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Derivation: In general, for any value of α, 0 < α < 1, we can write

1− α = P

(
χ2
n−1,α/2 <

(n− 1)S2

σ2
< χ2

n−1,1−α/2

)
= P

(
1

χ2
n−1,α/2

>
σ2

(n− 1)S2
>

1

χ2
n−1,1−α/2

)

= P

(
(n− 1)S2

χ2
n−1,α/2

> σ2 >
(n− 1)S2

χ2
n−1,1−α/2

)

= P

(
(n− 1)S2

χ2
n−1,1−α/2

< σ2 <
(n− 1)S2

χ2
n−1,α/2

)
.

This argument shows that (
(n− 1)S2

χ2
n−1,1−α/2

,
(n− 1)S2

χ2
n−1,α/2

)
is a 100(1 − α) percent confidence interval for the population variance σ2. We

interpret the interval in the same way:

“We are 100(1 − α) percent confident that the population variance σ2 is in

this interval.”

Note: A 100(1−α) percent confidence interval for the population standard deviation

σ arises from simply taking the square root of the endpoints of the σ2 interval.

• That is, (√
(n− 1)S2

χ2
n−1,1−α/2

,

√
(n− 1)S2

χ2
n−1,α/2

)
is a 100(1−α) percent confidence interval for the population standard deviation σ.

• In practice, this interval may be preferred over the σ2 interval, because standard

deviation is a measure of variability in terms of the original units (e.g., dollars,

inches, days, etc.).

• The variance is measured in squared units (e.g., dollars2, in2, days2, etc.) and is in

general harder to interpret.
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Example 7.2. Industrial engineers at IKEA observed a random sample of n = 36 rivet-

head screws used in the Billy Bookcase system. The observed diameters of the top of the

screws (measured in cm) are given below:

1.206 1.190 1.200 1.195 1.201 1.200 1.198 1.196 1.195 1.202 1.203 1.210

1.206 1.193 1.207 1.201 1.199 1.200 1.199 1.204 1.194 1.203 1.194 1.199

1.203 1.200 1.197 1.208 1.199 1.205 1.199 1.204 1.202 1.196 1.211 1.204

The IKEA manufactured specifications dictate that the population standard deviation

diameter for these screws should be no larger than σ = 0.003. Otherwise, there is too

much variability in the screws (which could lead to difficulty in construction and hence

customer dissatisfaction). Based on the data above, find a 95 percent confidence interval

for the population standard deviation σ.

Solution. We first calculate a 95 percent confidence interval for the population variance

σ2 using (
(n− 1)S2

χ2
n−1,1−α/2

,
(n− 1)S2

χ2
n−1,α/2

)
.

There is no internal function in R to calculate this interval, so I wrote one:

var.interval = function(data,conf.level=0.95){

df = length(data)-1

chi.lower = qchisq((1-conf.level)/2,df)

chi.upper = qchisq((1+conf.level)/2,df)

s2 = var(data)

c(df*s2/chi.upper,df*s2/chi.lower)

}

With this function, I calculated

> var.interval(diameters)

[1] 1.545590e-05 3.997717e-05

Interpretation: We are 95 percent confident that the population variance σ2 for the

screw diameters is between 0.0000155 and 0.0000400 cm2.
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A 95 percent confidence interval for the population standard deviation σ (which is what

we originally wanted) is calculated here:

> sd.interval = sqrt(var.interval(diameters))

> sd.interval

[1] 0.003931399 0.006322751

Interpretation: We are 95 percent confident that the population standard deviation

σ for the screw diameters is between 0.0039 and 0.0063 cm. This interval suggests that

the population standard deviation is larger than 0.003 cm, which indicates that there is

excessive variability in the diameters of the screws.

Assumptions: The confidence interval(
(n− 1)S2

χ2
n−1,1−α/2

,
(n− 1)S2

χ2
n−1,α/2

)

for the population variance σ2 was created based on the following assumptions:

1. Y1, Y2, ..., Yn is a random sample

2. The population distribution is N (µ, σ2).

For the confidence interval for the population variance σ2 to be meaningful, the random

sample assumption must be satisfied.

Warning: Unlike the t confidence interval for a population mean µ, the χ2 interval for

a population variance σ2 is not robust to normality departures. This is true because

the sampling distribution

Q =
(n− 1)S2

σ2
∼ χ2(n− 1)

depends critically on the N (µ, σ2) population distribution assumption.

• If the underlying population distribution is non-normal (non-Guassian), then the

confidence interval formulas for σ2 (and σ) are not to be used.
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Figure 7.5: Normal qq plot for IKEA screw diameter data in Example 7.2. The observed

data are plotted versus the theoretical quantiles from a normal distribution. The line

added passes through the first and third theoretical quartiles.

• In the presence of non-normality, these confidence intervals may give results which

are misleading (and hence potentially dangerous).

• Therefore, it is very important to check the normality assumption when you con-

struct a confidence interval for a population variance σ2 (or for a population stan-

dard deviation σ).

Screw diameter data: Fortunately, the qq plot for the IKEA screw diameter data in

Figure 7.5 shows that there is no cause for concern. The normality assumption for these

data is not in doubt.
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7.3 Confidence interval for a population proportion p

Situation: We now switch gears and focus on a new population-level parameter: the

population proportion p. This parameter is relevant when the characteristic we mea-

sure on each individual is binary (i.e., only 2 outcomes possible). Here are some exam-

ples:

p = proportion of defective circuit boards

p = proportion of customers who are “satisfied”

p = proportion of payments received on time

p = proportion of HIV positives in SC.

To start our discussion, we need to recall the Bernoulli trial assumptions for each

individual in the sample:

1. each individual results in a “success” or a “failure,”

2. the individuals are independent, and

3. the probability of “success” p is the same for every individual.

In our examples above,

“success” −→ circuit board defective

“success” −→ customer satisfied

“success” −→ payment received on time

“success” −→ HIV positive individual.

Recall: If the individual success/failure statuses in the sample adhere to the Bernoulli

trial assumptions, then

Y = the number of successes out of n sampled individuals

follows a binomial distribution, that is, Y ∼ b(n, p). The statistical problem at hand is

to use the information in Y to estimate p.
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Note: A natural point estimator for p, the population proportion, is

p̂ =
Y

n
,

the sample proportion. This statistic is simply the proportion of “successes” in the

sample (out of n individuals).

Properties: Mathematical arguments can be used to show the following results:

E(p̂) = p

se(p̂) =

√
p(1− p)

n
.

The first result says that the sample proportion p̂ is an unbiased estimator of the

population proportion p. The second (standard error) result quantifies the precision of p̂

as an estimator of p.

Result: Knowing the sampling distribution of p̂ is critical if we are going to formalize

statistical inference procedures for p. In this situation, we appeal to an approximate

result (conferred by the Central Limit Theorem) which says that

p̂ ∼ AN
(
p,

p(1− p)

n

)
,

when the sample size n is large. Standardizing p̂, we get

Z =
p̂− p√
p(1− p)

n

∼ AN (0, 1),

an approximate standard normal distribution.

Notation: We introduce new notation that identifies quantiles from a N (0, 1) distribu-

tion. Define

zα/2 = upper α/2 quantile from N (0, 1) pdf

−zα/2 = lower α/2 quantile from N (0, 1) pdf

Because theN (0, 1) pdf is symmetric about zero, these two quantiles are equal in absolute

value (the upper quantile is positive; the lower quantile is negative); see Figure 7.6.

PAGE 101



CHAPTER 7 STAT 509, J. TEBBS

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

z

P
D

F

1 − α

α 2 α 2

Figure 7.6: The N (0, 1) pdf. The upper α/2 and lower α/2 areas are shaded. The

associated quantiles, represented in the figure by dark circles, are denoted by zα/2 (upper)

and −zα/2 (lower), respectively.

Illustration: If α = 0.05 then

zα/2 = z0.025 ≈ 1.96

−zα/2 = −z0.025 ≈ −1.96

> qnorm(0.975,0,1) ## upper 0.025 quantile

[1] 1.959964

> qnorm(0.025,0,1) ## lower 0.025 quantile

[1] -1.959964
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Derivation: In general, for any value of α, 0 < α < 1, we can write

1− α ≈ P

−zα/2 <
p̂− p√
p̂(1−p̂)

n

< zα/2


= P

(
−zα/2

√
p̂(1− p̂)

n
< p̂− p < zα/2

√
p̂(1− p̂)

n

)

= P

(
zα/2

√
p̂(1− p̂)

n
> p− p̂ > −zα/2

√
p̂(1− p̂)

n

)

= P

(
p̂+ zα/2

√
p̂(1− p̂)

n
> p > p̂− zα/2

√
p̂(1− p̂)

n

)

= P

(
p̂− zα/2

√
p̂(1− p̂)

n
< p < p̂+ zα/2

√
p̂(1− p̂)

n

)
.

We call (
p̂− zα/2

√
p̂(1− p̂)

n
, p̂+ zα/2

√
p̂(1− p̂)

n

)
a 100(1 − α) percent confidence interval for the population proportion p. This is

written more succinctly as

p̂± zα/2

√
p̂(1− p̂)

n
.

• Note the form of the interval:

point estimate︸ ︷︷ ︸
p̂

± quantile︸ ︷︷ ︸
zα/2

× standard error︸ ︷︷ ︸√
p̂(1−p̂)

n

.

• We interpret the interval in the same way:

“We are 100(1 − α) percent confident that the population proportion p

is in this interval.”

Note: This interval should be used only when the sample size n is “large.” A common

rule of thumb is to require

np̂ ≥ 5

n(1− p̂) ≥ 5.

Under these conditions, the CLT should adequately describe the sampling distribution

of p̂, thereby making the confidence interval formula above approximately valid.
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Example 7.3. One source of water pollution is gasoline leakage from underground

storage tanks. In Pennsylvania, a random sample of n = 74 gasoline stations is selected

from the state and the tanks are inspected; 10 stations are found to have at least one

leaking tank. Calculate a 95 percent confidence interval for p, the population proportion

of gasoline stations with at least one leaking tank.

Solution. In this situation, we interpret

• gasoline station = individual “trial”

• at least one leaking tank = “success”

• p = population proportion of stations with at least one leaking tank.

For 95 percent confidence, we need z0.05/2 = z0.025 ≈ 1.96.

> qnorm(0.975,0,1) ## upper 0.025 quantile

[1] 1.959964

The sample proportion of stations with at least one leaking tank is

p̂ =
10

74
≈ 0.135.

Therefore, an approximate 95 percent confidence interval for p is

0.135± 1.96

√
0.135(1− 0.135)

74
=⇒ (0.057, 0.213).

Interpretation: We are 95 percent confident that the population proportion of stations

in Pennsylvania with at least one leaking tank is between 0.057 and 0.213.

CLT approximation check: We have

np̂ = 74

(
10

74

)
= 10

n(1− p̂) = 74

(
1− 10

74

)
= 64.

Both of these are larger than 5 =⇒ we can feel comfortable in using this confidence

interval formula.
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7.4 Sample size determination

Motivation: In the planning stages of an experiment or investigation, we need to first

determine how many individuals are needed to write a confidence interval with a given

level of precision. For example, we might want to construct a

• 95 percent confidence interval to estimate the population mean time needed for

patients to recover from infection. How many patients should we recruit?

• 99 percent confidence interval to estimate the population proportion of defective

parts. How many parts should be sampled?

Of course, collecting data almost always costs money. Therefore, one must be cognizant

not only of the statistical issues associated with sample size determination, but also

of the practical issues like cost, time spent in data collection, personnel training, etc.

7.4.1 Inference for a population mean

Setting: Suppose that Y1, Y2, ..., Yn is a random sample from a N (µ, σ2) population. In

Section 7.1, we derived a 100(1− α) percent confidence interval for µ to be

Y ± tn−1,α/2
S√
n
.

Suppose, for the moment, that the population variance σ2 was known. In real life, this

is rarely the case (i.e., “rarely” = “never”). However, if σ2 was known, then a 100(1−α)

percent confidence interval for µ could be calculated as

Y ± zα/2
σ√
n
.

Denote the margin of error by

B = zα/2
σ√
n
.

This is the quantity that is added/subtracted to the point estimate Y to form the confi-

dence interval for the population mean µ.
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Formula: In the setting described above, it is possible to determine the sample size n

necessary once we specify these three pieces of information:

• the value of σ2 (e.g., an educated guess at its value; e.g., from historical data, etc.)

• the confidence level, 100(1− α)

• the margin of error, B.

This is true because

B = zα/2
σ√
n

⇐⇒ n =
(zα/2σ

B

)2
.

This is the necessary sample size to guarantee a prescribed level of confidence 100(1−α)

and margin of error B.

Example 7.4. In a biomedical experiment, we would like to estimate the population

mean remaining life µ of healthy rats that are given a certain dose of a toxic substance.

Suppose that we would like to write a 95 percent confidence interval for µ with a margin

of error equal to B = 2 days. From past studies, remaining rat lifetimes have been

approximated by a normal distribution with standard deviation σ = 8 days. How many

rats should we use for the experiment?

Solution. With z0.05/2 = z0.025 ≈ 1.96, B = 2, and σ = 8, the desired sample size to

estimate µ is

n =
(zα/2σ

B

)2
=

(
1.96× 8

2

)2

≈ 61.46.

We would sample n = 62 rats to achieve these goals.

Extension: Suppose it is determined that this is too many rats. We could weaken our

requirements to, say, B = 3 (a less informative interval) and 90 percent confidence (less

confidence). The desired sample size is now

n =
(zα/2σ

B

)2
=

(
1.645× 8

3

)2

≈ 19.24.

We would need to sample only n = 20 rats to meet these weaker requirements.
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7.4.2 Inference for a population proportion

Setting: Suppose we would like to write a 100(1− α) percent confidence interval for p,

a population proportion. We know that

p̂± zα/2

√
p̂(1− p̂)

n

is an approximate 100(1−α) percent confidence interval for p. What sample size n should

we use?

Note: To determine the necessary sample size n, we first need to specify two pieces of

information:

• the confidence level 100(1− α)

• the margin of error:

B = zα/2

√
p̂(1− p̂)

n
.

A small problem arises. Note that the margin of error B depends on p̂. Unfortunately,

p̂ can only be calculated once we know the sample size n. We overcome this problem by

replacing p̂ with p0, an a priori guess at its value. The last expression becomes

B = zα/2

√
p0(1− p0)

n
.

Solving this equation for n, we get

n =
(zα/2

B

)2
p0(1− p0).

This is the desired sample size n to write a 100(1−α) percent confidence interval for the

population proportion p with a prescribed margin of error (roughly) equal to B. I say

“roughly,” because there may be additional uncertainty arising from our use of p0 (our

best guess).

Remark: If there is no sensible guess for p available, use p0 = 0.5. In this situation, the

resulting value for n will be as large as possible. Put another way, using p0 = 0.5 gives
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the most conservative solution (i.e., the largest sample size, n). This is true because

n = n(p0) =
(zα/2

B

)2
p0(1− p0),

when viewed as a function of p0, is maximized when p0 = 0.5. However, the resulting

sample size could be very large (perhaps much larger than is practical to use).

Example 7.5. You have been asked to estimate the proportion of raw material (in a

certain manufacturing process) that is being “scrapped;” e.g., the material is so defective

that it can not be reworked. If this proportion is larger than 10 percent, this will be

deemed (by management) to be an unacceptable continued operating cost and a sub-

stantial process overhaul will be performed. Past experience suggests that the scrap rate

is about 5 percent, but recent information suggests that this rate may be increasing.

You would like to write a 95 percent confidence interval for p, the population proportion

of raw material that is to be scrapped, with a margin of error equal to B = 0.02. How

many pieces of material should you ask to be sampled?

Solution. For 95 percent confidence, we need z0.05/2 = z0.025 ≈ 1.96. In providing an

initial guess, we have options; we could use

p0 = 0.05 (historical scrap rate)

p0 = 0.10 (“critical mass” value)

p0 = 0.50 (most conservative choice).

For these choices, we have

n =

(
1.96

0.02

)2

0.05(1− 0.05) ≈ 457

n =

(
1.96

0.02

)2

0.10(1− 0.10) ≈ 865

n =

(
1.96

0.02

)2

0.50(1− 0.50) ≈ 2401.

As we can see, the “guessed” value of p0 has a substantial impact on the final sample

size calculation. Furthermore, it may not be practical to sample 2,401 parts, as would

be required by the most conservative approach.
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8 Two-Sample Inference

Preview: In this chapter, we discuss two-sample inference procedures for the following

population parameters:

• The difference of two population means µ1 − µ2 (Section 8.1)

• The ratio of two population variances σ2
2/σ

2
1 (Section 8.2)

• The difference of two population proportions p1 − p2 (Section 8.3).

Remember that these are population-level quantities (now involving two different pop-

ulations), so they are unknown. Our goal is to use sample information (now with two

samples) to estimate these quantities.

Usefulness: In practice, it is very common to compare the same characteristic (e.g.,

mean, variance, proportion, etc.) on two different populations. For example, we may

wish to compare

• the population mean starting salaries of male and female engineers (compare µ1

and µ2). Is there evidence that males have a larger mean starting salary?

• the population variance of sound levels from two indoor swimming pool designs

(compare σ2
1 and σ2

2). Are the sound-level acoustics of a new design more variable

than the standard design?

