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CHAPTER 10 STAT 513, J. TEBBS

10 Hypothesis Testing

Complementary reading: Chapter 10 (WMS).

10.1 Introduction and review

PREVIEW : Classical statistical inference deals with making statements about popula-

tion (model) parameters. The two main areas of statistical inference are estimation

(point estimation and confidence intervals) and hypothesis testing. Point and interval

estimation were discussed CH8-9 (WMS). This chapter deals with hypothesis testing.

Example 10.1. Actuarial data reveal that the claim amount for a “standard class” of

policy holders, denoted by Y (measured in $1000s), follows an exponential distribution

with mean θ > 0. Suppose that we adopt this model for Y and that we observe an iid

sample of claims, denoted by Y1, Y2, ..., Yn. Recall the following facts from STAT 512:

1. A sufficient statistic for θ is

T =
n∑

i=1

Yi.

2. The maximum likelihood estimator (MLE) for θ is

Y =
1

n

n∑
i=1

Yi.

3. The minimum variance unbiased estimator (MVUE) for θ is Y .

4. The quantity

Q =
2T

θ
∼ χ2(2n),

and therefore is a pivot. This is an exact (finite sample) result; i.e., Q ∼ χ2(2n)

exactly for all n.

5. The quantity

Z =
Y − θ

S/
√
n

d−→ N (0, 1),
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CHAPTER 10 STAT 513, J. TEBBS

as n → ∞, and therefore Z is a large sample pivot. This means that Z ∼ AN (0, 1),

when n is large. The larger the n, the better the approximation.

INTERVAL ESTIMATION : We have at our disposal two pivots, namely,

Q =
2T

θ
∼ χ2(2n)

and

Z =
Y − θ

S/
√
n
∼ AN (0, 1).

The (exact) confidence interval for θ arising from Q is(
2T

χ2
2n,α/2

,
2T

χ2
2n,1−α/2

)
,

where χ2
2n,1−α/2 and χ2

2n,α/2 denote the lower and upper α/2 quantiles of a χ2(2n) distri-

bution, respectively. The (approximate) confidence interval for θ arising from Z is

Y ± zα/2

(
S√
n

)
,

where S is the sample standard deviation and zα/2 is the upper α/2 quantile of the

N (0, 1) distribution.

SIMULATION EXERCISE : To compare the coverage probabilities of the exact and ap-

proximate intervals, we will use Monte Carlo simulation. In particular, we use R to

generate B = 10, 000 iid samples

Y1, Y2, ..., Yn ∼ exponential(θ),

with n = 10.

• For each of the B = 10, 000 samples, we will keep track of the values of T , Y ,

and S. We will then compute the exact and approximate 95 percent confidence

intervals for θ with each sample (that is, 1− α = 0.95).

• Therefore, at the end of the simulation, we will have generated B = 10, 000 exact

intervals and B = 10, 000 approximate intervals.
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CHAPTER 10 STAT 513, J. TEBBS

• We can then compute the proportion of the intervals (both exact and approximate)

which contain θ. For purposes of illustration, we take θ = 10. Because we are

computing 95 percent confidence intervals, we would expect this proportion to be

close to 1− α = 0.95.

• We then repeat this simulation exercise for n = 30, n = 100, and n = 1000. Here

are the results:

Interval n = 10 n = 30 n = 100 n = 1000

Exact 0.953 0.949 0.952 0.951

Approximate 0.868 0.915 0.940 0.951

Table 10.1: Monte Carlo simulation. Coverage probabilities for exact and approximate

95 percent confidence intervals for an exponential mean θ, when θ = 10.

DISCUSSION : As we can see, regardless of the sample size n, the exact interval produces

a coverage probability that hovers around the nominal 1−α = 0.95 level, as expected. On

the other hand, the coverage probability of the approximate interval is much lower than

the nominal 1 − α = 0.95 level when n is small, although, as n increases, the coverage

probability does get closer to the nominal level.

MORAL: We will discuss two types of statistical inference procedures: those that are

exact and those that are approximate. Exact procedures are based on exact distribu-

tional results. Approximate procedures are typically based on large sample distributional

results (e.g., Central Limit Theorem, Delta Method, Slutsky’s Theorem, etc.).

• In some problems, exact inference may not be available or the exact distributional

results needed may be so intractable that they are not helpful. In these instances,

approximate procedures can be valuable.

• Approximate procedures are based on the (rather nonsensical) notion that the

sample size n → ∞. However, these procedures often do confer acceptable results

for reasonably sized samples.
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CHAPTER 10 STAT 513, J. TEBBS

PREVIEW : Suppose your colleague claims that the mean claim amount θ for a new class

of customers is larger than the mean amount for the standard class of customers, known

to be θ0. How can we determine (statistically) if there is evidence to support this claim?

Here, it makes sense to think of two competing hypotheses:

H0 : θ = θ0

versus

Ha : θ > θ0.

• H0 says that the mean claim amount for the new class of customers, θ, is the same

as the mean claim amount for the standard class, θ0.

• Ha says that the mean claim amount for the new class of customers, θ, is larger

than the mean claim amount for the standard class, θ0, that is, your colleague’s

claim is correct.

• Based on a sample of claim amounts Y1, Y2, ..., Yn from the new class of customers,

how should we formally decide between H0 and Ha? This question can be answered

by performing a hypothesis test.

10.2 The elements of a hypothesis test

TERMINOLOGY : A hypothesis test is an inferential technique which pits two com-

peting hypotheses versus each other. The goal is to decide which hypothesis is more

supported by the observed data. The four parts of a hypothesis test are

1. the null hypothesis, H0

2. the alternative hypothesis, Ha

3. the test statistic

4. the rejection region.
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TERMINOLOGY : The null hypothesis H0 states the value of the parameter to be

tested. For example, if our colleague in Example 10.1 wants to compare the mean claim

amount of the new class θ to the mean claim amount for the standard class (known to

be θ0 = 10, say), then the null hypothesis would be

H0 : θ = 10.

In this course, we will usually take the null hypothesis to be sharp; that is, there is only

one value of the parameter θ possible under H0.

TERMINOLOGY : The alternative hypothesis Ha describes what values of θ we are

interested in testing H0 against. For example, if our colleague in Example 10.1 believed

that the mean claim amount for the new class of customers was

• greater than θ0 = 10, s/he would use

Ha : θ > 10.