• the population proportion of defectives produced from two different suppliers

(compare p1 and p2). Are there differences between the two suppliers?

Note: Our methods in the last chapter are applicable only for a single population

(i.e., a population mean µ, a population variance σ2, and a population proportion p).

We therefore extend these methods to two populations. We start with comparing two

population means.
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8.1 Confidence interval for the difference of two population

means µ1 − µ2

Setting: Suppose that we have two independent random samples:

Sample 1 : Y11, Y12, ..., Y1n1 ∼ N (µ1, σ
2
1)

Sample 2 : Y21, Y22, ..., Y2n2 ∼ N (µ2, σ
2
2).

Point estimators: Define the statistics

Y 1+ =
1

n1

n1∑
j=1

Y1j = sample mean for sample 1

Y 2+ =
1

n2

n2∑
j=1

Y2j = sample mean for sample 2

S2
1 =

1

n1 − 1

n1∑
j=1

(Y1j − Y 1+)
2 = sample variance for sample 1

S2
2 =

1

n2 − 1

n2∑
j=1

(Y2j − Y 2+)
2 = sample variance for sample 2.

Goal: Our goal is to construct a 100(1−α) percent confidence interval for the difference

of two population means µ1 − µ2.

Important: How we construct this interval depends on our assumptions on the popula-

tion variances σ2
1 and σ2

2. In particular, we consider two cases:

• σ2
1 = σ2

2; that is, the two population variances are equal

• σ2
1 ̸= σ2

2; that is, the two population variances are not equal.

8.1.1 Independent samples: Equal population variances

Result: Under the assumptions above and when σ2
1 = σ2

2, the quantity

t =
(Y 1+ − Y 2+)− (µ1 − µ2)√

S2
p

(
1
n1

+ 1
n2

) ∼ t(n1 + n2 − 2),
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Figure 8.1: Two normal populations with σ2
1 = σ2

2.

where

S2
p =

(n1 − 1)S2
1 + (n2 − 1)S2

2

n1 + n2 − 2
.

• For this sampling distribution to hold exactly, we need

– the two random samples to be independent

– the two population distributions to be normal (Gaussian)

– the two population distributions to have the same variance; i.e., σ2
1 = σ2

2.

• The statistic S2
p is called the pooled sample variance estimator of the common

population variance, say, σ2. It is a weighted average of the two sample variances

S2
1 and S2

2 (where the weights are functions of the sample sizes n1 and n2).
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Figure 8.2: A t pdf with n1 + n2 − 2 degrees of freedom. The upper α/2 and lower α/2

areas are shaded. The associated quantiles, represented in the figure by dark circles, are

denoted by tn1+n2−2,α/2 (upper) and −tn1+n2−2,α/2 (lower), respectively.

• The sampling distribution t ∼ t(n1 + n2 − 2) suggests that confidence interval

quantiles will come from this t distribution; note that this distribution depends on

the sample sizes from both samples.

• In particular, because t ∼ t(n1 + n2 − 2), the upper quantile tn1+n2−2,α/2 satisfies

P

−tn1+n2−2,α/2 <
(Y 1+ − Y 2+)− (µ1 − µ2)√

S2
p

(
1
n1

+ 1
n2

) < tn1+n2−2,α/2

 = 1− α.

This probability equation is seen by examining Figure 8.2.
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• After performing algebraic manipulations (similar to those in the last chapter), we

obtain

(Y 1+ − Y 2+)± tn1+n2−2,α/2

√
S2
p

(
1

n1

+
1

n2

)
.

This is a 100(1− α) percent confidence interval for the difference of two pop-

ulation means µ1 − µ2.

• We see that the interval again has the same form:

point estimate︸ ︷︷ ︸
Y 1+−Y 2+

± quantile︸ ︷︷ ︸
tn1+n2−2,α/2

× standard error︸ ︷︷ ︸√
S2
p

(
1
n1

+ 1
n2

) .

We interpret the interval in the same way.

“We are 100(1−α) percent confident that the population mean difference

µ1 − µ2 is in this interval.”

• Important: In two-sample situations, it is usually of interest to compare the

population means µ1 and µ2:

– If the confidence interval for µ1−µ2 includes 0, this does not suggest that the

population means µ1 and µ2 are different.

– If the confidence interval for µ1 − µ2 does not include 0, this suggests the

population means are different.

Example 8.1. In the vicinity of a nuclear power plant, environmental engineers from

the EPA would like to determine if there is a difference between the population mean

weight in fish (of the same species) from two locations. Independent samples are taken

from each location and the following weights (in ounces) are observed:

Location 1: 21.9 18.5 12.3 16.7 21.0 15.1 18.2 23.0 36.8 26.6

Location 2: 21.0 19.6 14.4 16.9 23.4 14.6 10.4 16.5

Construct a 90 percent confidence interval for the population mean weight difference

µ1 − µ2, where the mean weight µ1 (µ2) corresponds to location 1 (2).
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Figure 8.3: Boxplots of fish weight data by location in Example 8.1.

Analysis. In order to visually assess the equal population variance assumption σ2
1 = σ2

2,

we use boxplots to display the data in each sample; see Figure 8.3.

• The equal variance assumption looks reasonable; the spread in each distribution

looks roughly the same (save the outlier in Location 1).

• In Section 8.2, we will look at formal statistical inference procedures to compare

two population variances. For now, we will rely on this rough assessment (based

on sample information only; no inference).

Calculation: We can use R to calculate the confidence interval directly:

> t.test(loc.1,loc.2,conf.level=0.90,var.equal=TRUE)$conf.int

[1] -0.9404376 8.7604376
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A 90 percent confidence interval for the population mean difference µ1 − µ2 is

(−0.940, 8.760) oz.

Interpretation: We are 90 percent confident that the population mean difference µ1−µ2

is between −0.940 and 8.760 oz. Note that this interval includes “0.” Therefore, we do

not have sufficient evidence that the population mean fish weights µ1 and µ2 are different.

Robustness: Some comments are in order about the robustness properties of the two-

sample confidence interval

(Y 1+ − Y 2+)± tn1+n2−2,α/2

√
S2
p

(
1

n1

+
1

n2

)
for the difference of two population means µ1 − µ2.

• We should only use this confidence interval if there is strong evidence that the

population variances σ2
1 and σ2

2 are similar.

• In other words, this confidence interval is not robust to a violation of the equal

population variance assumption.

• Like the one-sample t confidence interval for a single population mean µ, this two-

sample t confidence interval is robust to mild departures from normality.

• This means that we can feel comfortable using the interval even if the underlying

population distributions are not perfectly normal (Guassian).

Fish weight data: Normal qq plots for the two samples of fish weight data are given

in Figure 8.4.

• With such small sample sizes (n1 = 10 and n2 = 8), it is hard to make any conclusive

assessments about the normal population assumption.

• This uncertainty manifests itself in the qq plots; note how the “bands of uncer-

tainty” are very wide.

• The very heavy fish (36.8 oz) in the first sample might be regarded as an outlier,

because it is the only observation that falls outside the bands.
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Figure 8.4: Quantile-quantile plots for the fish weight data in Example 8.1.

8.1.2 Independent samples: Unequal population variances

Remark: When σ2
1 ̸= σ2

2, we can not use

t =
(Y 1+ − Y 2+)− (µ1 − µ2)√

S2
p

(
1
n1

+ 1
n2

)
as a basis for inference because the pooled sample variance S2

p does not estimate any-

thing meaningful. Constructing a confidence interval for µ1 − µ2 becomes more difficult

theoretically. However, we can write an approximate confidence interval.

Formula: An approximate 100(1 − α) percent confidence interval for the difference of

two population means µ1 − µ2 is given by

(Y 1+ − Y 2+)± tν,α/2

√
S2
1

n1

+
S2
2

n2

,

where the degrees of freedom ν is calculated as

ν =

(
S2
1

n1
+

S2
2

n2

)2
(

S2
1

n1

)2
n1−1

+

(
S2
2

n2

)2
n2−1

.
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• This interval is always approximately valid, as long as

– the two samples are independent

– the two population distributions are approximately normal (Gaussian).

• This interval remains valid even when σ2
1 = σ2

2, but its theoretical properties are

not as good as those of the equal population variance interval.

• No one in their right mind would calculate this interval “by hand” (particularly

nasty is the formula for ν). R will produce the interval on request.

Example 8.2. You are part of a recycling project that is examining how much paper is

being discarded (not recycled) by employees at two large plants. These data are obtained

on the amount of white paper thrown out per year by employees (data are in hundreds

of pounds). Samples of employees at each plant were randomly selected.

Plant 1: 3.01 2.58 3.04 1.75 2.87 2.57 2.51 2.93 2.85 3.09

1.43 3.36 3.18 2.74 2.25 1.95 3.68 2.29 1.86 2.63

2.83 2.04 2.23 1.92 3.02

Plant 2: 3.99 2.08 3.66 1.53 4.27 4.31 2.62 4.52 3.80 5.30

3.41 0.82 3.03 1.95 6.45 1.86 1.87 3.98 2.74 4.81

Construct a 95 percent confidence interval for the population mean difference µ1 − µ2,

where the mean amount discarded µ1 (µ2) corresponds to Plant 1 (2).

Analysis. We use boxplots to display the data; see Figure 8.5. This figure suggests

the equal population variance assumption is doubtful. The spread in the two boxplots is

markedly difficult (again, this is a rough determination based on the sample information).

Calculation: We can use R to calculate the confidence interval directly:

> t.test(plant.1,plant.2,conf.level=0.95,var.equal=FALSE)$conf.int

[1] -1.46179176 -0.06940824
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Figure 8.5: Boxplots of discarded white paper amounts (in 100s lb) in Example 8.2.

A 95 percent confidence interval for the population mean difference µ1 − µ2 is

(−1.461,−0.069) 100s lbs.

Interpretation: We are 95 percent confident that the population mean difference µ1 −

µ2 is between −146.1 and −6.9 lbs. This interval does not include “0” and contains

only negative values. Therefore, we have evidence that the population mean amount of

discarded paper is smaller for Plant 1 than it is for Plant 2.

Normality: Normal qq plots for the two samples of white paper data are given in Figure

8.6. There is no cause to question the normality assumption.

Remark: We have presented two confidence intervals for the population mean difference

µ1−µ2. One assumes σ2
1 = σ2

2 (equal population variances) and one that assumes σ2
1 ̸= σ2

2
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Figure 8.6: Quantile-quantile plots for the white paper data in Example 8.2.

(unequal population variances). Advice: If you are unsure about which interval to use,

go with the unequal variance interval. The penalty for using it when σ2
1 = σ2

2 is much

smaller than the penalty for using the equal variance interval when σ2
1 ̸= σ2

2.

8.1.3 Dependent samples: Matched pairs

Example 8.3. Ergonomics experts hired by a large company designed a study to de-

termine whether more varied work conditions would have any impact on arm movement.

The data on the next page were obtained on a random sample of n = 26 employees. Each

observation is the amount of time, expressed as a percentage of the total time observed,

during which arm elevation was below 30 degrees. This percentage is a surrogate

for the percentage of time spent on repetitive tasks. The two measurements from each

employee were obtained 18 months apart. During this 18-month period, work conditions

were “changed” by the ergonomics team, and subjects were allowed to engage in a wider

variety of work tasks.
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Individual Before After Individual Before After

1 81.3 78.9 14 74.9 58.3

2 87.2 91.4 15 75.8 62.5

3 86.1 78.3 16 72.6 70.2

4 82.2 78.3 17 80.8 58.7

5 90.8 84.4 18 66.5 66.6

6 86.9 67.4 19 72.2 60.7

7 96.5 92.8 20 56.5 65.0

8 73.0 69.9 21 82.4 73.7

9 84.2 63.8 22 88.8 80.4

10 74.5 69.7 23 80.0 78.8

11 72.0 68.4 24 91.1 81.8

12 73.8 71.8 25 97.5 91.6

13 74.2 58.3 26 70.0 74.2

Table 8.1: Ergonomics data. Percentage of time arm elevation was less than 30 degrees.

Question: Does the population mean time (during which elevation is below 30 degrees)

decrease after the ergonomics team changes the working conditions?

Terminology: A matched-pairs design is an experimental design where one obtains

a pair of measurements on each individual (e.g., employee, material, machine, etc.):

• one measurement corresponds to “Treatment 1”

• the other measurement corresponds to “Treatment 2”

• Clearly, the two samples are no longer independent. Each individual contributes a

response to both samples.

This type of design removes variation among the individuals. This allows you to compare

the two treatments (e.g., before/after working environment) under more homogeneous

conditions where only variation within individuals is present (that is, the variation arising

from the difference in the two treatments).
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Table 8.2: Ergonomics example. Sources of variation in the two independent sample and

matched pairs designs.

Design Sources of Variation

Two Independent Samples among employees, within employees

Matched Pairs within employees

Advantage: When you remove extra variability, this enables you to compare the two

experimental conditions (treatments) more precisely. This gives you a better chance of

identifying a difference between the treatment means if one really exists.

• In a design with two independent samples, the extra variation among individuals

may prevent us from being able to identify this difference!

Note: In matched pairs experiments, if possible, it is important to randomize the

order in which treatments are assigned. This may eliminate “common patterns” that

may be seen when always following, say, Treatment 1 with Treatment 2. In practice, the

experimenter could flip a fair coin to determine which treatment is applied first.

Implementation: Data from matched pairs experiments are analyzed by examining the

difference in responses of the two treatments. Specifically, compute

Dj = Y1j − Y2j,

for each individual j = 1, 2, ..., n. After doing this, we have essentially created a “one

sample problem,” where our data are now

D1, D2, ..., Dn,

the so-called data differences. The one sample 100(1− α) percent confidence interval

D ± tn−1,α/2
SD√
n
,
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Individual Before After Difference Individual Before After Difference

1 81.3 78.9 2.4 14 74.9 58.3 16.6

2 87.2 91.4 −4.2 15 75.8 62.5 13.3

3 86.1 78.3 7.8 16 72.6 70.2 2.4

4 82.2 78.3 3.9 17 80.8 58.7 22.1

5 90.8 84.4 6.4 18 66.5 66.6 −0.1

6 86.9 67.4 19.5 19 72.2 60.7 11.5

7 96.5 92.8 3.7 20 56.5 65.0 −8.5

8 73.0 69.9 3.1 21 82.4 73.7 8.7

9 84.2 63.8 20.4 22 88.8 80.4 8.4

10 74.5 69.7 4.8 23 80.0 78.8 1.2

11 72.0 68.4 3.6 24 91.1 81.8 9.3

12 73.8 71.8 2.0 25 97.5 91.6 5.9

13 74.2 58.3 15.9 26 70.0 74.2 −4.2

Table 8.3: Ergonomics data. Percentage of time arm elevation was less than 30 degrees.

The data differences Dj = Y1j − Y2j have been added.

where D and SD are the sample mean and sample standard deviation of the differences,

respectively, is an interval estimate for

µD = µ1 − µ2

= population mean difference between the 2 treatments.

The parameter µD = µ1 − µ2 describes the population mean difference for the two

treatment groups. If the two population means are then same, then µD = 0. Therefore,

• If the confidence interval for µD includes 0, this does not suggest that the two

population means are different.

• If the confidence interval for µD does not include 0, this suggests that the two

population means are different.
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Analysis: With the ergonomics data, we use R to construct a 95 percent confidence

interval for µD = µ1 − µ2:

> t.test(diff,conf.level=0.95)$conf.int

[1] 3.636034 9.894735

Note that this is a one-sample confidence interval calculated using the data differences.

Interpretation: We are 95 percent confident that the population mean difference µD =

µ1 − µ2 is between 3.6 and 9.9 percent. This interval does not include “0” and contains

only positive values.

• Therefore, we have evidence that the population mean percentage of time that arm

elevation is below 30 degrees is larger in the “before” condition than in the “after”

condition.

• In other words, there is evidence that the “change” in work conditions implemented

by the ergonomics team (in the 18-month interim) did reduce this population mean

time.

Assumptions: In matched pairs experiments, the relevant assumptions are

1. The individuals sampled form a random sample.

2. The data differences D1, D2, ..., Dn are normally distributed.

Ergonomics data: A normal qq plot for the data differences is given in Figure 8.7.

There might be a mild departure from normality in the upper tail.

• However, remember that one-sample t confidence intervals (for means) are generally

robust to these mild departures. Therefore, this slight departure likely does not

affect our conclusion.
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Figure 8.7: Normal qq plot for the ergonomics data in Example 8.3. The observed data

differences are plotted versus the theoretical quantiles from a normal distribution. The

line added passes through the first and third theoretical quartiles.

8.2 Confidence interval for the ratio of two population variances

σ2
2/σ

2
1

Importance: Recall that when we wrote a confidence interval for µ1−µ2, the difference

of the population means (with independent samples), we proposed two intervals:

• one interval that assumed σ2
1 = σ2

2

• one interval that assumed σ2
1 ̸= σ2

2.

We now propose a confidence interval procedure that can be used to determine which

assumption is more appropriate.
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Figure 8.8: F pdfs with different degrees of freedom.

Setting: Suppose that we have two independent random samples:

Sample 1 : Y11, Y12, ..., Y1n1 ∼ N (µ1, σ
2
1)

Sample 2 : Y21, Y22, ..., Y2n2 ∼ N (µ2, σ
2
2).

Goal: Our goal is to construct a 100(1− α) percent confidence interval for the ratio of

population variances σ2
2/σ

2
1.

Result: Under the setting described above,

F =
S2
1/σ

2
1

S2
2/σ

2
2

∼ F (n1 − 1, n2 − 1),

an F distribution with (numerator) n1−1 and (denominator) n2−1 degrees of freedom.
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Facts: The F pdf has the following characteristics:

• continuous, skewed right, and always positive; see Figure 8.8.

• indexed by two degree of freedom parameters ν1 and ν2; these are usually integers

and are related to sample sizes

• the mean of an F distribution is close to 1 (regardless of the values of ν1 and ν2)

• The F pdf formula is complicated and is unnecessary for our purposes. R will

compute F probabilities and quantiles from the F distribution.

F R CODE: Suppose that Q ∼ F (ν1, ν2).

FQ(q) = P (Q ≤ q) ϕp

pf(q,ν1, ν2) qf(p,ν1, ν2)

Notation: We introduce new notation that identifies quantiles from an F distribution

with n1 − 1 and n2 − 1 degrees of freedom. Define

Fn1−1,n2−1,1−α/2 = upper α/2 quantile from F (n1 − 1, n2 − 1) pdf

Fn1−1,n2−1,α/2 = lower α/2 quantile from F (n1 − 1, n2 − 1) pdf

Illustration: If n1 = 11, n2 = 11, and α = 0.05 then

Fn1−1,n2−1,1−α/2 = F10,10,0.975 ≈ 3.72

Fn1−1,n2−1,α/2 = F10,10,0.025 ≈ 0.27

> qf(0.975,10,10)

[1] 3.716792

> qf(0.025,10,10)

[1] 0.2690492
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Figure 8.9: An F pdf with n1 − 1 and n2 − 1 degrees of freedom. The upper α/2 and

lower α/2 areas are shaded. The associated quantiles, represented in the figure by dark

circles, are denoted by Fn1−1,n2−1,1−α/2 (upper) and Fn1−1,n2−1,α/2 (lower), respectively.

Derivation: In general, for any value of α, 0 < α < 1, we can write

1− α = P

(
Fn1−1,n2−1,α/2 <

S2
1/σ

2
1

S2
2/σ

2
2

< Fn1−1,n2−1,1−α/2

)
= P

(
S2
2

S2
1

Fn1−1,n2−1,α/2 <
σ2
2

σ2
1

<
S2
2

S2
1

Fn1−1,n2−1,1−α/2

)
.

This argument shows that(
S2
2

S2
1

Fn1−1,n2−1,α/2,
S2
2

S2
1

Fn1−1,n2−1,1−α/2

)
is a 100(1 − α) percent confidence interval for the ratio of the population variances

σ2
2/σ

2
1.
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Remarks: We interpret the interval in the same way:

“We are 100(1−α) percent confident that the ratio of the population variances

σ2
2/σ

2
1 is in this interval.”

• If the confidence interval for σ2
2/σ

2
1 includes 1, this does not suggest that the pop-

ulation variances σ2
1 and σ2

2 are different.

• If the confidence interval for σ2
2/σ

2
1 does not include 1, this suggests that the pop-

ulation variances σ2
1 and σ2

2 are different.

• Therefore, this interval can be helpful in selecting an appropriate confidence interval

for the difference of the population means µ1−µ2; i.e., between the one that assumes

equal population variances and the one that does not.

• Of course, even if inference for population means is not the objective, this interval

is still useful in its own right−it can allow you to compare the variances of two

populations (an important problem if one is concerned about variation).

Example 8.4. Two automated filling processes are used in the production of automobile

paint. The target weight of each process is 128.0 fluid oz (1 gallon). There is little concern

about the process population mean fill amounts (no complaints about under/overfilling

on average). However, there is concern that the population variation levels between the

two processes are different. To test this claim, industrial engineers took independent

random samples of n1 = 24 and n2 = 24 gallons of paint and observed the fill amounts.

127.75 127.87 127.86 127.92 128.03 127.94 127.91 128.10

Process 1: 128.01 128.11 127.79 127.93 127.89 127.96 127.80 127.94

128.02 127.82 128.11 127.92 127.74 127.78 127.85 127.96

127.90 127.90 127.74 127.93 127.62 127.76 127.63 127.93

Process 2: 127.86 127.73 127.82 127.84 128.06 127.88 127.85 127.60

128.02 128.05 127.95 127.89 127.82 127.92 127.71 127.78
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Figure 8.10: Boxplots of paint fill volume data in Example 8.4.

Note: There is no internal function in R to calculate the confidence interval for the ratio

of two population variances σ2
2/σ

2
1, so I wrote one:

ratio.var.interval = function(data.1,data.2,conf.level=0.95){

df.1 = length(data.1)-1

df.2 = length(data.2)-1

F.lower = qf((1-conf.level)/2,df.1,df.2)

F.upper = qf((1+conf.level)/2,df.1,df.2)

s2.1 = var(data.1)

s2.2 = var(data.2)

c((s2.2/s2.1)*F.lower,(s2.2/s2.1)*F.upper)

}
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Figure 8.11: Quantile-quantile plots for the paint fill volume data in Example 8.4.

> ratio.var.interval(process.1,process.2)

[1] 0.5885236 3.1448830

Interpretation: We are 95 percent confident that the ratio of the population variances

σ2
2/σ

2
1 is between 0.589 and 3.145. Because this interval includes “1,” we do not have

evidence that the population variances σ2
1 and σ2

2 are different for the two processes.

Warning: Like the χ2 interval for single population variance σ2, the two-sample F

interval for the ratio of two population variances σ2
2/σ

2
1 is not robust to normality

departures. This is true because the sampling distribution

F =
S2
1/σ

2
1

S2
2/σ

2
2

∼ F (n1 − 1, n2 − 1)

depends critically on the normal distribution assumption for both populations. If

either underlying population distribution is non-normal (non-Guassian), then the confi-

dence interval formula for σ2
2/σ

2
1 is not to be used.

Paint data: Normal qq plots for the two samples of paint fill volume data are given in

Figure 8.11. There is no major cause for concern here.
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8.3 Confidence interval for the difference of two population pro-

portions p1 − p2

Interest: We now extend our confidence interval procedure for a single population pro-

portion p to two populations. Define

p1 = population proportion in Population 1

p2 = population proportion in Population 2.

For example, we might want to compare the proportion of

• defective circuit boards for two different suppliers

• satisfied customers before and after a product design change (e.g., Facebook, etc.)

• on-time payments for two classes of customers

• HIV positives for individuals in two demographic classes.

Point estimators: We assume that there are two independent random samples of indi-

viduals (one sample from each population to be compared). Define

Y1 = number of “successes” in Sample 1 ∼ b(n1, p1)

Y2 = number of “successes” in Sample 2 ∼ b(n2, p2).

The point estimators for p1 and p2 are the sample proportions, defined by

p̂1 =
Y1

n1

p̂2 =
Y2

n2

.

Goal: We would like to construct a 100(1 − α) percent confidence interval for p1 − p2,

the difference of two population proportions.

Result: We need the following sampling distribution result. When the sample sizes n1

and n2 are large,

Z =
(p̂1 − p̂2)− (p1 − p2)√

p1(1−p1)
n1

+ p2(1−p2)
n2

∼ AN (0, 1).
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If this sampling distribution holds approximately, then

(p̂1 − p̂2)± zα/2

√
p̂1(1− p̂1)

n1

+
p̂2(1− p̂2)

n2

is an approximate 100(1− α) percent confidence interval for p1 − p2.

• Note again the form of the interval:

point estimate︸ ︷︷ ︸
p̂1−p̂2

± quantile︸ ︷︷ ︸
zα/2

× standard error︸ ︷︷ ︸√
p̂1(1−p̂1)

n1
+

p̂2(1−p̂2)
n2

.

We interpret the interval in the same way:

“We are 100(1 − α) percent confident that the population proportion

difference p1 − p2 is in this interval.”

• The value zα/2 is the upper α/2 quantile from the N (0, 1) distribution.

Note: For the Z sampling distribution to hold approximately (and therefore for the

interval above to be useful), we need

• the two random samples to be independent

• the sample sizes n1 and n2 to be “large;” common rules of thumb are to require

nip̂i ≥ 5

ni(1− p̂i) ≥ 5,

for each sample i = 1, 2. Under these conditions, the Central Limit Theorem should

adequately approximate the true sampling distribution of Z, thereby making the

confidence interval formula above approximately valid.

Important: In two-sample situations, it is often of interest to see how the population

proportions p1 and p2 compare.

• If the confidence interval for p1 − p2 includes 0, this does not suggest that the

population proportions p1 and p2 are different.

• If the confidence interval for p1 − p2 does not include 0, this suggests that the

population proportions p1 and p2 are different.
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Example 8.5. A large public health study was conducted to estimate the prevalence and

to identify risk factors of hepatitis B virus (HBV) infection among Irish prisoners. Two

independent samples of female (n1 = 82) and male (n2 = 555) prisoners were obtained

from five prisons in Ireland:

• 18 out of 82 female prisoners were HBV-positive

• 28 out of 555 male prisoners were HBV-positive.

Find a 95 percent confidence interval for p1−p2, the difference in the population propor-

tions for the two genders (Female = 1; Male = 2).

Analysis. There is no internal function in R to calculate the confidence interval for

the difference of two population proportions (at least not that I could find quickly), so I

wrote one:

proportion.diff.interval = function(y.1,n.1,y.2,n.2,conf.level=0.95){

z.upper = qnorm((1+conf.level)/2)

var.1 = (y.1/n.1)*(1-y.1/n.1)/n.1

var.2 = (y.2/n.2)*(1-y.2/n.2)/n.2

se = sqrt(var.1+var.2)

moe = z.upper*se

c((y.1/n.1-y.2/n.2)-moe,(y.1/n.1-y.2/n.2)+moe)

}

> proportion.diff.interval(18,82,28,555)

[1] 0.07764115 0.26048234

Interpretation: We are 95 percent confident the difference of the population proportions

p1 − p2 is between 0.078 and 0.260. This interval does not contain “0” and contains only

positive values. This suggests that the population proportion of female prisoners who are

HBV positive is larger than the corresponding male population proportion. The sample

size conditions on the previous page are satisfied.
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9 One-Way Analysis of Variance

9.1 Introduction

Recall: In the last chapter, we discussed confidence intervals for the difference of two

population means µ1 − µ2. Perhaps more importantly, we also saw that the design of

the experiment or study completely determined how the analysis should proceed.

• When the two samples are independent, this is called a (two) independent-

sample design.

• When the two samples are obtained on the same individuals (so that the samples

are dependent), this is called a matched pairs design.

• Confidence interval procedures for µ1 − µ2 depend on the design of the study.

Terminology: More generally, the purpose of an experiment is to investigate differ-

ences between or among two or more treatments. In a statistical framework, we do this

by comparing the population means of the responses to each treatment.

• In order to detect treatment mean differences, we must try to control the effects

of error so that any variation we observe can be attributed to the effects of the

treatments rather than to structural differences among the individuals.

• For example, in Example 8.2, there may be a systematic source of variation

arising from the ages of employees in the recycling project (e.g., younger employees

may be more inclined to recycle paper instead of discarding it).

• Our two-independent sample design (one sample from Plant 1 and one sample from

Plant 2) did not consider this potential confounding effect. In other words, even

if age of the employee is a significant source of variability, our independent sample

analysis does not acknowledge it.
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Terminology: Designs involving meaningful grouping of individuals, that is, blocking,

can help reduce the effects of experimental error by identifying systematic components

of variation among individuals.

• The matched pairs design for comparing two treatments is an example of such a

design.

• In this situation, the “meaningful grouping of individuals” involves the individuals

themselves. Responses to two different treatments on the same individual “blocks

out” the variation that would arise had we observed one individual’s response to

the first treatment and a different individual’s response to the second treatment.

Remark: Aside from matched pairs experiments, the analysis of data from experiments

involving blocking will not be covered in this course. When there are more than two treat-

ments (populations), we pursue the one-way classification model. This is basically

an extension of the two independent sample design to two or more populations.

Situation: Consider an experiment to compare t ≥ 2 treatments set up as follows:

• We obtain one random sample of individuals and then randomly assign individuals

to treatments (i.e., different experimental conditions). Samples corresponding to

the treatment groups are independent.

• In an observational study (where no treatment is physically applied to individ-

uals), individuals are inherently different to begin with. We therefore simply take

random samples from each treatment population (see Example 9.1).

• We do not attempt to group individuals according to some other factor (e.g., loca-

tion, gender, weight, variety, etc.). This would be an example of blocking.

Main point: In a one-way classification, the only way individuals are “classified” is by

the treatment group assignment. When individuals are thought to be “basically alike”

(other than the possible effect due to treatment), experimental error consists only of the

variation among the individuals themselves. There are no other systematic sources of

variability.
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Example 9.1. Mortar mixes are usually classified on the basis of compressive strength

and their bonding properties and flexibility. In a building project, engineers wanted to

compare specifically the population mean strengths of four types of mortars:

1. ordinary cement mortar (OCM)

2. polymer impregnated mortar (PIM)

3. resin mortar (RM)

4. polymer cement mortar (PCM).

Random samples of specimens of each mortar type were taken; each specimen was sub-

jected to a compression test to measure strength (MPa). Here are the strength measure-

ments taken on different mortar specimens (36 in all).

OCM: 51.45 42.96 41.11 48.06 38.27 38.88 42.74 49.62

PIM: 64.97 64.21 57.39 52.79 64.87 53.27 51.24 55.87 61.76 67.15

RM: 48.95 62.41 52.11 60.45 58.07 52.16 61.71 61.06 57.63 56.80

PCM: 35.28 38.59 48.64 50.99 51.52 52.85 46.75 48.31

Side by side boxplots of these data are given in Figure 9.1.

Note: First note that this is an example of an observational study. This is not

what statisticians would call an experiment, because the “individuals” (here, the mortar

specimens) are not treated or influenced by different experimental conditions. We are

simply observing individuals from different groups (populations) to begin with.

Note: There is no form of blocking here either. For example, we do not attempt to

further classify individual mortar specimens according to different manufacturers or sub-

ject individual mortar specimens to different environmental conditions (e.g., high/low

temperature, etc.). If the study’s purpose was investigate these potential sources of

variability, then this would not be a one-way classification.
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Figure 9.1: Boxplots of strength data (MPa) for four mortar types in Example 9.1.

Query: An initial question that engineers may have is the following:

“Are the population mean mortar strengths equal among the four types of

mortars? Or, are the population means different?”

This initial question can be framed statistically as the following hypothesis test:

H0 : µ1 = µ2 = µ3 = µ4

versus

H1 : the population means µi are not all equal.

Goal: We now develop a statistical inference procedure that allows us to test this

type of hypothesis in a one-way classification.
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9.2 Overall F test

Notation: Let t denote the number of treatments (populations) to be compared. Define

Yij = response on the jth individual in the ith treatment group

for i = 1, 2, ..., t and j = 1, 2, ..., ni.

• ni is the number of observations for the ith treatment (population)

– In Example 9.1, these are n1 = 8, n2 = 10, n3 = 10, and n4 = 8.

• When n1 = n2 = · · · = nt = n, we say the design is balanced; otherwise, the

design is unbalanced.

• Let N = n1+n2+ · · ·+nt denote the total number of individuals measured. If the

design is balanced, then N = nt.

• Define the statistics

Y i+ =
1

ni

ni∑
j=1

Yij

S2
i =

1

ni − 1

ni∑
j=1

(Yij − Y i+)
2

Y ++ =
1

N

t∑
i=1

ni∑
j=1

Yij.

The statistics Y i+ and S2
i denote the sample mean and the sample variance,

respectively, of the ith sample. The overall sample mean Y ++ is the sample

mean of all the data (aggregated across all t treatment groups).

Terminology: Our goal is to develop a procedure to test

H0 : µ1 = µ2 = · · · = µt

versus

H1 : the population means µi are not all equal.
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• The null hypothesis H0 says that there is “no treatment difference,” that is, all

t population means are the same.

• The alternative hypothesis H1 says that a difference among the t population

means exists “somewhere.” It does not specify how the means are different.

• When performing a hypothesis test, we basically decide which hypothesis is more

supported by the data.

Setting: Suppose that we have t independent random samples:

Sample 1: Y11, Y12, ..., Y1n1 ∼ N (µ1, σ
2)

Sample 2: Y21, Y22, ..., Y2n2 ∼ N (µ2, σ
2)

...
...

Sample t: Yt1, Yt2, ..., Ytnt ∼ N (µt, σ
2).

Assumptions: Note the statistical assumptions we are making:

1. the t random samples are independent

2. the t population distributions are normal (Gaussian)

3. the t population distributions have the same variance σ2.

Note also that these are the same assumptions we made for the two independent-sample

design in Section 8.1 (i.e., the special case when t = 2).

Curiosity: If we are trying to learn about how the population means compare, why is

the statistical inference procedure designed to do this called “the analysis of variance?”

Answer: We learn about the population means by estimating the common variance σ2

in two different ways. These two estimators are formed by

• measuring variability of the observations within each sample
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• measuring variability of the sample means across the samples

• Important: These two estimates tend to be similar when H0 is true. The second

estimate tends to be larger than the first estimate when H1 is true.