• less than θ0 = 10, s/he would use

Ha : θ < 10.

• different than θ0 = 10, s/he would use

Ha : θ ̸= 10.

The alternative hypothesis Ha is sometimes called the researcher’s hypothesis, since

it is often the hypothesis the researcher wants to conclude is supported by the data.

NOTE : The first two examples of Ha above are called one-sided alternatives. The last

example is called a two-sided alternative. One-sided alternatives state pointedly which

direction we are testing H0 against. A two-sided alternative does not specify this.

TERMINOLOGY : A test statistic is a statistic that is used to test H0 versus Ha. We

make our decision by comparing the observed value of the test statistic to its sampling

distribution under H0.
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• If the observed value of the test statistic is consistent with its sampling distribution

under H0, then this is not evidence for Ha.

• If the observed value of the test statistic is not consistent with its sampling distri-

bution under H0, and it is more consistent with the sampling distribution under

Ha, then this is evidence for Ha.

TERMINOLOGY : The rejection region, denoted by RR, specifies the values of the

test statistic for which H0 is rejected. The rejection region is usually located in tails of

the test statistic’s sampling distribution computed under H0. This is why we take H0 to

be sharp, namely, so that we can construct a single sampling distribution.

PREVAILING RULE : In any hypothesis test, if the test statistic falls in rejection region,

then we reject H0.

STATES OF NATURE : Table 10.2 summarizes the four possible outcomes from per-

forming a hypothesis test.

Decision: Reject H0 Decision: Do not reject H0

Truth: H0 Type I Error correct decision

Truth: Ha correct decision Type II Error

Table 10.2: States of nature in testing H0 : θ = θ0 versus Ha : θ ̸= θ0 (or any other Ha).

TERMINOLOGY : Type I Error: Rejecting H0 when H0 is true. The probability of

Type I Error is denoted by α. Notationally,

α = P (Type I Error) = P (Reject H0|H0 is true)

= P (Reject H0|θ = θ0).

The Type I Error probability α is also called the significance level for the test. We

would like α to be small. It is common to choose this value up front.
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TERMINOLOGY : Type II Error: Not rejecting H0 when Ha is true. The probability

of Type II Error is denoted by β. Notationally,

β = P (Type II Error) = P (Do not reject H0|Ha is true).

REMARK : Obviously, Ha : θ ̸= θ0 (or any other Ha) can be true in many ways, so we

can compute β for different values of θ under Ha. Specifically, the probability of Type II

error, when θ = θa ∈ Ha, is

β = β(θa) = P (Do not reject H0|θ = θa).

That is, this probability will be different for different values of θa ∈ Ha. Ideally, we would

like β to be small for all θa ∈ Ha.

Example 10.2. Suppose that industrial accidents occur according to a Poisson process

with mean θ = 20 per site per year. New safety measures have been put in place to

decrease the number of accidents at industrial sites all over the US. Suppose that after

implementation of the new measures, we will observe the number of accidents for a sample

of n = 10 sites. Denote these data by Y1, Y2, ..., Y10. We are interested in testing

H0 : θ = 20

versus

Ha : θ < 20.

To perform the test, suppose we use the test statistic

T =
10∑
i=1

Yi

and the rejection region RR = {t : t ≤ 175}.

Questions:

(a) What is the distribution of T when H0 is true?

(b) What is α = P (Type I Error) for this RR?

(c) Suppose that θ = 18, that is, Ha is true. What is the probability of Type II Error

when using this RR?
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Solutions:

(a) Recall that the sum of n iid Poisson(θ) random variables is distributed as Poisson(nθ).

Therefore, when H0 : θ = 20 is true,

T ∼ Poisson(200).

Note that this is an exact distributional result; i.e., all of the calculations that follow are

exact and not approximate.

(b) The probability of Type I Error is

α = P (Reject H0|H0 is true)

= P (T ≤ 175|θ = 20)

=
175∑
t=0

200te−200

t!
≈ 0.0394.

I found this probability using the ppois(175,200) command in R.

(c) First, note that when θ = 18,

T ∼ Poisson(180).

Therefore, the probability of Type II Error when θ = 18 is

β = β(18) = P (Do not reject H0|θ = 18)

= P (T > 175|θ = 18)

=
∞∑

t=176

180te−180

t!
≈ 0.6272.

I found this probability using the 1-ppois(175,180) command in R.

DISCUSSION :

• For the rejection region RR = {t : t ≤ 175}, the probability of Type I Error is

small (α ≈ 0.0394). This assures us that if H0 is really true (and that the new

safety measures, in fact, did not work), then we are not likely to reject H0.

• However, if implementing the safety measures did work and the mean number of

accidents per site/per year actually decreased to θ = 18 (i.e., Ha is true), then we

are still likely not to reject H0 since β = β(18) ≈ 0.6272.
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• Note that

P (Do not reject H0|θ = 18) ≈ 0.6272 ⇐⇒ P (Reject H0|θ = 18) ≈ 0.3728.

In other words, we would have only about a 37 percent chance of correctly con-

cluding that the safety measures actually worked. �

Example 10.3. Suppose that Y1, Y2, ..., Y25 is an iid sample of n = 25 observations from

a N (θ, σ2
0) distribution, where σ2

0 = 100 is known. We would like to test

H0 : θ = 75

versus

Ha : θ > 75.

To perform the test, suppose we use the test statistic

Y =
1

25

25∑
i=1

Yi

and the rejection region RR = {y : y > k}, where k is a constant.

Questions:

(a) What is the distribution of Y when H0 is true?

(b) Find the value of k that provides a level α = 0.10 test.

(c) Suppose that θ = 80, that is, Ha is true. What is the probability of Type II Error

when using this RR?

Solutions:

(a) In general, recall that Y is normally distributed with mean θ and variance σ2/n, that

is,

Y ∼ N
(
θ,

σ2

n

)
.

Therefore, when H0 : θ = 75 is true,

Y ∼ N (75, 4).

Note that this is an exact distributional result; i.e., all of the calculations that follow are

exact and not approximate.
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(b) To find the value of k, we set

α = 0.10 = P (Reject H0|H0 is true)

= P (Y > k|θ = 75)

= P

(
Z >

k − 75

2

)
,

where Z ∼ N (0, 1). Therefore, because z0.10 = 1.28, this means

k − 75

2
= 1.28 =⇒ k = 77.56.

The rejection region RR = {y : y > 77.56} confers a Type I Error probability (significance

level) of α = 0.10.

(c) First, note that when θ = 80,

Y ∼ N (80, 4).

Therefore, the probability of Type II Error, when θ = 80, is

β = β(80) = P (Do not reject H0|θ = 80)

= P (Y < 77.56|θ = 80)

= P

(
Z <

77.56− 80

2

)
= P (Z < −1.22) ≈ 0.1112.

I found this probability using the pnorm(-1.22,0,1) command in R. �

Example 10.4. Suppose that Y1, Y2, ..., Yn is an iid Bernoulli(p) sample, where n = 100.

We would like to test

H0 : p = 0.10

versus

Ha : p < 0.10.

To perform the test, suppose we use the test statistic

T =
100∑
i=1

Yi

and the rejection region RR = {t : t ≤ k}, where k is a constant.
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Questions:

(a) What is the distribution of T when H0 is true?

(b) Is it possible to find an exact level α = 0.05 rejection region?

(c) With k = 5, find the probability of Type II Error when p = 0.05.

Solutions:

(a) In general, we recall that if Y1, Y2, ..., Yn is an iid Bernoulli(p) sample, then the

(sufficient) statistic

T =
n∑

i=1

Yi ∼ b(n, p).

Therefore, when H0 is true and n = 100, we have T ∼ b(100, 0.10).

(b) The value of k is chosen so that

α = P (Reject H0|H0 is true)

= P (T ≤ k|p = 0.10)

=
k∑

t=0

(
100

t

)
(0.10)t(1− 0.10)100−t︸ ︷︷ ︸
b(100,0.10) pmf

.

The R command pbinom(k,100,0.10) gives the following:

k = 3 =⇒ α = 0.0078

k = 4 =⇒ α = 0.0237

k = 5 =⇒ α = 0.0576

k = 6 =⇒ α = 0.1172.

We can not get an exact level α = 0.05 rejection region of the form RR = {t : t ≤ k}.

(c) If k = 5 and p = 0.05, our level α = 0.0576 rejection region is RR = {t : t ≤ 5} and

T ∼ b(100, 0.05). Therefore,

β = β(0.05) = P (Do not reject H0|p = 0.05)

= P (T > 5|p = 0.05)

=
100∑
t=6

(
100

t

)
(0.05)t(1− 0.05)100−t︸ ︷︷ ︸
b(100,0.05) pmf

≈ 0.3840.

I found this probability using the 1-pbinom(5,100,0.05) command in R. �
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10.3 Common large sample tests

REMARK : The term “large sample” is used to describe hypothesis tests that are con-

structed using asymptotic (large sample) theory, so the following tests are approximate

for “large” sample sizes. We present large sample hypothesis tests for

1. one population mean µ

2. one population proportion p

3. the difference of two population means µ1 − µ2

4. the difference of two population proportions p1 − p2.

TEST STATISTIC : In each of these situations, we will use a point estimator θ̂ which

satisfies

Z =
θ̂ − θ

σθ̂

d−→ N (0, 1),

as n → ∞. Recall that

σθ̂ =

√
V (θ̂)

denotes the standard error of θ̂. In most cases, the estimated standard error σ̂θ̂ must

be used in place of σθ̂. The estimated standard error σ̂θ̂ is simply a point estimator for

the true standard error σθ̂. In fact, if

σθ̂

σ̂θ̂

p−→ 1,

as n → ∞, then

Z∗ =
θ̂ − θ

σ̂θ̂

d−→ N (0, 1),

as n → ∞, by Slutsky’s Theorem.

TWO-SIDED TEST : Suppose that we would like to test

H0 : θ = θ0

versus

Ha : θ ̸= θ0.
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This is called a two-sided test because Ha does not specify a direction indicating

departure from H0. Therefore, large values of

Z =
θ̂ − θ0
σθ̂

,

in either direction, are evidence against H0. Note that, for n large, Z ∼ AN (0, 1) when

H0 : θ = θ0 is true. Therefore,

RR = {z : |z| > zα/2}

is an approximate level α rejection region. That is, we will reject H0 whenever Z > zα/2

or Z < −zα/2. For example, if α = 0.05, then zα/2 = z0.025 = 1.96.

ONE-SIDED TESTS : Suppose that we would like to test

H0 : θ = θ0

versus

Ha : θ > θ0.

This is called a one-sided test because Ha indicates a specific direction indicating a

departure from H0. In this case, only large values of

Z =
θ̂ − θ0
σθ̂

,

are evidence against H0. Therefore,

RR = {z : z > zα}

is an approximate level α rejection region. That is, we will reject H0 whenever Z > zα.

For example, if α = 0.05, then zα = z0.05 = 1.65. By an analogous argument, the

one-sided test of

H0 : θ = θ0

versus

Ha : θ < θ0

can be performed using

RR = {z : z < −zα}

as an approximate level α rejection region.
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10.3.1 One population mean

SITUATION : Suppose that Y1, Y2, ..., Yn is an iid sample from a distribution with mean

µ and variance σ2 and that interest lies in testing

H0 : µ = µ0

versus

Ha : µ ̸= µ0

(or any other Ha). In this situation, we identify

θ = µ

θ̂ = Y

σθ̂ =
σ√
n

σ̂θ̂ =
S√
n
,

where S denotes the sample standard deviation. Therefore, if σ2 is known, we use

Z =
Y − µ0

σ/
√
n
.

Otherwise, we use

Z =
Y − µ0

S/
√
n
.

Both statistics have large sample N (0, 1) distributions when H0 : µ = µ0 is true.

10.3.2 One population proportion

SITUATION : Suppose that Y1, Y2, ..., Yn is an iid Bernoulli(p) sample and that interest

lies in testing

H0 : p = p0

versus

Ha : p ̸= p0
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(or any other Ha). In this situation, we identify

θ = p

θ̂ = p̂

σθ̂ =

√
p(1− p)

n

σ̂θ̂ =

√
p̂(1− p̂)

n
.