Within Estimator: Calculate the residual sum of squares:

SSres = (n1 − 1)S2
1 + (n2 − 1)S2

2 + · · ·+ (nt − 1)S2
t

=
t∑

i=1

ni∑
j=1

(Yij − Y i+)
2

︸ ︷︷ ︸
(ni−1)S2

i

.

• The sample variance S2
i estimates the population parameter σ2 (which assumed to

be common across all t populations) from within the ith sample.

• The weighted average of these estimates

MSres =

(
n1 − 1

N − t

)
S2
1 +

(
n2 − 1

N − t

)
S2
2 + · · ·+

(
nt − 1

N − t

)
S2
t

=
SSres

N − t

is called the residual mean squares. It is an unbiased estimator of σ2 regardless

of whether H0 or H1 is true.

• The within estimator MSres is a generalization of the pooled sample variance

estimator S2
p we discussed in Section 8.1 with t = 2 populations.

Across Estimator: We assume a common sample size n1 = n2 = · · · = nt = n to

simplify notation (i.e., a balanced design).

Recall: From Result 1 in Chapter 6 (pp 75), we know that if a sample arises from a

normal population, the sample mean is also normally distributed. Therefore, the sample

mean of the ith sample

Y i+ ∼ N
(
µi,

σ2

n

)
.
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Therefore, when the null hypothesis H0 : µ1 = µ2 = · · · = µt is true, we have the

following sampling distributions for each sample mean:

Y 1+ ∼ N
(
µ,

σ2

n

)
Y 2+ ∼ N

(
µ,

σ2

n

)
...

Y t+ ∼ N
(
µ,

σ2

n

)
,

where µ is the common population mean under H0. Now, think of

Y 1+, Y 2+, ..., Y t+

as a random sample from the N (µ, σ2/n) population distribution. The sample variance

of this “random sample” is

1

t− 1

t∑
i=1

(Y i+ − Y ++)
2

and is an unbiased estimator of σ2/n. Therefore,

MStrt =
1

t− 1

t∑
i=1

n(Y i+ − Y ++)
2

︸ ︷︷ ︸
SStrt

is an unbiased estimator of σ2. We call

SStrt = “treatment sums of squares”

MStrt = “treatment mean squares.”

The across estimator MStrt is an unbiased estimator of σ2 when H0 is true.

Remark: Our derivation of the across estimator assumed a balanced design (this was

done for simplicity). If we have different sample sizes ni, we simply adjust MStrt to

MStrt =
1

t− 1

t∑
i=1

ni(Y i+ − Y ++)
2

︸ ︷︷ ︸
SStrt

.

This is still an unbiased estimator for σ2 when H0 is true.
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Summary: If you are terrified by the preceding derivation, that is fine. Just know the

following:

1. When H0 is true (i.e., the population means are equal), then

E(MStrt) = σ2

E(MSres) = σ2.

These two facts suggest that when H0 is true,

F =
MStrt

MSres

≈ 1.

2. When H1 is true (i.e., the population means are different), then

E(MStrt) > σ2

E(MSres) = σ2.

These two facts suggest that when H1 is true,

F =
MStrt

MSres

> 1.

Sampling Distribution: When H0 is true, the statistic

F =
MStrt

MSres

∼ F (t− 1, N − t).

Recall that the mean of an F distribution is around 1. Therefore,

• Values of F in the center of this distribution are consistent with H0.

• Large values of F (i.e., out in the right tail) are consistent with H1.

• Interesting: Unusually small values of F (i.e., close to zero) are not necessarily

consistent with either hypothesis. This is more likely to occur when there is a

violation of our statistical assumptions.

– correlated individuals within/across samples (most likely), unequal population

variances, normality departures, etc.
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Figure 9.2: F (3, 32) pdf. This is the sampling distribution of F in Example 9.1 when H0

is true. An “×” at F = 16.848 has been added.

Mortar data: We use R to calculate the F statistic in Example 9.1.

> anova(lm(strength ~ mortar.type))

Analysis of Variance Table

Response: strength

Df Sum Sq Mean Sq F value Pr(>F)

mortar.type 3 1520.88 506.96 16.848 9.576e-07 ***

Residuals 32 962.86 30.09

Conclusion: There is very strong evidence that at least one of the four mortar strength

population means is different. This value of F is not consistent with H0. It is much more

consistent with H1.
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Terminology: It is common to display one-way classification results in an ANOVA

table. The form of the ANOVA table for the one-way classification is given below:

Source df SS MS F

Treatments t− 1 SStrt MStrt =
SStrt
t−1

F = MStrt
MSres

Residuals N − t SSres MSres =
SSres
N−t

Total N − 1 SStotal

• In general, it is easy to show that

SStotal =
t∑

i=1

ni∑
j=1

(Yij − Y ++)
2 =

t∑
i=1

ni(Y i+ − Y ++)
2 +

t∑
i=1

ni∑
j=1

(Yij − Y i+)
2

= SStrt + SSres.

• SStotal measures how observations vary about the overall mean, without regard to

treatment groups; that is, SStotal measures the total variation in all the data.

• SStotal can be partitioned into two components:

– SStrt measures how much of the total variation is due to the treatment groups.

– SSres measures what is “left over,” which we attribute to inherent variation

among the individuals.

• Degrees of freedom (df) add down.

• Mean squares (MS) are formed by dividing sums of squares by the corresponding

degrees of freedom.

• The ratio of the mean squares (MS) gives the F statistic.

Terminology: The probability value (p-value) for a hypothesis test measures how

much evidence we have against H0. It is important to remember the following:

the smaller the p-value =⇒ the more evidence against H0.

PAGE 144



CHAPTER 9 STAT 509, J. TEBBS

Mortar data: For the strength/mortar type data in Example 9.1 (from the R output),

we see that

p-value ≈ 0.0000009576.

• This is obviously extremely small which suggests that we have an enormous amount

of evidence against H0.

• In this example, the p-value is calculated as the area to the right of F = 16.848 on

the F (3, 32) probability density function. See Figure 9.2 and it is easy to see why

this is so small.

• The p-value is a probability. For the mortar data, the p-value is interpreted as

follows:

– “If H0 is true, the probability we should get a test statistic equal to or

larger than F = 16.848 is 0.0000009576.”

• Because this event (i.e., getting an F ≥ 16.848) is extremely unlikely, this suggests

strongly that H0 is not true.

• In other words, this very small p-value (which comes from a very large F statistic)

is more consistent with H1.

P-value Rules: Probability values are used in more general hypothesis test settings in

statistics (not just in one-way classification).

Q: How small does a p-value have to get before we “reject H0 in favor of H1?”

A: Unfortunately, there is no right answer to this question. What is commonly done is

the following.

• First choose a significance level α that is small. This represents the probability

that we will reject a true H0, that is,

α = P (Reject H0|H0 true).
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• Common values of α chosen beforehand are α = 0.10, α = 0.05 (the most common),

and α = 0.01.

• The smaller the α is chosen to be, the more evidence one requires to reject H0.

This is a true statement because of the following well-known decision rule:

p-value < α =⇒ reject H0.

• Therefore, the value of α chosen by the experimenter (you!) determines how small

the p-value must get before H0 is ultimately rejected.

• For the strength/mortar type data, there is no ambiguity in our decision. For other

situations (e.g., p-value = 0.063), the decision may not be as clear cut.

Assumptions/Robustness: There are three main assumptions when performing an

analysis of variance:

1. Independent random samples.

• This assumption holding is largely up to the experimenter/investigator; i.e.,

drawing random samples from the different populations independently (in the

case of an observational study) or using randomization to assign individuals

to treatments (in an experiment).

2. Normality. Each of the t population distributions is normal (Gaussian).

• This assumption can be assessed empirically using qq plots for each sample

separately. Of course, if the sample sizes are small (as in the mortar strength

study), these plots may not be all that useful.

• Thankfully, as with other statistical inference procedures involving means, a

one-way ANOVA analysis is robust to normality departures.

3. Equal population variances. This is the most important assumption.

PAGE 146



CHAPTER 9 STAT 509, J. TEBBS

• A one-way ANOVA analysis is not robust to departures from this assumption,

and it is very critical.

• Therefore, if you suspect the population variances may be markedly different,

then you should not use a one-way ANOVA analysis.

• There is a statistical inference procedure that is designed to test the equality

of the population variances; i.e., to test

H0 : σ
2
1 = σ2

2 = · · · = σ2
t

versus

H1 : the population variances σ2
i are not all equal.

The test is called Bartlett’s test. However, I almost never use this test

because it depends critically on the normality assumption. A nonparametric

version of this test (i.e., one that does not assume normality) is available; it

is called Levene’s test.

9.3 Multiple comparisons/Follow-up analysis

Recall: In a one-way classification, the overall F test is used to test:

H0 : µ1 = µ2 = · · · = µt

versus

H1 : the population means µi are not all equal.

Note: If we do “reject H0” in favor of H1, we conclude that at least one population

mean is different. However, we do not know which one(s) or how many. In this light, the

decision to reject H0 is not all that informative or useful.

Follow-up analysis: If H0 is rejected, the obvious game becomes determining which

population mean(s) is(are) different and how they are different. To do this, we will

construct Tukey pairwise confidence intervals for all population treatment mean
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differences µi − µi′ , 1 ≤ i < i′ ≤ t. If there are t treatments, then there are(
t

2

)
=

t(t− 1)

2

pairwise confidence intervals to construct. For example, in the mortar strength study

(Example 9.1), there are t = 4 populations and therefore 6 pairwise intervals:

µ1 − µ2, µ1 − µ3, µ1 − µ4, µ2 − µ3, µ2 − µ4, µ3 − µ4,

where

µ1 = population mean strength for mortar type OCM

µ2 = population mean strength for mortar type PIM

µ3 = population mean strength for mortar type RM

µ4 = population mean strength for mortar type PCM.

Problem: If we construct multiple confidence intervals (here, 6 of them), and if we

construct each one using a 100(1−α) percent confidence level, then the overall confidence

level in the 6 intervals together will be less than 100(1− α) percent. In statistics, this is

known as the multiple comparisons problem.

• There is a well-known inequality in probability called Bonferroni’s Inequality,

which states that if we have events A1, A2, ..., AJ , the probability that each event

occurs

P

(
J∩

j=1

Aj

)
≥

J∑
j=1

P (Aj)− (J − 1).

• To see how this inequality can be used in our current discussion, define the event

Aj = {jth confidence interval includes its population mean difference},

for j = 1, 2, ..., J . The event

J∩
j=1

Aj = {each of the J intervals includes its population mean difference}.

PAGE 148



CHAPTER 9 STAT 509, J. TEBBS

• In this light, consider the following table, which contains a lower bound on how

small this probability can be (for different values of t and J). This table assumes

that each pairwise interval has been constructed at the nominal 1−α = 0.95 level.

# of treatments t # of intervals J =
(
t
2

)
Lower bound

3 3 3(0.95)− 2 = 0.85

4 6 6(0.95)− 5 = 0.70

5 10 20(0.95)− 9 = 0.50

6 15 15(0.95)− 14 = 0.25
...

...
...

10 45 45(0.95)− 44 = −1.25!!

Therefore, with t = 4 treatments (populations), the probability that each of the 6

95 percent intervals will contain its population mean difference can be as low as

0.7! For larger experiments with more treatments, this probability is even lower!!

Clearly, we have to do something to address this.

Goal: Construct confidence intervals for all pairwise intervals µi−µi′ , 1 ≤ i < i′ ≤ t, and

have our family-wise confidence level still be at 100(1−α) percent. By “family-wise,”

we mean that our level of confidence applies to the collection of all
(
t
2

)
intervals (not to

the intervals individually).

Solution: Increase the confidence level associated with each individual interval. Tukey’s

method is designed to do this. The intervals are of the form:

(Y i+ − Y i′+)± qt,N−t,α

√
MSres

(
1

ni

+
1

ni′

)
,

where qt,N−t,α is the Tukey quantile that guarantees a family-wise confidence level

of 100(1− α) percent.

Mortar data: We use R to construct the Tukey confidence intervals. The family-wise

confidence level is 95 percent:
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> TukeyHSD(aov(lm(strength ~ mortar.type)),conf.level=0.95)

Tukey multiple comparisons of means

95% family-wise confidence level

Fit: aov(formula = lm(strength ~ mortar.type))

$mortar.type

diff lwr upr p adj

PCM-OCM 2.48000 -4.950955 9.910955 0.8026758

PIM-OCM 15.21575 8.166127 22.265373 0.0000097

RM-OCM 12.99875 5.949127 20.048373 0.0001138

PIM-PCM 12.73575 5.686127 19.785373 0.0001522

RM-PCM 10.51875 3.469127 17.568373 0.0016850

RM-PIM -2.21700 -8.863448 4.429448 0.8029266

Note: In the R output, the columns labeled lwr and upr give, respectively, the lower

and upper limits of the pairwise confidence intervals.

• PCM-OCM: We are (at least) 95 percent confident that the difference in the population

mean strengths for the PCM and OCM mortars is between −4.95 and 9.91 MPa.

– This confidence interval includes “0,” so we cannot conclude these two popu-

lation means are different.

– An equivalent finding is that the adjusted p-value for these two mortar

types, given in the p adj column, is large (0.803).

• PIM-OCM: We are (at least) 95 percent confident that the difference in the population

mean strengths for the PIM and OCM mortars is between 8.17 and 22.27 MPa.

– This confidence interval does not include “0” and contains only positive values.

This suggests that the population mean strength of the PIM mortar is greater

than the population mean strength of the OCM mortar.
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– An equivalent finding is that the adjusted p-value for these two mortar

types, given in the p adj column, is very small (<0.001).

• Interpretations for the remaining 4 confidence intervals are written similarly.

• The main point is this:

– If a pairwise confidence interval (for two population means) includes “0,” then

these population means are not declared to be different.

– If a pairwise interval does not include “0,” then the population means are

declared to be different.

– The conclusions we make for all possible pairwise comparisons are at the

100(1− α) percent confidence level.

Mortar data: The following pairs of population means are declared to be different:

PIM-OCM RM-OCM PIM-PCM RM-PCM.

The following pairs of population means are declared to be not different:

PCM-OCM RM-PIM.

We can therefore conclude:

• The PIM and RM population mean strengths are larger than the OCM and PIM popu-

lation mean strengths.

• The PIM and RM population mean strengths are not different.

• The OCM and PIM population mean strengths are not different.

Furthermore, we have an overall (family-wise) confidence level of 95 percent that all of our

conclusions are correct. Had we not used an adjusted analysis based on Tukey’s method

(e.g., just calculate all unadjusted pairwise intervals), our overall confidence level would

have been much lower (as low as 70 percent).
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10 Simple Linear Regression

10.1 Introduction to regression

Importance: A problem arising in engineering, economics, medicine, and other areas,

is that of investigating the relationship between two or more variables. In such settings,

the goal is to model a random variable Y (often continuous) as a function of one or more

independent variables, say, x1, x2, ..., xk. Mathematically, we can express this model as

Y = g(x1, x2, ..., xk) + ϵ,

where g : Rk → R is a function (whose form may or may not be specified). This is called

a regression model.

• The presence of the (random) error ϵ conveys the fact that the relationship between

the dependent variable Y and the independent variables x1, x2, ..., xk through g is

not deterministic. Instead, the term ϵ “absorbs” all variation in Y that is not

explained by g(x1, x2, ..., xk).

Terminology: In this course, we will consider models of the form

Y = β0 + β1x1 + β2x2 + · · ·+ βkxk︸ ︷︷ ︸
g(x1,x2,...,xk)

+ ϵ,

that is, g is a linear function of β0, β1, β2, ..., βk. We call this a linear regression model.

• The response variable Y is random (but we do get to observe its value).

• The independent variables x1, x2, ..., xk are fixed (and observed).

• The regression parameters β0, β1, β2, ..., βk are unknown. These are to be esti-

mated on the basis of the observed data.

• The error term ϵ is random (and not observed).
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Terminology: More precisely, we call a regression model a linear regression model

if the regression parameters enter the g function in a linear fashion. For example, each

of the models is a linear regression model:

Y = β0 + β1x︸ ︷︷ ︸
g(x)

+ϵ

Y = β0 + β1x+ β2x
2︸ ︷︷ ︸

g(x)

+ϵ

Y = β0 + β1x1 + β2x2 + β3x1x2︸ ︷︷ ︸
g(x1,x2)

+ϵ.

The term “linear” does not refer to the shape of the regression function g. It refers to

how the regression parameters β0, β1, β2, ..., βk enter the g function.

Important: Regression models (linear or otherwise) are models for a population of

individuals. From a statistical inference standpoint, our goal is the same as in previous

chapters. We will use sample information to estimate the population parameters in the

model. We say that we are “estimating” or “fitting the model” with the observed data.

10.2 Simple linear regression model

Terminology: A simple linear regression model includes only one independent

variable x and is of the form

Y = β0 + β1x+ ϵ.

The population regression function g(x) = β0 + β1x is a straight line with intercept β0

and slope β1. These parameters describe the population of individuals for which this

model is assumed.

Note: If E(ϵ) = 0, then

E(Y ) = E(β0 + β1x+ ϵ)

= β0 + β1x+ E(ϵ)

= β0 + β1x.
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Therefore, we have the following interpretations for the population regression parameters

β0 and β1:

• β0 quantifies the population mean of Y when x = 0.

• β1 quantifies the population-level change in E(Y ) brought about by a one-unit

change in x.

Example 10.1. As part of a waste removal project, a new compression machine for

processing sewage sludge is being studied. Engineers are interested in the following

variables:

Y = moisture control of compressed pellets (measured as a percent)

x = machine filtration rate (kg-DS/m/hr).

Engineers collect observations of (x, Y ) from a random sample of n = 20 sewage speci-

mens; the data are given below.

Obs x Y Obs x Y

1 125.3 77.9 11 159.5 79.9

2 98.2 76.8 12 145.8 79.0

3 201.4 81.5 13 75.1 76.7

4 147.3 79.8 14 151.4 78.2

5 145.9 78.2 15 144.2 79.5

6 124.7 78.3 16 125.0 78.1

7 112.2 77.5 17 198.8 81.5

8 120.2 77.0 18 132.5 77.0

9 161.2 80.1 19 159.6 79.0

10 178.9 80.2 20 110.7 78.6

Table 10.1: Sewage data. Moisture (Y , measured as a percentage) and machine filtration

rate (x, measured in kg-DS/m/hr). There are n = 20 observations.
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Figure 10.1: Scatterplot of pellet moisture Y (measured as a percentage) as a function

of machine filtration rate x (measured in kg-DS/m/hr).

Figure 10.1 displays the sample data in a scatterplot. This sample information suggests

the variables Y and x are linearly related, although there is a large amount of variation

that is unexplained.

• This unexplained variability could arise from other independent variables (e.g.,

applied temperature, pressure, sludge mass, etc.) that also influence the moisture

percentage Y but are not present in the model.

• It could also arise from measurement error or just random variation in the sludge

compression process.

Inference: What does the sample information suggest about the population? Do we

have evidence that Y and x are linearly related in the population?
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10.3 Least squares estimation

Terminology: When we say, “fit a regression model,” we mean that we are estimating

the population regression parameters in the model with the observed sample information

(data). Suppose we have a random sample of observations (xi, Yi), i = 1, 2, ..., n, and

postulate the simple linear regression model

Yi = β0 + β1xi + ϵi

for i = 1, 2, ..., n. Our first goal is to estimate β0 and β1. Formal assumptions for the

error terms ϵi will be given later.

Terminology: The most common method of estimating the population parameters β0

and β1 is least squares. The method of least squares says to choose the values of β0

and β1 that minimize

Q(β0, β1) =
n∑

i=1

[Yi − (β0 + β1xi)]
2.

Denote the least squares estimators by b0 and b1, respectively, that is, the values of β0

and β1 that minimize Q(β0, β1). A two-variable calculus minimization argument can be

used to find expressions for b0 and b1. Taking partial derivatives of Q(β0, β1), we obtain

∂Q(β0, β1)

∂β0

= −2
n∑

i=1

(Yi − β0 − β1xi)
set
= 0

∂Q(β0, β1)

∂β1

= −2
n∑

i=1

(Yi − β0 − β1xi)xi
set
= 0.

Solving for β0 and β1 gives the least squares estimators

b0 = Y − b1x

b1 =

∑n
i=1(xi − x)(Yi − Y )∑n

i=1(xi − x)2
=

SSxy

SSxx

.

The estimated model is written as follows:

Ŷ = b0 + b1x.

Example 10.1 (continued). We use R to calculate the equation of the least squares

regression line for the sewage data in Example 10.1. Here is the output:
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Figure 10.2: Scatterplot of pellet moisture Y (measured as a percentage) as a function

of filtration rate x (measured in kg-DS/m/hr). The least squares line has been added.

> fit = lm(moisture~filtration.rate)

> fit

lm(formula = moisture ~ filtration.rate)

Coefficients:

(Intercept) filtration.rate

72.95855 0.04103

The least squares estimates (to 3 dp) for the sewage data are

b0 = 72.959

b1 = 0.041.
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The estimated model is

Ŷ = 72.959 + 0.041x,

or, in other words,

̂Moisture = 72.959 + 0.041 Filtration rate.

Note: The estimated model is also called the prediction equation. This is because

we can now predict the value of Y (moisture percentage) for a given value of x (filtration

rate). For example, when the filtration rate is x = 150 kg-DS/m/hr, we would predict

the moisture percentage to be

Ŷ (150) = 72.959 + 0.041(150) ≈ 79.11.

Of course, this prediction comes directly from the sample of observations used to fit the

regression model. Therefore, we will eventually want to quantify the uncertainty in this

prediction; e.g., how variable is this prediction?

10.4 Model assumptions and sampling distributions

Interest: We investigate the properties of the least squares estimators b0 and b1 as

estimators of the population-level regression parameters β0 and β1 in the simple linear

regression model

Yi = β0 + β1xi + ϵi,

for i = 1, 2, ..., n. To do this, we need statistical assumptions on the errors ϵi.

Assumptions: We will assume throughout that

• E(ϵi) = 0, for i = 1, 2, ..., n

• var(ϵi) = σ2, for i = 1, 2, ..., n, that is, the variance is constant

• the random variables ϵi are independent

• the random variables ϵi are normally distributed.
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Results: Under the assumptions stated on the previous page, we can derive the following

results for the simple linear regression model

Y = β0 + β1x+ ϵ.

• Result 1:

Y ∼ N (β0 + β1x, σ
2).

In other words, the response variable Y is normally distributed with mean β0+β1x

and variance σ2. Note that the population mean of Y depends on x. The population

variance of Y does not depend on x.

• Result 2. The least squares estimators b0 and b1 are unbiased estimators of β0

and β1, respectively, that is,

E(b0) = β0

E(b1) = β1.

• Result 3. The least squares estimators b0 and b1 have normal sampling distribu-

tions; specifically,

b0 ∼ N (β0, c00σ
2) and b1 ∼ N (β1, c11σ

2),

where

c00 =
1

n
+

x2

SSxx

and c11 =
1

SSxx

.

These distributions are needed to write confidence intervals and perform hypothesis

tests for β0 and β1 (i.e., to perform statistical inference for the population).

10.5 Estimating the error variance

Goal: In the simple linear regression model

Y = β0 + β1x+ ϵ

where ϵ ∼ N (0, σ2), we now turn our attention to estimating σ2, the error variance.
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Recall: As we did in estimating β0 and β1 (the population level regression parameters),

we will use the observed data (xi, Yi), i = 1, 2, ..., n, to estimate the error variance σ2.

The error variance is also a population level parameter and quantifies how variable the

population is for a given model.

Terminology: Define the ith fitted value by

Ŷi = b0 + b1xi,

where b0 and b1 are the least squares estimators. Each observation has its own fitted

value. Define the ith residual by

ei = Yi − Ŷi.

Each observation has its own residual.

Sewage data: I calculated the fitted values and residuals for each observation:

Obs x Y Ŷ = b0 + b1x e = Y − Ŷ Obs x Y Ŷ = b0 + b1x e = Y − Ŷ

1 125.3 77.9 78.100 −0.200 11 159.5 79.9 79.503 0.397

2 98.2 76.8 76.988 −0.188 12 145.8 79.0 78.941 0.059

3 201.4 81.5 81.223 0.277 13 75.1 76.7 76.040 0.660

4 147.3 79.8 79.003 0.797 14 151.4 78.2 79.171 −0.971

5 145.9 78.2 78.945 −0.745 15 144.2 79.5 78.876 0.624

6 124.7 78.3 78.075 0.225 16 125.0 78.1 78.088 0.012

7 112.2 77.5 77.563 −0.062 17 198.8 81.5 81.116 0.384

8 120.2 77.0 77.891 −0.891 18 132.5 77.0 78.396 −1.396

9 161.2 80.1 79.573 0.527 19 159.6 79.0 79.508 −0.508

10 178.9 80.2 80.299 −0.099 20 110.7 78.6 77.501 1.099

Table 10.2: Sewage data. Fitted values and residuals from the least squares fit.

Note that

• If an observation’s Y value is above the least squares regression line, then Yi > Ŷi

and its residual ei is positive.
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• If an observation’s Y value is below the least squares regression line, then Yi < Ŷi

and its residual ei is negative.

• If an observation’s Y value is on the least squares regression line, then Yi = Ŷi and

its residual ei is zero.

Interesting fact: In our simple linear regression model,

n∑
i=1

ei =
n∑

i=1

(Yi − Ŷi) = 0.

That is, the residuals sum to zero. For the sewage data in Example 10.1,

# Calculate fitted values and residuals

fitted.values = predict(fit)

residuals = moisture-fitted.values

# Show residuals sum to 0

> sum(residuals)

[1] 2.273737e-13

Terminology: Define the residual sum of squares by

SSres =
n∑

i=1

e2i

=
n∑

i=1

(Yi − Ŷi)
2.

In the simple linear regression model, the residual mean squares

MSres =
SSres

n− 2

is an unbiased estimator of σ2, that is,

E(MSres) = σ2.

The quantity

σ̂ =
√

MSres =

√
SSres

n− 2

estimates σ and is called the residual standard error.
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Sewage data: To illustrate for the sewage data in Example 10.1,

# Calculate MSres

MSres = sum(residuals^2)/(length(moisture)-2)

> MSres

[1] 0.4426659

# Calculate residual standard error

resid.std.error = sqrt(MSres)

> resid.std.error

[1] 0.6653314

In Chapter 11, we will see that R calculates these values automatically (as part of a

regression analysis of variance).

10.6 Statistical inference for β0 and β1

Interest: In the simple linear regression model

Y = β0 + β1x+ ϵ,

we now discuss the formal question:

“What does the sample information from an estimated regression model sug-

gest about the population?”

In other words, we pursue statistical inference for the population level regression

parameters β0 and β1.

• In practice, inference for the slope parameter β1 is of primary interest because of

its connection to the independent variable x in the model. For example, if β1 = 0,

then Y and x are not linearly related in the population.

• Statistical inference for β0 is less meaningful, unless one is explicitly interested in

the mean of Y when x = 0. We will not pursue this.
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Confidence interval: Under our regression model assumptions, the following sampling

distribution arises:

t =
b1 − β1√
MSres

SSxx

∼ t(n− 2).

This result can be used to derive a 100(1 − α) percent confidence interval for β1,

which is given by

b1 ± tn−2,α/2

√
MSres

SSxx

.

• The value tn−2,α/2 is the upper α/2 quantile from the t(n− 2) distribution.

• Note the form of the interval:

point estimate︸ ︷︷ ︸
b1

± quantile︸ ︷︷ ︸
tn−2,α/2

× standard error︸ ︷︷ ︸√
MSres
SSxx

.

We interpret the interval in the same way:

“We are 100(1− α) percent confident that the population parameter β1

is in this interval.”

• Of particular interest is the value β1 = 0:

– If the confidence interval for β1 contains “0,” this suggests that Y and x are

not linearly related in the population.

– If the confidence interval β1 does not contain “0,” this suggests that Y and x

are linearly related in the population.

Sewage data: We can use the confint function in R to calculate a 95 percent confidence

interval for β1:

> confint(fit,level=0.95)

2.5 % 97.5 %

(Intercept) 71.49309400 74.42399995

filtration.rate 0.03087207 0.05119547
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Interpretation: We are 95 percent confident that the population parameter β1 is be-

tween 0.0309 and 0.0511. This means

• for every one unit increase in the machine filtration rate x, we are 95 percent

confident that the population mean absorption E(Y ) will increase between 0.0309

and 0.0511 percent.

Note that this interval does not contain “0” and includes only positive values. There

is strong evidence that the absorption rate Y is positively linearly related to machine

filtration rate x in the population. The confidence interval gives information about how

strong this relationship is.

Hypothesis test: Under our regression model assumptions, if we wanted to formally

test

H0 : β1 = 0

versus

H1 : β1 ̸= 0,

we would use

t =
b1√
MSres
SSxx

as a test statistic and reject H0 if the corresponding p-value was small.

Sewage data: We use the summary function in R to perform this hypothesis test:

> summary(fit)

lm(formula = moisture ~ filtration.rate)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 72.958547 0.697528 104.596 < 2e-16 ***

filtration.rate 0.041034 0.004837 8.484 1.05e-07 ***
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Figure 10.3: Sewage data: t(18) pdf. This is the sampling distribution of t when H0 :

β1 = 0 is true. An “×” at t = 8.484 has been added.

Interpretation: For the sewage data,

t =
b1√
MSres
SSxx

=
0.041034

0.004837
= 8.484.

Figure 10.3 shows that t = 8.484 is not an expected outcome from the t(18) distribution,

the sampling distribution of

t =
b1√
MSres
SSxx

when H0 : β1 = 0 is true. The p-value for the test is

p-value = 0.000000105.

This is strong evidence against H0. There is strong evidence that the absorption per-

centage Y is positively linearly related to machine filtration rate x in the population.
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10.7 Confidence and prediction intervals for a given x = x0

Interest: Consider the simple linear regression model

Y = β0 + β1x+ ϵ.

We are often interested in learning about the response Y at a certain setting of the

independent variable, say x = x0. For the sewage data, for example, suppose we are

interested in the moisture percentage Y when the filtration rate is x = 150 kg-DS/m/hr.

Two potential goals arise:

• We might be interested in estimating the population mean of Y when x = x0.

This mean response is denoted by E(Y |x0). This is the mean of the following

probability distribution:

N (β0 + β1x0, σ
2).

• We might be interested in predicting a new response Y when x = x0. This

predicted response is denoted by Y ∗(x0). This is a new value from the following

probability distribution:

N (β0 + β1x0, σ
2).

Difference: In the first problem, we are estimating the mean of a distribution. In the

second problem, we are predicting the value of a new response from this distribution.

The second problem is more difficult than the first.

Goals: We would like to create 100(1 − α) percent intervals for the population mean

E(Y |x0) and for the new response Y ∗(x0). The former is called a confidence interval.

The latter is called a prediction interval.

Point Estimator/Predictor: To construct either interval, we start with the same

quantity:

Ŷ (x0) = b0 + b1x0,

where b0 and b1 are the least squares estimates from the fit of the model.
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• In the confidence interval for E(Y |x0), we call Ŷ (x0) a point estimator.

• In the prediction interval for Y (x0), we call Ŷ (x0) a point predictor.

The primary difference in the intervals arises in assessing the variability of Ŷ (x0).

Confidence interval: A 100(1−α) percent confidence interval for the population mean

E(Y |x0) is given by

Ŷ (x0)± tn−2,α/2

√
MSres

[
1

n
+

(x0 − x)2

SSxx

]
.

Prediction interval: A 100(1 − α) percent prediction interval for the new response

Y ∗(x0) is given by

Ŷ (x0)± tn−2,α/2

√
MSres

[
1 +

1

n
+

(x0 − x)2

SSxx

]
.

• Comparison: The two intervals have the same form and are nearly identical.

– The extra “1” in the prediction interval’s standard error arises from the

additional uncertainty associated with predicting a new response from the

N (β0 + β1x0, σ
2) distribution.

– Therefore, at the same value of x0, a 100(1−α) percent prediction interval for

Y ∗(x0) will necessarily be wider than the corresponding 100(1 − α) percent

confidence interval for E(Y |x0).

• Interval length: The length of both intervals depends on the value of x0.

– The standard error in either interval will be smallest when x0 = x and will

get larger the farther x0 is from x in either direction.

– This implies that the precision with which we estimate E(Y |x0) or predict

Y ∗(x0) decreases the farther we get away from x.

– This makes intuitive sense, namely, we would expect to have the most “confi-

dence” in our fitted model near the “center” of the observed data.
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• Warning: It is sometimes desired to estimate E(Y |x0) or predict Y
∗(x0) for values

of x0 outside the range of x values used in the study. This is called extrapolation

and can be very dangerous.

– In order for our inferences to be valid, we must believe that the model holds

for x values outside the range where we have observed data.

– In some situations, this may be reasonable. In others, we may have no theo-

retical basis for making such a claim without data to support it.

Example 10.1 (continued). In our sewage example, suppose that we are interested in

estimating E(Y |x0) and predicting a new Y ∗(x0) when the filtration rate is x0 = 150

kg-DS/m/hr.

• E(Y |x0) denotes the population mean moisture percentage when the machine fil-

tration rate is x0 = 150 kg-DS/m/hr.

• Y ∗(x0) denotes the moisture percentage Y for an individual sludge specimen when

the filtration rate is x0 = 150 kg-DS/m/hr.

• R automates the calculation of confidence and prediction intervals, as seen below.

> predict(fit,data.frame(filtration.rate=150),level=0.95,interval="confidence")

fit lwr upr

79.11361 78.78765 79.43958

> predict(fit,data.frame(filtration.rate=150),level=0.95,interval="prediction")

fit lwr upr

79.11361 77.6783 80.54893

• Note that the point estimate (point prediction) is easily calculated:

Ŷ (x0 = 150) = 72.959 + 0.041(150) ≈ 79.11361.
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Figure 10.4: Scatterplot of pellet moisture Y (measured as a percentage) as a function

of machine filtration rate x (measured in kg-DS/m/hr). The least squares regression line

has been added. Ninety-five percent confidence/prediction bands have been added.