To perform this test, there are two candidate test statistics. The first is

ZW =
p̂− p0√

p̂(1−p̂)
n

,

which arises from the theory we have just developed. A second test statistic is

ZS =
p̂− p0√
p0(1−p0)

n

.

The test statistic ZS uses the standard error

σ̂p̂ =

√
p0(1− p0)

n

which is the correct standard error when H0 : p = p0 is true. For theoretical reasons, ZW

is called a Wald statistic and ZS is called a score statistic. Both have large sample

N (0, 1) distributions when H0 : p = p0 is true. The score statistic ZS is known to have

better properties in small (i.e., finite) samples; i.e., it possesses a true significance level

which is often closer to the nominal level α. The Wald statistic is often liberal, possessing

a true significance level larger than the nominal level.

10.3.3 Difference of two population means

SITUATION : Suppose that we have two independent samples; i.e.,

Sample 1: Y11, Y12, ..., Y1n1 are iid with mean µ1 and variance σ2
1

Sample 2: Y21, Y22, ..., Y2n2 are iid with mean µ2 and variance σ2
2,

and that interest lies in testing
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H0 : µ1 − µ2 = d0

versus

Ha : µ1 − µ2 ̸= d0

(or any other Ha), where d0 is a known constant. Note that taking d0 = 0 allows one to

test the equality of µ1 and µ2. In this situation, we identify

θ = µ1 − µ2

θ̂ = Y 1+ − Y 2+

σθ̂ =

√
σ2
1

n1

+
σ2
2

n2

σ̂θ̂ =

√
S2
1

n1

+
S2
2

n2

.

If σ2
1 and σ2

2 are both known (which would be unlikely), then we would use

Z =
(Y 1+ − Y 2+)− d0√

σ2
1

n1
+

σ2
2

n2

.

Otherwise, we use

Z =
(Y 1+ − Y 2+)− d0√

S2
1

n1
+

S2
2

n2

.

Both statistics have large sample N (0, 1) distributions when H0 : µ1 − µ2 = d0 is true.

10.3.4 Difference of two population proportions

SITUATION : Suppose that we have two independent samples; i.e.,

Sample 1: Y11, Y12, ..., Y1n1 are iid Bernoulli(p1)

Sample 2: Y21, Y22, ..., Y2n2 are iid Bernoulli(p2),

and that interest lies in testing

H0 : p1 − p2 = d0

versus

Ha : p1 − p2 ̸= d0
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(or any other Ha), where d0 is a known constant. Note that taking d0 = 0 allows one to

test the equality of p1 and p2. In this situation, we identify

θ = p1 − p2

θ̂ = p̂1 − p̂2

σθ̂ =

√
p1(1− p1)

n1

+
p2(1− p2)

n2

σ̂θ̂ =

√
p̂1(1− p̂1)

n1

+
p̂2(1− p̂2)

n2

.

The Wald statistic is

ZW =
(p̂1 − p̂2)− d0√
p̂1(1−p̂1)

n1
+ p̂2(1−p̂2)

n2

.

A score statistic is available when d0 = 0. It is given by

ZS =
p̂1 − p̂2√

p̂(1− p̂)
(

1
n1

+ 1
n2

) ,
where

p̂ =
n1p̂1 + n2p̂2
n1 + n2

is the pooled sample proportion, as it estimates the common p1 = p2 = p under H0.

Both statistics have large sample N (0, 1) distributions when H0 : p1 − p2 = d0 is true.

As in the one-sample problem, the score statistic performs better in small samples.

10.4 Sample size calculations

IMPORTANCE : We now address the problem of sample size determination, restricting

attention to one-sample settings. We assume that the estimator θ̂ satisfies

Z =
θ̂ − θ

σθ̂

∼ AN (0, 1),

for large n, where σθ̂ is the standard error of θ̂. Recall that θ̂, and consequently its

standard error σθ̂, depends on n, the sample size. We focus on the one-sided test
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H0 : θ = θ0

versus

Ha : θ > θ0,

that employs the level α rejection region

RR = {z : z > zα} ⇐⇒ {y : θ̂ > k},

where k is chosen so that PH0(θ̂ > k) ≡ P (θ̂ > k|H0 is true) = α.

SETTING : Our goal is to determine the sample size n that confers a specified Type II

Error probability β. However, β is a function θ, so we must specify a particular value

of θ to consider. Because the alternative hypothesis is of the form Ha : θ > θ0, we are

interested in a value θa > θ0; i.e.,

θa = θ0 +∆,

where ∆ > 0 is the practically important difference that we wish to detect.

IMPORTANT : To derive a general formula for the sample size in a particular problem,

we exploit the following two facts:

• when H0 is true, our level α rejection region RR = {z : z > zα} implies that

k − θ0
σθ̂

= zα.

• when Ha is true and θa = θ0 +∆, then for a specified value of β, it follows that

k − θa
σθ̂

= −zβ;

see Figure 10.5, pp 508 (WMS). These two formulae provide the basis for calculating

the necessary sample size n. When a two-sided alternative Ha : θ ̸= θ0 is specified,

the only change is that we replace zα with zα/2.

POPULATION MEAN : For the one-sample test regarding a population mean, that is,

of H0 : µ = µ0 versus Ha : µ > µ0, we have

k − µ0

σ/
√
n

= zα.
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When µa = µ0 +∆, then for a specified value of β, we have

k − µa

σ/
√
n

= −zβ.

Solving these two equations simultaneously for n gives

n =
(zα + zβ)

2σ2

∆2
,

where ∆ = µa − µ0. Note that the population variance σ2 must be specified in advance.

In practice, we must provide a “guess” or an estimate of its value. This guess may be

available from preliminary studies or from other historical information.

Example 10.5. A marine biologist, interested in the distribution of the size of a partic-

ular type of anchovy, would like to test

H0 : µ = 20

versus

Ha : µ > 20,

where µ denotes the mean anchovy length (measured in cm). She would like to perform

this test using α = 0.05. Furthermore, when µ = µa = 22, she would like the probability

of Type II Error to be only β = 0.1. What sample size should she use? Based on previous

studies, a guess of σ ≈ 2.5 is provided.

Solution. We have µ0 = 20 and µa = 22 so that ∆ = 2. We have zα = z0.05 = 1.65 and

zβ = z0.10 = 1.28. Thus, the desired sample size is

n =
(zα + zβ)

2σ2

∆2
=

(1.65 + 1.28)2(2.5)2

22
≈ 13.41.

Therefore, she should collect 14 anchovies. �

POPULATION PROPORTION : For the one-sample test regarding a population propor-

tion, that is, H0 : p = p0 versus Ha : p > p0, it follows that

k − p0√
p0(1−p0)

n

= zα.
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When pa = p0 +∆, then for a specified value of β, we have

k − pa√
pa(1−pa)

n

= −zβ.

Eliminating the common k in these two equations and solving for n produces

n =

[
zα
√
p0(1− p0) + zβ

√
pa(1− pa)

∆

]2
,

where ∆ = pa − p0.

Example 10.6. Researchers are planning a Phase III clinical trial to determine the

probability of response, p, to a new drug treatment. It is believed that the standard

treatment produces a positive response in 35 percent of the population. To determine

if the new treatment increases the probability of response, the researchers would like to

test, at the α = 0.05 level,

H0 : p = 0.35

versus

Ha : p > 0.35.

In addition, they would like to detect a “clinically important” increase in the response

probability to p = pa = 0.40 with probability 0.80 (so that the Type II Error probability

β = 0.20). The clinically important difference ∆ = pa − p0 = 0.05 is a value that

represents “a practically important increase” for the manufacturers of the new drug.

What is the minimum sample size that should be used in the Phase III trial?

Solution. The desired sample size is

n =

[
z0.05

√
p0(1− p0) + z0.20

√
pa(1− pa)

∆

]2

=

[
1.65

√
0.35(1− 0.35) + 0.84

√
0.40(1− 0.40)

0.05

]2
≈ 574.57.

Thus, the researchers will need to recruit n = 575 patients for the Phase III trial. �
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10.5 Confidence intervals and hypothesis tests

REVELATION : There is an elegant duality between confidence intervals and hypothesis

tests. In a profound sense, they are essentially the same thing, as we now illustrate.

Suppose that we have a point estimator, say, θ̂, which satisfies

Z =
θ̂ − θ

σθ̂

∼ N (0, 1).

Using Z as a pivot, it follows that

θ̂ ± zα/2σθ̂

is a 100(1− α) percent confidence interval for θ.

REMARK : In what follows, we assume that σθ̂ does not depend on θ (although the

following conclusions hold even if it does). If σθ̂ depends on other nuisance parameters,

without loss, we assume that these parameters are known.

HYPOTHESIS TEST : The two-sided level α hypothesis test

H0 : θ = θ0

versus

Ha : θ ̸= θ0

employs the rejection region

RR = {z : |z| > zα/2}

which means that H0 is not rejected when

−zα/2 <
θ̂ − θ0
σθ̂

< zα/2.

However, algebraically, the last inequality can be rewritten as

θ̂ − zα/2σθ̂ < θ0 < θ̂ + zα/2σθ̂,

which we recognize as the set of all θ0 that fall between the 100(1−α) percent confidence

interval limits.
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PUNCHLINE : The hypothesis H0 : θ = θ0 is not rejected in favor of Ha : θ ̸= θ0, at

significance level α, whenever θ0 is contained in the 100(1−α) percent confidence interval

for θ. If θ0 is not contained in the 100(1− α) percent confidence interval for θ, then this

is the same as rejecting H0 at level α.

10.6 Probability values (p-values)

REMARK : When performing a hypothesis test, simply saying that we “reject H0” or

that we “do not reject H0” is somewhat uninformative. A probability value (p-value)

provides a numerical measure of how much evidence we have against H0.

TERMINOLOGY : The probability value for a hypothesis test specifies the smallest

value of α for which H0 is rejected. Thus, if the probability value is less than (or equal

to) α, we reject H0. If the probability value is greater than α, we do not reject H0.

REMARK : Probability values are computed in a manner consistent with the alternative

hypothesis Ha. Since the probability value is viewed as a measure of how much evidence

we have against H0, it is always computed under the assumption that H0 is true.

Example 10.7. Suppose that Y1, Y2, ..., Y100 is an iid N (µ, σ2
0) sample, where σ2

0 = 100

is known, and that we want to test

H0 : µ = 75

versus

Ha : µ > 75.

Suppose that the sample mean is y = 76.42, and, thus, the one sample z statistic is

z =
y − µ0

σ0/
√
n
=

76.42− 75

10/
√
100

= 1.42.

Since our alternative is one-sided, we would use the rejection region RR = {z : z > zα},

where zα denotes the upper α quantile of the standard normal distribution.
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Figure 10.1: N (0, 1) density with one-sided probability value P (Z > 1.42) = 0.0778.

α Test statistic Rejection region Reject H0?

α = 0.05 z = 1.42 {z : z > 1.65} no

α = 0.10 z = 1.42 {z : z > 1.28} yes

From the table, we note that

1.28 = z0.10 < z = 1.42 < z0.05 = 1.65.

Therefore, the probability value is somewhere between 0.05 and 0.10. In fact, observing

that our alternative is one-sided, we see that

p-value = P (Z > 1.42) = 0.0778

(see Figure 10.1). Therefore, if α < 0.0778, we would not reject H0. On the other hand,

if α ≥ 0.0778, we would reject H0. Remember, the probability value is the “borderline”

value of α for which H0 is rejected. �

Example 10.8. It has been suggested that less than 20 percent of all individuals who

sign up for an extended gym membership continue to use the gym regularly six months
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after joining. Suppose that Y denotes the number of members who use a certain gym

regularly (i.e., at least 3 times per week on average) six months after joining, to be

observed from a sample of n = 50 members. Assume that Y ∼ b(50, p) and that we are

to test

H0 : p = 0.20

versus

Ha : p < 0.20.

If Y = y = 6, the exact probability value is

p-value = P (Y ≤ 6)

=
6∑

y=0

(
50

y

)
(0.20)y(1− 0.20)50−y︸ ︷︷ ︸

b(50,0.20) pmf

≈ 0.1034,

computed using the pbinom(6,50,0.20) command in R. This is somewhat strong evi-

dence against H0, although it is “not enough” at the standard α = 0.05 level of signifi-

cance. Instead of using the exact probability value, we could also compute the approxi-

mate probability value as

p-value = P (p̂ < 0.12)

≈ P

Z <
0.12− 0.20√

0.20(1−0.20)
50


= P (Z < −1.41) = 0.0793.