• A 95 percent confidence interval for E(Y |x0 = 150) is (78.79, 79.44). When

the filtration rate is x0 = 150 kg-DS/m/hr, we are 95 percent confident that the

population mean moisture percentage is between 78.79 and 79.44 percent.

• A 95 percent prediction interval for Y ∗(x0 = 150) is (77.68, 80.55). When the fil-

tration rate is x0 = 150 kg-DS/m/hr, we are 95 percent confident that the moisture

percentage for a single specimen will be between 77.68 and 80.55 percent.

• Figure 10.4 shows 95 percent confidence bands for E(Y |x0) and 95 percent predic-

tion bands for Y ∗(x0). These are not simultaneous bands (i.e., these are not bands

for the entire population regression function).
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11 Multiple Linear Regression

11.1 Introduction

Preview: We have considered the simple linear regression model

Y = β0 + β1x+ ϵ,

where ϵ ∼ N (0, σ2). We now extend this basic model to include multiple independent

variables x1, x2, ..., xk. This is more realistic because Y often depends on multiple vari-

ables (not just one). Specifically, we consider models of the form

Y = β0 + β1x1 + β2x2 + · · ·+ βkxk + ϵ.

We call this a multiple linear regression model.

• There are now p = k + 1 regression parameters β0, β1, β2, ..., βk.

– In simple linear regression, k = 1 and p = 2.

• The regression parameters describe the population for which this model is appli-

cable. They are unknown and are to be estimated with the observed data; i.e.,

based on a sample from the population.

• We continue to assume that ϵ ∼ N (0, σ2).

• We also assume that the independent variables x1, x2, ..., xk are fixed and are mea-

sured without error.

Example 11.1. The taste of matured cheese is related to the concentration of several

chemicals in the final product. In a study from the LaTrobe Valley of Victoria, Australia,

specimens of cheddar cheese were analyzed for their chemical composition and were sub-

jected to taste tests. For each specimen, the taste Y was obtained by combining the

PAGE 170



CHAPTER 11 STAT 509, J. TEBBS

Specimen TASTE ACETIC H2S LACTIC Specimen TASTE ACETIC H2S LACTIC

1 12.3 4.543 3.135 0.86 16 40.9 6.365 9.588 1.74

2 20.9 5.159 5.043 1.53 17 15.9 4.787 3.912 1.16

3 39.0 5.366 5.438 1.57 18 6.4 5.412 4.700 1.49

4 47.9 5.759 7.496 1.81 19 18.0 5.247 6.174 1.63

5 5.6 4.663 3.807 0.99 20 38.9 5.438 9.064 1.99

6 25.9 5.697 7.601 1.09 21 14.0 4.564 4.949 1.15

7 37.3 5.892 8.726 1.29 22 15.2 5.298 5.220 1.33

8 21.9 6.078 7.966 1.78 23 32.0 5.455 9.242 1.44

9 18.1 4.898 3.850 1.29 24 56.7 5.855 10.20 2.01

10 21.0 5.242 4.174 1.58 25 16.8 5.366 3.664 1.31

11 34.9 5.740 6.142 1.68 26 11.6 6.043 3.219 1.46

12 57.2 6.446 7.908 1.90 27 26.5 6.458 6.962 1.72

13 0.7 4.477 2.996 1.06 28 0.7 5.328 3.912 1.25

14 25.9 5.236 4.942 1.30 29 13.4 5.802 6.685 1.08

15 54.9 6.151 6.752 1.52 30 5.5 6.176 4.787 1.25

Table 11.1: Cheese data. ACETIC, H2S, and LACTIC are independent variables. The

response variable is TASTE.

scores from several tasters. Data were collected on the following variables:

Y = taste score (TASTE)

x1 = concentration of acetic acid (ACETIC)

x2 = concentration of hydrogen sulfide (H2S)

x3 = concentration of lactic acid (LACTIC).

The variables ACETIC and H2S were measured on the log scale. The variable LACTIC

has not been transformed. Table 11.1 contains concentrations of the chemicals in a

random sample of n = 30 specimens of cheddar cheese and the corresponding taste

scores. Researchers postulate that each of the three variables x1, x2, and x3 is important

in describing TASTE and consider the multiple linear regression model

Y = β0 + β1x1 + β2x2 + β3x3 + ϵ

to model this relationship.
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11.2 Least squares estimation

Data: Suppose we have a random sample of n individuals from a population. In a

multiple linear regression application, we can envision the observed data as follows:

Individual Y x1 x2 · · · xk

1 Y1 x11 x12 · · · x1k

2 Y2 x21 x22 · · · x2k

...
...

...
...

. . .
...

n Yn xn1 xn2 · · · xnk

Each of the n individuals contributes a response Y and a value of each of the independent

variables. The value

xij = measurement on the jth independent variable for the ith individual,

for i = 1, 2, ..., n and j = 1, 2, ..., k. For the n individuals, we write

Yi = β0 + β1xi1 + β2xi2 + · · ·+ βkxik + ϵi,

for i = 1, 2, ..., n.

Matrix representation: To estimate the population parameters β0, β1, β2, ..., βk, we

again use least squares. In doing so, it is advantageous to express multiple linear regres-

sion models in terms of matrices and vectors. This streamlines notation and makes the

presentation easier. Define

Y =


Y1

Y2

...

Yn

 , X =


1 x11 x12 · · · x1k

1 x21 x22 · · · x2k

...
...

...
. . .

...

1 xn1 xn2 · · · xnk

 , β =



β0

β1

β2

...

βk


, ϵ =


ϵ1

ϵ2
...

ϵn

 .

With these definitions, the model

Yi = β0 + β1xi1 + β2xi2 + · · ·+ βkxik + ϵi,
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for i = 1, 2, ..., n, can be expressed equivalently as

Y = Xβ + ϵ.

In this representation,

• Y is an n× 1 (random) vector of responses

• X is an n× p (fixed) matrix of independent variable measurements (p = k + 1)

• β is a p× 1 (fixed) vector of unknown population regression parameters

• ϵ is an n× 1 (random) vector of unobserved errors.

Illustration: Here are Y, X, β, and ϵ for the cheese data in Example 11.1. Recall there

are n = 30 individuals and k = 3 independent variables. The data are in Table 11.1.

Y =


12.3

20.9
...

5.5


30×1

X =


1 4.543 3.135 0.86

1 5.159 5.043 1.53
...

...
...

...

1 6.176 4.787 1.25


30×4

β =


β0

β1

β2

β3


4×1

ϵ =


ϵ1

ϵ2
...

ϵ30


30×1

.

Least Squares: The notion of least squares is the same in multiple linear regression as it

was in simple linear regression. Specifically, we want to find the values of β0, β1, β2, ..., βk

that minimize

Q(β0, β1, β2, ..., βk) =
n∑

i=1

[Yi − (β0 + β1xi1 + β2xi2 + · · ·+ βkxik)]
2.

First recognize that

β0 + β1xi1 + β2xi2 + · · ·+ βkxik

is the inner (dot) product of the ith row of X and β. Therefore,

Yi − (β0 + β1xi1 + β2xi2 + · · ·+ βkxik)

is the ith entry in the difference vector Y −Xβ. The objective function Q is

Q(β) = (Y −Xβ)′(Y −Xβ),

the inner (dot) product of Y −Xβ with itself; i.e., the squared length of Y −Xβ.
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Solution: We want to find the value of β that minimizes Q(β). Because Q(β) is a scalar

function of the p = k + 1 elements of β, it is possible to use calculus to determine the

values of the p elements that minimize it. Formally, we can take p partial derivatives, one

with respect to each of β0, β1, β2, ..., βk, and set these equal to zero. Using the calculus of

matrices, we can write this resulting system of p equations (and p unknowns) as follows:

X′Xβ = X′Y.

These are called the normal equations. Provided that X′X is full rank, the (unique)

solution is

b = (X′X)−1X′Y =



b0

b1

b2
...

bk


.

This is the least squares estimator of β.

Technical note: For the least squares estimator

b = (X′X)−1X′Y

to be unique, we need X to be of full column rank; i.e., r(X) = p = k + 1. This

will occur when there are no linear dependencies among the columns of X. If r(X) < p,

then X′X does not have a unique inverse, and the normal equations can not be solved

uniquely. Statistical software such as R will alert you when X′X is not full rank.

Cheese data: We now use R to calculate the least squares estimate b = (X′X)−1X′Y

for the cheese data in Example 11.1:

> fit = lm(taste~acetic+h2s+lactic)

> fit

Coefficients:

(Intercept) acetic h2s lactic

-28.877 0.328 3.912 19.670
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This output gives the value of the least squares estimate

b =


b0

b1

b2

b3

 =


−28.877

0.328

3.912

19.670

 .

Therefore, the estimated regression model based on the data is

Ŷ = −28.877 + 0.328x1 + 3.912x2 + 19.670x3,

or, in other words,

T̂ASTE = −28.877 + 0.328 ACETIC+ 3.912 H2S+ 19.670 LACTIC.

11.3 Estimating the error variance

Goal: In the multiple linear regression model

Y = β0 + β1x1 + β2x2 + · · ·+ βkxk + ϵ,

where ϵ ∼ N (0, σ2), we now turn our attention to estimating σ2, the error variance.

Terminology: The residual sum of squares is given by

SSres =
n∑

i=1

e2i =
n∑

i=1

(Yi − Ŷi)
2,

just as in simple linear regression. In matrix notation, we can write this as

SSres = (Y − Ŷ)′(Y − Ŷ)

= (Y −Xb)′(Y −Xb) = e′e.

• The n× 1 vector Ŷ = Xb contains the least squares fitted values.

• The n× 1 vector e = Y − Ŷ contains the least squares residuals.

• R calculates these upon request; e.g., fitted.values = predict(fit).
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Result: The residual mean squares

MSres =
SSres

n− p

is an unbiased estimator of σ2, that is,

E(MSres) = σ2.

The quantity

σ̂ =
√
MSres =

√
SSres

n− p

estimates σ and is called the residual standard error. This result is analogous to the

simple linear regression result (see pp 161). The only difference is in the divisor in MSres.

11.4 Analysis of variance for linear regression

Identity: The following algebraic identity arises for a linear regression model fit (simple

or multiple):

SStotal =
n∑

i=1

(Yi − Y )2 =
n∑

i=1

(Ŷi − Y )2 +
n∑

i=1

(Yi − Ŷi)
2

= SSreg + SSres.

This information is used to produce an analysis of variance (ANOVA) table.

Table 11.2: Analysis of variance table for linear regression.

Source df SS MS F

Regression p− 1 SSreg MSreg = SSreg
p−1

F = MSreg
MSres

Residual n− p SSres MSres =
SSres
n−p

Total n− 1 SStotal

Notes:

• This table summarizes how the variability in the response data is partitioned.
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– SStotal is the total sum of squares. It measures the total variation in the

response data.

– SSreg is the regression sum of squares. It measures the variation in the

response data explained by the estimated regression model.

– SSres is the residual sum of squares. It measures the variation in the

response data not explained by the estimated regression model.

• The degrees of freedom (df) add down.

– The degrees of freedom for SStotal is the divisor in the sample variance

S2 =
1

n− 1

n∑
i=1

(Yi − Y )2 =
SStotal

n− 1
.

– The degrees of freedom for SSreg is p−1, the number of independent variables

in the model fit (recall p = k + 1 =⇒ k = p− 1).

– The degrees of freedom for SSres is the divisor needed to create an unbiased

estimator of σ2. Recall that

MSres =
SSres

n− p

is an unbiased estimator of σ2.

• Mean squares (MS) are the sums of squares divided by their degrees of freedom.

• The F statistic is formed by taking the ratio of MSreg and MSres. More on this in

a moment.

Cheese data: I used SAS to calculate the ANOVA table for the cheese data:

Analysis of Variance

Sum of Mean

Source DF Squares Square F Value Pr > F

Regression 3 4994.508 1664.836 16.22 <.0001

Residual 26 2668.378 102.629

Corrected Total 29 7662.886
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Remark: The reason I used SAS here is that R does something different in displaying

the analysis of variance (it breaks down the regression sum of squares further). More on

this in a moment. You can get R to produce this type of ANOVA table, but it takes

extra work and is not worth it.

Overall F test: In the multiple linear regression model

Y = β0 + β1x1 + β2x2 + · · ·+ βkxk + ϵ,

the F statistic in the ANOVA table can be used to test

H0 : β1 = β2 = · · · = βk = 0

versus

H1 : at least one of the βj’s is nonzero.

In other words, F tests if at least one of the independent variables x1, x2, ..., xk is

important in describing the response Y in the population (H0 says no; H1 says yes). If

H0 is rejected, we do not know which one or how many of the βj’s are nonzero; only that

at least one is.

Sampling distribution: When H0 is true, both MSreg and MSres are unbiased estima-

tors of σ2. Therefore, when H0 is true,

F =
MSreg

MSres

≈ 1.

The sampling distribution of F when H0 is true is

F =
MSreg

MSres

∼ F (p− 1, n− p).

Recall that the mean of an F distribution is around 1. Therefore,

• Values of F in the center of this distribution are consistent with H0.

• Large values of F (i.e., out in the right tail) are consistent with H1.

• Unusually small values of F (i.e., close to zero) might indicate there is a violation

of our statistical assumptions or we have fit the incorrect model.
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Figure 11.1: Cheese data: F (3, 26) pdf. This is the sampling distribution of F when H0

is true. An “×” at F = 16.22 has been added.

Cheese data: For the cheese data in Example 11.1, the F statistic is used to test

H0 : β1 = β2 = β3 = 0

versus

H1 : at least one of the βj is nonzero.

Interpretation: Based on the F statistic (F = 16.22), and the corresponding probability

value (p-value < 0.0001), we have strong evidence to reject H0. See also Figure 11.1.

We conclude that at least one of the independent variables (ACETIC, H2S, LACTIC) is

important in describing TASTE in the population.

Remark: In the next section, we learn how to investigate the population-level effects of

each variable separately.
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Terminology: In the regression analysis of variance,

SStotal = SSreg + SSres.

Therefore, the proportion of the total variation in the response data explained by the

estimated regression model is

R2 =
SSreg

SStotal

.

This statistic is called the coefficient of determination. Clearly,

0 ≤ R2 ≤ 1.

In general, the larger the R2, the better the estimated regression model explains the

variability in the response data.

Cheese data: For the cheese data in Example 11.1, recall the ANOVA table presented

earlier:

Analysis of Variance

Sum of Mean

Source DF Squares Square F Value Pr > F

Regression 3 4994.508 1664.836 16.22 <.0001

Residual 26 2668.378 102.629

Corrected Total 29 7662.886

Therefore, the coefficient of determination

R2 =
SSreg

SStotal

=
4994.508

7662.886
≈ 0.652.

Interpretation: About 65.2 percent of the variability in the TASTE data is explained by

the linear regression model that includes ACETIC, H2S, and LACTIC. The remaining 34.8

percent of the variability in the taste data is explained by other sources.

Warning: It is important to understand what R2 measures and what it does not. Its

value is computed under the assumption that the regression model is correct and assesses

how much of the variation in the response is attributed to that relationship.
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• If R2 is small, it may be that there is just a lot of random inherent variation in the

data. Although the estimated regression model is reasonable, it can explain only

so much of the overall variation.

• Alternatively, R2 may be large (e.g., close to 1) but for an estimated model that is

not appropriate for the data. A better model may exist.

Question: How does R display an analysis of variance table? For the cheese data in

Example 11.1, R provides

> fit = lm(taste~acetic+h2s+lactic)

> anova(fit)

Df Sum Sq Mean Sq F value Pr(>F)

acetic 1 2314.14 2314.14 22.5484 6.528e-05 ***

h2s 1 2147.11 2147.11 20.9209 0.0001035 ***

lactic 1 533.26 533.26 5.1959 0.0310870 *

Residuals 26 2668.38 102.63

Note: The convention used by R is to partition the regression sum of squares

SSreg = 4994.508

into sums of squares for each of the three independent variables ACETIC, H2S, and LACTIC,

as they are added to the model sequentially. These are called sequential sums of

squares. Note that, after rounding,

SSreg = 4994.51 = 2314.14 + 2147.11 + 533.26

= SS(ACETIC) + SS(H2S) + SS(LACTIC).

• SS(ACETIC) is the sum of squares added when compared to a model that includes

only an intercept term.

• SS(H2S) is the sum of squares added when compared to a model that includes an

intercept term and ACETIC.
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• SS(LACTIC) is the sum of squares added when compared to a model that includes

an intercept term, ACETIC, and H2S.

In other words, we can use the sequential sums of squares to assess the impact of adding

independent variables ACETIC, H2S, and LACTIC to the model in sequence. The p-values

provided by R help you assess the statistical significance of each independent variable as

you add them. Small p-values suggest statistical significance.

Interesting: If you change the order of the independent variables in the lm function,

then you will get a different sequential sum of squares partition. For example,

> fit.2 = lm(taste~h2s+lactic+acetic)

> anova(fit.2)

Df Sum Sq Mean Sq F value Pr(>F)

h2s 1 4376.8 4376.8 42.6468 6.356e-07 ***

lactic 1 617.1 617.1 6.0131 0.02123 *

acetic 1 0.6 0.6 0.0054 0.94193

Residuals 26 2668.4 102.6

This table suggests that ACETIC does not add significantly to a regression model that

already includes H2S and LACTIC (p-value = 0.941). Note that the previous sequential

sum of squares partition (on the previous page) does not enable us to see this.

11.5 Inference for individual regression parameters

Goal: In the multiple linear regression model

Y = β0 + β1x1 + β2x2 + · · ·+ βkxk + ϵ,

where ϵ ∼ N (0, σ2), we are interested in writing confidence intervals for individual

regression parameters βj.
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• This can help us assess the importance of using the independent variable xj in a

model that includes the other independent variables.

• That is, inference regarding the population parameter βj is always conditional on

the other variables being included in the model.

Confidence intervals: Under our linear regression model assumptions, a 100(1 − α)

percent confidence interval for βj, for j = 0, 1, 2, ..., k, is given by

bj ± tn−p,α/2

√
MSrescjj,

where bj is the least squares estimate of βj, MSres is our estimate of the error variance

σ2, and cjj = (X′X)−1
jj is the corresponding diagonal element of the (X′X)−1 matrix.

• The value tn−p,α/2 is the upper α/2 quantile from the t(n− p) distribution.

• Note the familiar form of the interval:

point estimate︸ ︷︷ ︸
bj

± quantile︸ ︷︷ ︸
tn−p,α/2

× standard error︸ ︷︷ ︸√
MSrescjj

.

We interpret the interval in the same way:

“We are 100(1− α) percent confident that the population parameter βj

is in this interval.”

• Of particular interest is the value βj = 0:

– If the confidence interval for βj contains “0,” this suggests (at the population

level) that the independent variable xj does not significantly add to a model

that contains the other independent variables.

– If the confidence interval for βj does not contain “0,” this suggests (at the

population level) that the independent variable xj does significantly add to a

model that contains the other independent variables.
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Cheese data: We can use the confint function in R to calculate confidence intervals

for the population regression parameters:

> fit = lm(taste~acetic+h2s+lactic)

> confint(fit,level=0.95)

2.5 % 97.5 %

(Intercept) -69.443161 11.689630

acetic -8.839009 9.495026

h2s 1.345693 6.477870

lactic 1.932318 37.407035

Interpretation: I will ignore the intercept confidence interval, which describes E(Y )

when x1 = x2 = x3 = 0, a nonsensical quantity. Here is how you interpret the other

confidence intervals:

• We are 95 percent confident that β1 (the population parameter for ACETIC) is

between −8.84 and 9.50.

– This interval includes “0.” Therefore, ACETIC does not significantly add to a

model that includes H2S and LACTIC.

– This reaffirms what we saw in the sequential SS when ACETIC was added last.

• We are 95 percent confident that β2 (the population parameter for H2S) is between

1.35 and 6.48.

– This interval does not include “0.” Therefore, H2S does significantly add to a

model that includes ACETIC and LACTIC.

• We are 95 percent confident that β3 (the population parameter for LACTIC) is

between 1.93 and 37.41.

– This interval does not include “0.” Therefore, LACTIC does significantly add

to a model that includes ACETIC and H2S.
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11.6 Confidence and prediction intervals for a given x = x0

Goals: We would like to create 100(1−α) percent intervals for the mean E(Y |x0) and for

the new value Y ∗(x0). As in simple linear regression, the former is called a confidence

interval (because it is for a mean response) and the latter is called a prediction interval

(because it is for a new random variable).

Cheese data: Suppose we are interested estimating E(Y |x0) and predicting a new

Y ∗(x0) when ACETIC = 5.5, H2S = 6.0, and LACTIC = 1.4, so that

x0 =


5.5

6.0

1.4

 .

We use R to compute the following:

> predict(fit,data.frame(acetic=5.5,h2s=6.0,lactic=1.4),level=0.95,interval="confidence")

fit lwr upr

23.93552 20.04506 27.82597

> predict(fit,data.frame(acetic=5.5,h2s=6.0,lactic=1.4),level=0.95,interval="prediction")

fit lwr upr

23.93552 2.751379 45.11966

• Note that the point estimate/prediction is

Ŷ (x0) = b0 + b1x10 + b2x20 + b3x30

= −28.877 + 0.328(5.5) + 3.912(6.0) + 19.670(1.4) ≈ 23.936.

• A 95 percent confidence interval for E(Y |x0) is (20.05, 27.83). When ACETIC =

5.5, H2S = 6.0, and LACTIC = 1.4, we are 95 percent confident that the population

mean taste rating is between 20.05 and 27.83.

• A 95 percent prediction interval for Y ∗(x0), when x = x0, is (2.75, 45.12). When

ACETIC = 5.5, H2S = 6.0, and LACTIC = 1.4, we are 95 percent confident that the

taste rating for a new specimen will be between 2.75 and 45.12.
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11.7 Model diagnostics (residual analysis)

Importance: We now discuss diagnostic techniques for linear regression (simple and

multiple). The term “diagnostics” refers to the process of “checking the model assump-

tions.” This is an important exercise because if the model assumptions are violated, then

our analysis and all subsequent interpretations could be compromised.

Recall: We first recall the model assumptions on the error terms in the linear regression

model

Yi = β0 + β1xi1 + β2xi2 + · · ·+ βkxik + ϵi,

for i = 1, 2, ..., n. Specifically, we have made the following assumptions:

• E(ϵi) = 0, for i = 1, 2, ..., n

• var(ϵi) = σ2, for i = 1, 2, ..., n, that is, the variance is constant

• the random variables ϵi are independent

• the random variables ϵi are normally distributed.

Residuals: In checking our model assumptions, we first have to deal with the obvious

problem; namely, the error terms ϵi in the model are never observed. However, after

fitting the model, we can calculate the residuals

ei = Yi − Ŷi,

where the ith fitted value

Ŷi = b0 + b1xi1 + b2xi2 + · · ·+ bkxik.

We can think of the residuals e1, e2, ..., en as “proxies” for the error terms ϵ1, ϵ2, ..., ϵn.

Therefore, we can use the residuals to check our model assumptions instead.

Normality: To check the normality assumption for the errors in linear regression, we

can examine the qq-plot of the residuals.
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Figure 11.2: Cheese data. Normal qq-plot of the least squares residuals.

• Recall that if the plotted points follow a straight line (approximately), this supports

the normality assumption.

• Substantial deviation from linearity is not consistent with the normality assump-

tion.

• The plot in Figure 11.2 supports the normality assumption for the errors in the

multiple linear regression model for the cheese data.

Importance: If the normality assumption is violated in a linear regression analysis,

this could affect population level inferences for regression parameters βj and confi-

dence/prediction intervals. Mild departures are generally not a problem unless the sample

size is very small. Substantial departures from normality should raise concern.
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Terminology: A residual plot is a scatterplot of the residuals ei (on the vertical axis)

versus the predicted values Ŷi (on the horizontal axis). A residual plot can be very useful

in detecting the following violations:

• misspecifying the true regression function

– i.e., a violation of the E(ϵi) = 0 assumption

• non-constant variance (heteroscedasticity)

– i.e., a violation of the var(ϵi) = σ2 assumption

• correlated observations over time; i.e., a violation of the assumption that the ϵi’s

are independent random variables.

Important: Mathematical arguments show that if all of the linear regression model

assumptions hold, then the residuals and fitted values are independent.

• Therefore, if the residual plot appears to be random in appearance with no no-

ticeable patterns (i.e., the plot looks like a random scatter of points), this suggests

there are no model inadequacies.

• On the other hand, if there are structural (non-random) patterns in the residual

plot, this suggests that the model is inadequate in some way.

• Furthermore, the residual plot often reveals what type of model violation is occur-

ring.

Cheese data: The residual plot in Figure 11.3 does not suggest any obvious model

inadequacies. It looks completely random in appearance.

Note: We now look at two new regression examples. We use these examples to illustrate

model violations that are commonly seen in practice. We also discuss remedies to handle

these violations.
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Figure 11.3: Cheese data. Residual plot for the multiple linear regression model fit. A

horizontal line at zero has been added.

Example 11.2. An electric company is interested in describing the relationship between

the following two variables:

Y = peak hour electricity demand (measured in kWh)

x = total monthly energy usage (measured in kWh).

This is important for planning purposes because the generating system must be large

enough to meet the maximum demand imposed by customers. Engineers consider the

simple linear regression model

Y = β0 + β1x+ ϵ

to describe the relationship. A random sample of n = 53 residual customers is obtained

to estimate the model; see Figure 11.4.
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Figure 11.4: Electricity data. Left: Scatterplot of peak demand (Y , measured in kWh)

versus monthly usage (x, measured in kWh) with estimated simple linear regression line

superimposed. Right: Residual plot for the simple linear regression model fit.

Problem: There is a clear problem with non-constant variance here. Note how the

residual plot “fans out” like the bell of a trumpet. This violation may have been missed

by looking at the scatterplot alone, but the residual plot highlights it.

Remedy: When faced with a non-constant variance violation in regression, a common

remedy is to transform the response variable Y . Common transformations are the

logarithmic (lnY ) and square-root (
√
Y ) transformations.

• A more advanced remedy is to use a model fitting technique known as weighted

least squares; this involves weighting certain observations more/less depending

on their level of variability. We will not pursue this.

• The advantage of using a transformation is that you can still use least squares

without weighting. However, all inferences will pertain to the population model

with the transformed response, not the response Y itself. This can sometimes

complicate how the results are interpreted.
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Analysis: We apply a square-root transformation W =
√
Y and consider the model

W = β0 + β1x+ ϵ,

where

W = peak hour electricity demand (measured in
√
kWh)

x = total monthly energy usage (measured in kWh).

Fitting this model in R gives the least squares estimates

> fit.2 = lm(sqrt(peak.demand) ~ monthly.usage)

> fit.2

Coefficients:

(Intercept) monthly.usage

0.5808309 0.0009529

Therefore, the estimated model on the transformed scale is

Ŵ = 0.581 + 0.000953x,

or, in other words,

√
Peak demand = 0.581 + 0.000953 Monthly usage.

Discussion: First note that applying the transformation did help to reduce the non-

constant variance problem considerably; see Figure 11.5. The noticeable “fanning out”

shape that we saw in the residual plot previously (i.e., based on the untransformed

response Y ) is now largely absent. Let’s proceed with inference for β1 to determine if

the linear relationship is significant for the population:

> confint(fit.2,level=0.95)

2.5 % 97.5 %

(Intercept) 0.3208043932 0.840857384

monthly.usage 0.0007563267 0.001149532
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Figure 11.5: Electricity data. Left: Scatterplot of the square root of peak demand (
√
Y )

versus monthly usage (x, measured in kWh) with estimated simple linear regression

line superimposed. Right: Residual plot for the simple linear regression model fit with

transformed response.

Interpretation: We are 95 percent confident that the population regression parameter

β1 (in the transformed model) is between 0.000756 and 0.001150.

• Note that this interval does not include “0” and includes only positive values.

This suggests that peak demand (on the square root scale) and monthly usage are

positively related in the population.

• Specifically, for every one-unit increase in x (monthly usage measured in kWh), we

are 95 percent confident that the mean peak demand will increase between 0.000756

and 0.001150
√
kWh.

• I examined the qq plot for normality (using the residuals from the transformed

model fit). This plot (not shown) did reveal some potential mild departures on the

high side, but nothing that was serious.

PAGE 192



CHAPTER 11 STAT 509, J. TEBBS

4 6 8 10

0.
5

1.
0

1.
5

2.
0

Wind Velocity (mph)

D
C

 O
ut

pu
t

1.0 1.5 2.0 2.5

−
0.

6
−

0.
4

−
0.

2
0.

0
0.

2

Fitted values

R
es

id
ua

ls

Figure 11.6: Windmill data. Left: Scatterplot of DC output Y versus wind velocity (x,

measured in mph) with least squares simple linear regression line superimposed. Right:

Residual plot for the simple linear regression model fit.

Example 11.3. An engineer is investigating the use of a windmill to generate electricity.

He has collected data on

Y = direct current (DC) output

x = wind velocity (measured in mph).

Data for n = 25 observation pairs are shown in Figure 11.6. The engineer initially

assumes a simple linear regression model

Y = β0 + β1x+ ϵ

to describe the relationship and fits this model.

Problem: There is a clear quadratic relationship between DC output and wind

velocity. The residual plot in Figure 11.6 from the simple linear regression model fit

shows a pronounced quadratic pattern. It is easy to see why this is happening−a simple

linear regression model is inappropriate here (it does not explain quadratic relationships).
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Remark: I used R to calculate the coefficient of determination from the simple linear

regression model fit. It is

R2 ≈ 0.875.

A novice data analyst (especially one that doesn’t even bother to graph the data) might

think that because this is “pretty large,” the model we have fit is a “good model.”

However, it is easy to see from Figure 11.6 that a simple linear regression model is not

a good model for the data. Even though 0.875 is in fact “pretty large,” its value refers

specifically to a model that is inappropriate.

Remedy: Fit a multiple linear regression model with two independent variables: wind

velocity x and its square x2. The model

Y = β0 + β1x+ β2x
2 + ϵ

is called a quadratic regression model. It is straightforward to fit a quadratic regres-

sion model in R. We simply regress Y on both x and x2.

> wind.velocity.sq = wind.velocity^2

> fit.2 = lm(DC.output ~ wind.velocity + wind.velocity.sq)

> fit.2

Coefficients:

(Intercept) wind.velocity wind.velocity.sq

-1.15590 0.72294 -0.03812

The estimated quadratic regression model is

Ŷ = −1.15590 + 0.72294x− 0.03812x2

or, in other words,

̂DC output = −1.15590 + 0.72294 Wind.velocity− 0.03812 (Wind.velocity)2.

Analysis: Note that the residual plot from the quadratic model fit, shown in Figure

11.7, now looks much more random. The quadratic trend has disappeared (because the

model now incorporates it).
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Figure 11.7: Windmill data. Scatterplot of DC output Y versus wind velocity (x, mea-

sured in mph) with least squares quadratic regression curve superimposed. Right: Resid-

ual plot for the quadratic regression model fit.

Confidence interval: To see if the quadratic effect between DC output and wind

velocity is significant, we can write a confidence interval for β2, the population parameter

in the quadratic regression model that describes the quadratic effect.

> confint(fit.2,level=0.95)

2.5 % 97.5 %

(Intercept) -1.51810023 -0.79369625

wind.velocity 0.59554751 0.85032429

wind.velocity.sq -0.04806859 -0.02817318

Interpretation: We are 95 percent confident that the population regression parameter

β2 (in the quadratic model) is between −0.0481 and −0.0282. Note that this interval

does not include “0” and includes only negative values. This suggests that quadratic

effect between DC output and wind velocity is significant in the population.
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Figure 11.8: Windmill data. QQ plots of the residuals. Left: Simple linear regression fit.

Right: Quadratic regression fit.

Remark: I used R to calculate the coefficient of determination from the quadratic

regression model fit. It is

R2 ≈ 0.968.

This means that about 96.8 percent of the variability in the DC output data is explained

by the estimated model that includes both wind velocity and (wind velocity)2. The

remaining 3.2 percent is not explained by the estimated model. This is an improvement

over the largely meaningless R2 ≈ 0.875 calculated from the simple linear regression.

New Problem: Figure 11.8 shows the normal qq plots for the simple linear regression

model fit (left) and the quadratic model fit (right).

• I say “new” problem, because now it looks like the normality assumption (for the

quadratic model) is violated. Interestingly, this was not a problem with the simple

linear regression model.

• It appears that fitting the quadratic regression model fixed one problem (i.e., se-

lecting a better regression function) but created another (normality violation).
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12 Factorial Experiments

12.1 Introduction

Importance: In engineering experiments, particularly those carried out in manufactur-

ing settings, there are often several variables of interest and the goal is to understand

the effects of these variables on a continuous response Y (e.g., yield, lifetime, fill weights,

etc.). A factorial treatment structure is an efficient way of defining treatments in

these types of experiments.

• One example of a factorial treatment structure uses k factors, where each factor

has two levels. This is called a 2k factorial experiment.

• Factorial experiments are common in the early stages of experimental work. For

this reason, they are also called factor screening experiments.

Example 12.1. A nickel-titanium alloy is used to make components for jet turbine

aircraft engines. Cracking is a potentially serious problem in the final part, as it can lead

to nonrecoverable failure. A test is run at the parts producer to determine the effect of

k = 4 factors on cracks: pouring temperature (A), titanium content (B), heat treatment

method (C), and amount of grain refiner used (D).

• Factor A has 2 levels: “low” temperature and “high” temperature

• Factor B has 2 levels: “low” content and “high” content

• Factor C has 2 levels: Method 1 and Method 2

• Factor D has 2 levels: “low” amount and “high” amount.

The response variable in the experiment is

Y = length of largest crack (in mm) induced in a piece of sample material.
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Note: In this example, there are 4 factors, each with 2 levels. Thus, there are

2× 2× 2× 2 = 24 = 16

different treatment combinations. These are listed here:

a1b1c1d1 a1b2c1d1 a2b1c1d1 a2b2c1d1

a1b1c1d2 a1b2c1d2 a2b1c1d2 a2b2c1d2

a1b1c2d1 a1b2c2d1 a2b1c2d1 a2b2c2d1

a1b1c2d2 a1b2c2d2 a2b1c2d2 a2b2c2d2

For example, the treatment combination a1b1c1d1 holds each factor at its “low” level, the

treatment combination a1b1c2d2 holds Factors A and B at their “low” level and Factors

C and D at their “high” level, and so on.