As you can see, there is a mild discrepancy here in the exact and approximate probability

values. Approximate results should always be interpreted with caution. �

REMARK : In a profound sense, a probability value, say, P , is really a random variable.

This should be obvious since it depends on a test statistic, which, in turn, is computed

from a sample of random variables Y1, Y2, ..., Yn. In the light of this, it seems logical to

think about the distribution of P . If the test statistic has a continuous distribution, then

when H0 is true, the probability value P ∼ U(0, 1). This is a theoretical result which

would be proven in a more advanced course.
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10.7 Small sample hypothesis tests using the t distribution

GOAL: We now focus on small sample hypothesis tests for

• a single population mean µ

• the difference of two population means µ1 − µ2.

In the one-sample problem, we know that when H0 : µ = µ0 is true,

Z =
Y − µ0

S/
√
n

d−→ N (0, 1),

as n → ∞, by the Central Limit Theorem and Slutsky’s Theorem. Therefore, Z can

be used as a large sample test statistic to test H0 : µ = µ0. However, the large sample

N (0, 1) distribution may be inaccurate when n is small. This occurs when the underlying

distribution is highly skewed and/or when S is not a good estimator of σ.

10.7.1 One-sample test

SETTING : Suppose that Y1, Y2, ..., Yn is an iid N (µ, σ2) sample, where both parameters

µ and σ2 are unknown, and that we want to test

H0 : µ = µ0

versus

Ha : µ ̸= µ0

(or any other Ha). When H0 : µ = µ0 is true, the one-sample t-statistic

t =
Y − µ0

S/
√
n

∼ t(n− 1).

Therefore, to perform a level α (two-sided) test, we use the rejection region

RR = {t : |t| > tn−1,α/2}.

Probability values are also computed from the t(n− 1) distribution. One-sided tests use

a suitably-adjusted rejection region.
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Table 10.3: Crab temperature data. These observations are modeled as n = 8 iid real-

izations from a N (µ, σ2) distribution.

25.8 24.6 26.1 24.9 25.1 25.3 24.0 24.5

Example 10.9. A researcher observes a sample of n = 8 crabs and records the body

temperature of each (in degrees C); see Table 10.3. She models these observations as an

iid sample from a N (µ, σ2) distribution. She would like to test, at level α = 0.05,

H0 : µ = 25.4

versus

Ha : µ < 25.4.

The level α = 0.05 rejection region is

RR = {t : t < −t7,0.05 = −1.895}.

From the data in Table 10.3, we compute y = 25.0 and s = 0.69; thus, the value of the

one-sample t-statistic is

t =
y − µ0

s/
√
n

=
25.0− 25.4

0.69/
√
8

= −1.64.

Therefore, we do not have sufficient evidence to reject H0 at the α = 0.05 level since our

test statistic t does not fall in RR. Equivalently, the probability value is

p-value = P [t(7) ≤ −1.64] ≈ 0.073,

which is not smaller than α = 0.05. I used the R command pt(-1.64,7) to compute

this probability. �

10.7.2 Two-sample test

SITUATION : Suppose that we have two independent samples; i.e.,

Sample 1: Y11, Y12, ..., Y1n1 are iid with mean µ1 and variance σ2
1

Sample 2: Y21, Y22, ..., Y2n2 are iid with mean µ2 and variance σ2
2,
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and that interest lies in testing

H0 : µ1 − µ2 = d0

versus

Ha : µ1 − µ2 ̸= d0

(or any other Ha), where d0 is a known constant. When the population variances are

equal; that is, when σ2
1 = σ2

2, we know that

(Y 1+ − Y 2+)− (µ1 − µ2)

Sp

√
1
n1

+ 1
n2

∼ t(n1 + n2 − 2),

where

S2
p =

(n1 − 1)S2
1 + (n2 − 1)S2

2

n1 + n2 − 2

is the pooled sample variance. Therefore, to perform a level α (two-sided) test, we use

the test statistic

t =
(Y 1+ − Y 2+)− d0

Sp

√
1
n1

+ 1
n2

∼ t(n1 + n2 − 2)

and the rejection region

RR = {t : |t| > tn1+n2−2,α/2}.

Probability values are also computed from the t(n1 + n2 − 2) distribution. One-sided

tests use a suitably-adjusted rejection region.

REMARK : When σ2
1 ̸= σ2

2; that is, when the population variances are not equal, we can

use the modified t-statistic given by

t∗ =
(Y 1+ − Y 2+)− d0√

S2
1

n1
+

S2
2

n2

.

Under H0, the distribution of this modified t-statistic is approximated by a t(ν) distri-

bution, where the degrees of freedom

ν ≈

(
S2
1

n1
+

S2
2

n2

)2
(

S2
1

n1

)2

n1−1
+

(
S2
2

n2

)2

n2−1

.
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10.8 Hypothesis tests for variances

10.8.1 One-sample test

SETTING : Suppose that Y1, Y2, ..., Yn is an iid N (µ, σ2) sample, where both parameters

are unknown, and that interest lies in testing

H0 : σ
2 = σ2

0

versus

Ha : σ
2 ̸= σ2

0,

(or any other Ha), where σ2
0 is a specified value. When H0 is true; i.e., when σ2 = σ2

0,

the statistic

χ2 =
(n− 1)S2

σ2
0

∼ χ2(n− 1).

Therefore, a level α (two-sided) rejection region is

RR = {χ2 : χ2 < χ2
n−1,1−α/2 or χ2 > χ2

n−1,α/2}.

Probability values are also computed from the χ2(n − 1) distribution. One-sided tests

use a suitably-adjusted rejection region.

10.8.2 Two-sample test

SETTING : Suppose that we have two independent samples:

Sample 1 : Y11, Y12, ..., Y1n1 ∼ iid N (µ1, σ
2
1)

Sample 2 : Y21, Y22, ..., Y2n2 ∼ iid N (µ2, σ
2
2),

and that interest lies in testing

H0 : σ
2
1 = σ2

2

versus

Ha : σ
2
1 ̸= σ2

2,
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(or any other Ha). Recall from Chapter 7 (WMS) that, in general,

F =

(n1−1)S2
1

σ2
1

/(n1 − 1)

(n2−1)S2
2

σ2
2

/(n2 − 1)
∼ F (n1 − 1, n2 − 1).