Terminology: In a 2k factorial experiment, one replicate of the experiment uses 2k

runs, one at each of the 2k treatment combinations.

• Therefore, in Example 12.1, one replicate of the experiment would require 16 runs

(one at each treatment combination listed above).

• Two replicates would require 32 runs, three replicates would require 48 runs, and

so on.

Terminology: There are different types of effects of interest in factorial experiments:

main effects and interaction effects. For example, in a 24 factorial experiment,

• there is 1 “effect” that does not depend on any of the factors

• there are 4 main effects: A, B, C, and D

• there are 6 two-way interaction effects: AB, AC, AD, BC, BD, and CD

• there are 4 three-way interaction effects: ABC, ABD, ACD, and BCD

• there is 1 four-way interaction effect: ABCD.
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Observation: Note that 1 + 4 + 6 + 4 + 1 = 16. In other words, with 16 observations

(from one 24 replicate), we can estimate the 4 main effects and we can estimate all of the

11 interaction effects. We will have 1 observation left to estimate the overall mean of Y ,

that is, the “effect” that depends on none of the 4 factors.

Generalization: In a 2k factorial experiment, there is/are

•
(
k
0

)
= 1 overall mean (the mean of Y ignoring all factors)

•
(
k
1

)
= k main effects

•
(
k
2

)
= k(k−1)

2
two-way interaction effects

•
(
k
3

)
three-way interaction effects, and so on.

Note that (
k

0

)
+

(
k

1

)
+

(
k

2

)
+ · · ·+

(
k

k

)
=

k∑
j=0

(
k

j

)
= 2k

and additionally that
(
k
0

)
,
(
k
1

)
, ...,

(
k
k

)
are the entries in the (k + 1)st row of Pascal’s

Triangle. Observe also that 2k grows quickly in size as k increases. For example, if there

are k = 10 factors (A, B, C, D, E, F, G, H, I, and J, say), then performing just one

replicate of the experiment would require 210 = 1024 runs! In real life, rarely would this

type of experiment be possible.

12.2 Example: A 22 experiment with replication

Remark: We first consider 2k factorial experiments where k = 2, that is, there are only

two factors, denoted by A and B. This is called a 22 experiment. We illustrate with an

agricultural example.

Example 12.2. Predicting corn yield prior to harvest is useful for making feed supply

and marketing decisions. Corn must have an adequate amount of nitrogen (Factor A)

and phosphorus (Factor B) for profitable production and also for environmental concerns.
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Table 12.1: Corn yield data (bushels/plot).

Treatment combination Yield (Y ) Treatment sample mean

a1b1 35, 26, 25, 33, 31 30

a1b2 39, 33, 41, 31, 36 36

a2b1 37, 27, 35, 27, 34 32

a2b2 49, 39, 39, 47, 46 44

Experimental design: In a 2 × 2 = 22 factorial experiment, two levels of nitrogen

(a1 = 10 and a2 = 15) and two levels of phosphorus were used (b1 = 2 and b2 = 4).

Applications of nitrogen and phosphorus were measured in pounds per plot. Twenty

small (quarter acre) plots were available for experimentation, and the four treatment

combinations a1b1, a1b2, a2b1, and a2b2 were randomly assigned to plots. Note that

there are 5 replications.

Response: The response variable is

Y = yield per plot (measured in # bushels).

Side-by-side boxplots of the data are shown in Figure 12.1.

Naive analysis: One silly way to analyze these data would be to simply regard each

of the combinations a1b1, a1b2, a2b1, and a2b2 as a “treatment” and perform a one-way

ANOVA with t = 4 treatment groups like we did in Chapter 9. This would produce the

following ANOVA table:

> anova(lm(yield ~ treatment))

Analysis of Variance Table

Df Sum Sq Mean Sq F value Pr(>F)

treatment 3 575 191.67 9.5833 0.0007362 ***

Residuals 16 320 20.00
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Figure 12.1: Boxplots of corn yields (bushels/plot) for four treatment groups.

Uninteresting conclusion: The value F = 9.5833 is not what we would expect from

an F (3, 16) distribution, the distribution of F when

H0 : µ11 = µ12 = µ21 = µ22

is true (p-value ≈ 0.0007). Therefore, we conclude that at least one of the factorial

treatment population means is different.

Remark: As we have discussed before in one-way analyses, the overall F test provides

very little information. However, with a factorial treatment structure, it is possible to

explore the data further. We can target the (main) effects due to nitrogen (Factor A)

and due to phosphorus (Factor B) individually. We can also determine if the two factors

nitrogen and phosphorus interact.

PAGE 201



CHAPTER 12 STAT 509, J. TEBBS

Partition: Let us first recall the treatment sum of squares from the one-way ANOVA:

SStrt = 575.

The way we learn more about specific effects is to partition SStrt into the following pieces:

SSA, SSB, and SSAB. By “partition,” I mean that we will write

SStrt = SSA + SSB + SSAB.

In words,

• SSA is the sum of squares due to the main effect of A (nitrogen)

• SSB is the sum of squares due to the main effect of B (phosphorus)

• SSAB is the sum of squares due to the interaction effect of A and B (nitrogen and

phosphorus).

Two-way analysis: We can use R to write this partition in a richer ANOVA table:

> fit = lm(yield ~ nitrogen + phosphorus + nitrogen*phosphorus)

> anova(fit)

Analysis of Variance Table

Df Sum Sq Mean Sq F value Pr(>F)

nitrogen 1 125 125 6.25 0.0236742 *

phosphorus 1 405 405 20.25 0.0003635 ***

nitrogen:phosphorus 1 45 45 2.25 0.1530877

Residuals 16 320 20

Interpretation: The F statistics, say FA, FB, and FAB, can be used to determine if the

respective effects are significant in the population. Small p-values (e.g., p-value < 0.05)

indicate that the effect is significant. Effects with large p-values can be treated as not

significant.
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Figure 12.2: Corn yield data. F (1, 16) pdf. An “×” at FAB = 2.25 has been added.

Analysis: When analyzing data from a 22 factorial experiment, the first task is to

determine if the interaction effect is significant in the population. For the corn yield data

in Example 12.2, we see that

FAB = 2.25 (p-value ≈ 0.153).

• This value of FAB is not all that unreasonable when compared to the F (1, 16)

distribution, the sampling distribution of FAB when nitrogen and phosphorus do

not interact (i.e., when the population-level interaction effect is zero).

• In other words, we do not have substantial (population-level) evidence that nitrogen

and phosphorus interact.
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Figure 12.3: Interaction plot for nitrogen and phosphorus in Example 12.2.

NOTE : An interaction plot is a graphical display that can help us assess (visually)

whether two factors interact. In this plot, the levels of Factor A are marked on the

horizontal axis. The sample means of the treatments are plotted against the levels of A,

and the points corresponding to the same level of Factor B are joined by straight lines.

• If Factors A and B do not interact in the population, the interaction plot should

display parallel lines.

– That is, the effect of one factor on the response Y stays constant across the

levels of the other factor. This is essentially what it means to have no inter-

action.

• If the interaction plot displays a significant departure from parallelism (including an

overwhelming case where the lines cross), then this is visual evidence of interaction.
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– That is, the effect of one factor on the response Y depends on the levels of the

other factor.

• The F test that uses FAB provides numerical evidence of interaction. The interac-

tion plot provides visual evidence.

Conclusion: We have already used the interaction test statistic FAB to conclude that

the interaction effect of nitrogen and phosphorus is not significant in the population.

Although the interaction plot in Figure 12.3 is not parallel (remember, it is constructed

from the sample data), the departure from parallelism is not statistically significant.

Strategy for analyzing 22 factorial experiments:

1. Start by looking at whether the interaction effect is significant. This can be done by

using an interaction plot and an F test that uses FAB.

2. If the interaction is significant, then formal analysis of main effects is not all that

meaningful because their interpretations depend on the interaction.

• In this situation, the best approach is to just ignore the factorial treatment structure

and redo the entire analysis as a one-way ANOVA with four treatments.

• Tukey pairwise confidence intervals can help you formulate an ordering among the

4 treatment population means.

3. If the interaction is not significant, I prefer to re-estimate the model without the

interaction term and then examine the main effects. This can be done numerically by

examining the sizes of FA and FB, respectively.

• Confidence intervals for differences µA1−µA2 and µB1−µB2 can be used to quantify

the size of these effects in the population.

4. Check model assumptions!
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Corn yield data: Because the nitrogen/phosphorus interaction is not significant, I redid

the ANOVA leaving out the interaction term:

> fit.2 = lm(yield ~ nitrogen + phosphorus)

> anova(fit.2)

Analysis of Variance Table

Df Sum Sq Mean Sq F value Pr(>F)

nitrogen 1 125 125.00 5.8219 0.027403 *

phosphorus 1 405 405.00 18.8630 0.000442 ***

Residuals 17 365 21.47

Comparing this to the ANOVA table that includes interaction (pp 202). Note that the

interaction sum of squares SSAB = 45 from that ANOVA table has now been “absorbed”

into the residual sum of squares in the no-interaction analysis. Furthermore,

• the main effect of nitrogen (Factor A) is significant in describing yield in the pop-

ulation (FA = 5.82, p-value = 0.027).

• the main effect of phosphorus (Factor B) is significant in describing yield in the

population (FB = 18.86, p-value = 0.0004).

Confidence intervals: A 95 percent confidence interval for µA1 −µA2, the difference in

the population means for the two levels of nitrogen (Factor A) is

(Y A1 − Y A2)± t17,0.025

√
MSres

(
1

10
+

1

10

)
.

A 95 percent confidence interval for µB1 − µB2, the difference in population means for

the two levels of phosphorus (Factor B) is

(Y B1 − Y B2)± t17,0.025

√
MSres

(
1

10
+

1

10

)
.

The R code online can be used to calculate these intervals:

95% CI for µA1 − µA2 : (−9.37,−0.62) bushels/acre

95% CI for µB1 − µB2 : (−13.37,−4.63) bushels/acre
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Figure 12.4: Left: Side by side boxplots of corn yields for nitrogen (Factor A). Right:

Side by side boxplots of corn yields for phosphorus (Factor B).

Interpretation:

• We are 95 percent confident that the difference in the population mean yields (for

low nitrogen/high nitrogen) is between −9.37 and −0.62 bushels per acre.

– Note that this interval does not include “0,” and includes only negative values.

– This suggests that the population mean yield at the high level of nitrogen is

larger than the population mean yield at the low level of nitrogen.

• We are 95 percent confident that the difference in the population mean yields (for

low phosphorus/high phosphorus) is between −13.37 and −4.63 bushels per acre.

– Note that this interval does not include “0,” and includes only negative values.

– This suggests that the population mean yield at the high level of phosphorus

is larger than the population mean yield at the low level of phosphorus.

• Normal qq plots (not shown) for data look fine.
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12.3 Example: A 24 experiment without replication

Example 12.3. A chemical product is produced in a pressure vessel. A factorial exper-

iment is carried out to study the factors thought to influence the filtration rate of this

product. The four factors are temperature (A), pressure (B), concentration of formalde-

hyde (C) and stirring rate (D). Each factor is present at two levels (e.g., “low” and

“high”). A 24 experiment is performed with one replication; the data are shown below.

Factor Filtration rate

Run A B C D Run label (Y , gal/hr)

1 − − − − a1b1c1d1 45

2 + − − − a2b1c1d1 71

3 − + − − a1b2c1d1 48

4 + + − − a2b2c1d1 65

5 − − + − a1b1c2d1 68

6 + − + − a2b1c2d1 60

7 − + + − a1b2c2d1 80

8 + + + − a2b2c2d1 65

9 − − − + a1b1c1d2 43

10 + − − + a2b1c1d2 100

11 − + − + a1b2c1d2 45

12 + + − + a2b2c1d2 104

13 − − + + a1b1c2d2 75

14 + − + + a2b1c2d2 86

15 − + + + a1b2c2d2 70

16 + + + + a2b2c2d2 96

Notation: When discussing factorial experiments, it is common to use the symbol “−”

to denote the low level of a factor and the symbol “+” to denote the high level. For

example, the first row of the table above indicates that each factor (A, B, C, and D) is

run at its “low” level. The response Y for this run is 45 gal/hr.
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Note: In this experiment, there are k = 4 factors, so there are 16 effects to estimate:

• the 1 overall mean

• the 4 main effects: A, B, C, and D

• the 6 two-way interactions: AB, AC, AD, BC, BD, and CD

• the 4 three-way interactions: ABC, ABD, ACD, BCD

• the 1 four-way interaction: ABCD.

In this 24 experiment, we have 16 values of Y and 16 effects to estimate. This leaves us

with no observations (and therefore no degrees of freedom) to perform statistical tests.

This is an obvious problem! We have no way to judge which main effects are significant,

and we cannot learn about how these factors interact.

Terminology: A single replicate of a 2k factorial experiment is called an unreplicated

factorial. With only one replicate, there is no internal “error estimate,” so we cannot

perform statistical tests to judge significance. What do we do?

• One approach is to assume that certain higher-order interactions are “negligible”

and then combine their sum of squares to estimate the error.

• This is an appeal to the sparsity of effects principle, which states that most

systems are dominated by some of the main effects and low-order interactions and

that most high-order interactions are negligible.

• To learn about which effects may be negligible, we can fit the full ANOVA model

and obtain the sum of squares (SS) for each effect (see next page).

• Effects with “large” SS can be retained. Effects with “small” SS can be discarded.

A smaller model with only the “large” effects can then be fit. This smaller model

will have an error estimate formed by taking all of the effects with “small” SS and

combining them together.
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Analysis: Here is the R output from fitting the full model:

> fit = lm(filtration ~ A*B*C*D)

> anova(fit)

Analysis of Variance Table

Df Sum Sq Mean Sq F value Pr(>F)

A 1 1870.56 1870.56

B 1 39.06 39.06

C 1 390.06 390.06

D 1 855.56 855.56

A:B 1 0.06 0.06

A:C 1 1314.06 1314.06

B:C 1 22.56 22.56

A:D 1 1105.56 1105.56

B:D 1 0.56 0.56

C:D 1 5.06 5.06

A:B:C 1 14.06 14.06

A:B:D 1 68.06 68.06

A:C:D 1 10.56 10.56

B:C:D 1 27.56 27.56

A:B:C:D 1 7.56 7.56

Residuals 0 0.00

Warning message:

In anova.lm(fit) :

ANOVA F-tests on an essentially perfect fit are unreliable

Note: From this table, it is easy to see that the effects

A, C, D, AC, AD

are far more relevant than the others. For example, the smallest SS in this set is 390.06

(Factor C) which is over 5 times larger than the largest remaining SS (68.06). As a next

step, we therefore consider fitting a smaller model with these 5 effects only. This will

“free up” 10 degrees of freedom that can be used to estimate the error variance.
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Figure 12.5: Interaction plots in Example 12.3. Left: AC. Right: AD.

Analysis: Here is the R output summarizing the fit of the smaller model that includes

only A, C, D, AC, and AD:

> # Fit smaller model

> fit = lm(filtration ~ A + C + D + A*C + A*D)

> anova(fit)

Analysis of Variance Table

Df Sum Sq Mean Sq F value Pr(>F)

A 1 1870.56 1870.56 95.865 1.928e-06 ***

C 1 390.06 390.06 19.990 0.001195 **

D 1 855.56 855.56 43.847 5.915e-05 ***

A:C 1 1314.06 1314.06 67.345 9.414e-06 ***

A:D 1 1105.56 1105.56 56.659 1.999e-05 ***

Residuals 10 195.13 19.51

Note: Each of these five effects is strongly significant in the population. The AC (tem-

perature/concentration of formaldehyde) and AD (temperature/stirring rate) interaction

plots in Figure 12.5 each show strong interaction.
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Regression analysis: In Example 12.3, even though there are no numerical values

attached to the levels of temperature (Factor A), concentration of formaldehyde (Factor

C), and stirring rate (Factor D), we can still use regression to estimate a population-level

model. Specifically, we can introduce the following variables with arbitrary numerical

codings assigned:

x1 = temperature (−1 = low; 1 = high)

x2 = concentration of formaldehyde (−1 = low; 1 = high)

x3 = stirring rate (−1 = low; 1 = high).

With these values, we can fit the multiple linear regression model

Y = β0 + β1x1 + β2x2 + β3x3 + β4x1x2 + β5x1x3 + ϵ.

Doing so in R gives

> fit = lm(filtration ~ temp + conc + stir + temp:conc + temp:stir)

> fit

Coefficients:

(Intercept) temp conc stir temp:conc temp:stir

70.062 10.812 4.938 7.313 -9.062 8.312

Therefore, the estimated regression model for the filtration rate data is

Ŷ = 70.062 + 10.812x1 + 4.938x2 + 7.313x3 − 9.062x1x2 + 8.312x1x3

or, in other words,

F̂ILT = 70.062+10.812 TEMP+4.938 CONC+7.313 STIR−9.062 TEMP*CONC+8.312 TEMP*STIR

Provided that our model assumptions hold, this fitted regression model can be used to

estimate the mean filtration rate (or predict a future filtration rate) at specific combina-

tions of temperature (±1), concentration (±1), and stirring rate (±1).
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