However, note that when H0 : σ
2
1 = σ2

2 is true, F reduces algebraically to

F =
S2
1

S2
2

∼ F (n1 − 1, n2 − 1).

Therefore, a level α (two-sided) rejection region is

RR = {F : F < Fn1−1,n2−1,1−α/2 or F > Fn1−1,n2−1,α/2}.

Probability values are also computed from the F (n1 − 1, n2 − 1) distribution. One-sided

tests use a suitably-adjusted rejection region.

10.9 Power, the Neyman-Pearson Lemma, and UMP tests

10.9.1 Power

TERMINOLOGY : Suppose that Y1, Y2, ..., Yn is an iid sample from fY (y; θ) and that we

use a level α rejection region to test H0 : θ = θ0 versus a suitable alternative. The power

function of the test, denoted by K(θ), is given by

K(θ) = P (Reject H0|θ).

That is, the power function gives the probability of rejecting H0 as a function of θ.

• If θ = θ0, that is H0 is true, then K(θ0) = α, the probability of Type I Error.

• For values of θ that are “close” to θ0, one would expect the power to be smaller,

than, say, when θ is far away from θ0. This makes sense intuitively; namely, it is

more difficult to detect a small departure from H0 (i.e., to reject H0) than it is to

detect a large departure from H0.

• The shape of the power function always depends on the alternative hypothesis.
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NOTE : If θa is a value of θ in the alternative space; that is, if θa ∈ Ha, then

K(θa) = 1− β(θa).

Proof. This follows directly from the complement rule; that is,

K(θa) = P (Reject H0|θ = θa)

= 1− P (Do not reject H0|θ = θa) = 1− β(θa). �

Example 10.10. Suppose that Y1, Y2, ..., Yn is an iidN (θ, σ2
0) sample, where σ2

0 is known,

and that we would like to test

H0 : θ = θ0

versus

Ha : θ > θ0.

Suppose that we use the level α rejection region RR = {z : z > zα}, where

Z =
Y − θ0
σ0/

√
n

and zα denotes the upper α quantile of the standard normal distribution. The power

function for the test, for θ > θ0, is given by

K(θ) = P (Reject H0|θ) = P (Z > zα|θ)

= P

(
Y − θ0
σ0/

√
n
> zα

∣∣∣∣∣θ
)

= P

[
Y > θ0 + zα

(
σ0√
n

)∣∣∣∣∣θ
]

= P

Z >
θ0 + zα

(
σ0√
n

)
− θ

σ0/
√
n


= 1− FZ

θ0 + zα

(
σ0√
n

)
− θ

σ0/
√
n

 ,

where FZ(·) denotes the N (0, 1) cumulative distribution function (cdf). Note that the

power when H0 : θ = θ0 is true is

K(θ0) = 1− FZ(zα) = 1− (1− α) = α.
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Figure 10.2: Power function K(θ) in Example 10.10 with α = 0.05, θ0 = 6, σ2
0 = 4, and

n = 10. A horizontal line at α = 0.05 is drawn.

ILLUSTRATION : Figure 10.2 displays the graph of K(θ) when α = 0.05, θ0 = 6, σ2
0 = 4,

and n = 10. That is, we are testing

H0 : θ = 6

versus

Ha : θ > 6.

We make the following observations.

• Note that K(6) = 0.05, that is, the power of the test when H0 : θ = 6 is true is

equal to α = 0.05.

• Note thatK(θ) is an increasing function of θ. Therefore, the probability of rejecting

H0 increases as θ increases. For example, K(6.5) ≈ 0.1965, K(7) ≈ 0.4746, K(8) ≈

0.9354, K(9) ≈ 0.9990, etc. �
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10.9.2 The Neyman-Pearson Lemma

TERMINOLOGY : In this course, we will usually take the null hypothesis to be sharp,

or simple; that is, there is just one value of θ possible under H0. The alternative may

be simple or composite. Here is an example of a simple-versus-simple test:

H0 : θ = 5

versus

Ha : θ = 6.

Here is an example of a simple-versus-composite test:

H0 : θ = 5

versus

Ha : θ > 5.

Note that there are an infinite number of values of θ specified in a composite alternative

hypothesis. In this example, Ha consists of any value of θ larger than 5.

GOAL: For a level α simple-versus-simple test, we seek the most powerful rejection

region; i.e., the rejection region that maximizes the probability of rejecting H0 when Ha

is true. The Neyman-Pearson Lemma tells us how to find this “most powerful test.”

RECALL: Suppose that Y1, Y2, ..., Yn is an iid sample from fY (y; θ). The likelihood

function for θ is given by

L(θ) = L(θ|y) = L(θ|y1, y2, ..., yn) =
n∏

i=1

fY (yi; θ).

NEYMAN-PEARSON LEMMA: Suppose that Y1, Y2, ..., Yn is an iid sample from fY (y; θ),

and let L(θ) denote the likelihood function. Consider the following simple-versus-simple

hypothesis test:

H0 : θ = θ0

versus

Ha : θ = θa.
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The level α test that maximizes the power when Ha : θ = θa is true uses the rejection

region

RR =

{
y :

L(θ0)

L(θa)
< k

}
,

where k is chosen so that

P (Reject H0|H0 is true) = α.

This is called the most-powerful level α test for H0 versus Ha.

Example 10.11. Suppose that Y is a single observation (i.e., an iid sample of size n = 1)

from an exponential distribution with mean θ. Using this single observation, we would

like to test

H0 : θ = 2

versus

Ha : θ = 3.

Use the Neyman-Pearson Lemma to find the most powerful level α = 0.10 test.

Solution. Because the sample size is n = 1, the likelihood function L(θ) is simply

L(θ) = fY (y; θ) =
1

θ
e−y/θ,

the pdf of Y . To use the Neyman-Pearson Lemma, we first form the ratio

L(θ0)

L(θa)
=

L(2)

L(3)
=

1
2
e−y/2

1
3
e−y/3

=
3

2
e−y/6.

Therefore, the Neyman-Pearson Lemma says that the most-powerful level α = 0.10 test

is created by choosing k such that

P

(
3

2
e−Y/6 < k

∣∣∣θ = 2

)
= 0.10.

This is not a friendly probability calculation to make; e.g., do you know the distribution

of 3
2
e−Y/6? There is no need to worry, because we can re-write the event {3

2
e−Y/6 < k} in
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a more friendly way. Note that

3

2
e−Y/6 < k ⇐⇒ e−Y/6 <

2k

3

⇐⇒ −Y/6 < ln

(
2k

3

)
⇐⇒ Y > −6 ln

(
2k

3

)
≡ k′, say.

Thus, we have changed the problem to now choosing k′ so that

P (Y > k′|θ = 2) = 0.10.

This is an easy probability calculation to make. In fact, when θ = 2 (i.e., H0 is true),

then Y ∼ exponential(2) and therefore

0.10
set
= P (Y > k′|θ = 2) =

∫ ∞

k′

1

2
e−y/2dy =⇒ k′ = 4.6052.

I used the qexp(0.90,1/2) command in R to find k′ = 4.6052, the 90th percentile of

Y ∼ exponential(2). Therefore, the most-powerful level α = 0.10 test uses the rejection

region

RR = {y : y > 4.6052}.

That is, we reject H0 : θ = 2 in favor of Ha : θ = 3 whenever Y > 4.6052.

Question. What is the power this test when Ha is true?

Solution. If Ha : θ = 3 is true, then Y ∼ exponential(3). Therefore,

K(3) = P (Reject H0|θ = 3)

= P (Y > 4.6052|θ = 3)

=

∫ ∞

4.6052

1

3
e−y/3dy ≈ 0.2154.

I used the 1-pexp(4.6052,1/3) command in R to find this probability.

REMARK : Note that even though we have found the most powerful level α = 0.10 test of

H0 versus Ha, the test is not all that powerful; we have only about a 21.5 percent chance

of correcting rejecting H0 when Ha is true. Of course, this should not be surprising, given

that we have just a single observation Y . We are trying to make a decision with very

little information about θ. �
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Example 10.12. Suppose that Y1, Y2, ..., Y10 is an iid sample of Poisson(θ) observations

and that we want to test

H0 : θ = 1

versus

Ha : θ = 2.

Find the most-powerful level α test.

Solution. The likelihood function for θ is given by

L(θ) =
10∏
i=1

θyie−θ

yi!

=
θ
∑10

i=1 yie−10θ∏10
i=1 yi!

=
θue−10θ∏10

i=1 yi!
,

where the sufficient statistic u =
∑10

i=1 yi. Now, form the ratio

L(θ0)

L(θa)
=

L(1)

L(2)
=

1ue−10(1)/
∏10

i=1 yi!

2ue−10(2)/
∏10

i=1 yi!

=
1

2ue−10
.

Therefore, the Neyman-Pearson Lemma says that the most-powerful level α test is created

by choosing k such that

P

(
1

2Ue−10
< k

∣∣∣θ = 1

)
= α.

This is not a friendly probability calculation, so let’s rewrite the event { 1
2Ue−10 < k}.

Note that
1

2Ue−10
< k ⇐⇒ 2Ue−10 >

1

k

⇐⇒ 2U >
e10

k

⇐⇒ U ln 2 > 10− ln k

⇐⇒ U >
10− ln k

ln 2
≡ k′, say.

Thus, we have changed the problem to now choosing k′ so that

P (U > k′|θ = 1) = α.
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This is an easier probability to handle, because we know that when H0 : θ = 1 is true,

the sufficient statistic

U =
10∑
i=1

Yi ∼ Poisson(10).

Because k′ is not an integer, we need to solve the equation

α = P (U > k′|θ = 1) = P (U ≥ m|θ = 1)

for m, where m = [k′] + 1 and [·] is the greatest integer function. Consider the following

table:

m α

14 0.1355

15 0.0835

16 0.0487

17 0.0270

18 0.0143

I used the R command 1-ppois(m-1,10) to find the α entries in this table. The Neyman-

Pearson Lemma says that, for example, the most-powerful level α = 0.0487 test uses the

rejection region

RR = {u : u ≥ 16} .

As another example, the most-powerful level α = 0.0143 test uses the rejection region

RR = {u : u ≥ 18} .

Question. What is the power of the level α = 0.0487 test when Ha is true?

Solution. When Ha : θ = 2 is true, we know that U ∼ Poisson(20). Therefore,

K(2) = P (Reject H0|θ = 2)

= P (U ≥ 16|θ = 2)

=
∞∑

j=16

20je−20

j!
≈ 0.8435.

I used the 1-ppois(15,20) command in R to find this probability. �
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RESULT : Suppose that Y1, Y2, ..., Yn is an iid sample from fY (y; θ) and let U be a suf-

ficient statistic. The rejection region for the most powerful level α test of H0 : θ = θ0

versus Ha : θ = θa always depends on U .

Proof. From the Factorization Theorem, we can write

L(θ0)

L(θa)
=

g(u; θ0)h(y)

g(u; θa)h(y)
=

g(u; θ0)

g(u; θa)
,

where g and h are nonnegative functions. By the Neyman-Pearson Lemma, the most-

powerful level α rejection region is

RR =

{
y :

L(θ0)

L(θa)
< k

}
=

{
y :

g(u; θ0)

g(u; θa)
< k

}
,

where k is chosen so that P (Reject H0|H0 is true) = α. Clearly, this rejection region

depends on the sufficient statistic U . �

10.9.3 Uniformly most powerful (UMP) tests

REMARK : For a simple-versus-simple test, the Neyman-Pearson Lemma shows us ex-

plicitly how to derive the most-powerful level α rejection region. We now discuss simple-

versus-composite tests; e.g., H0 : θ = θ0 versus Ha : θ > θ0 and H0 : θ = θ0 versus

Ha : θ < θ0.

TERMINOLOGY : When a test maximizes the power for all θ in the alternative space;

i.e., for all θ ∈ Ha, it is called the uniformly most powerful (UMP) level α test.

In other words, if KU(θ) denotes the power function for the UMP level α test of H0

versus Ha, and if KU∗(θ) denotes the power function for some other level α test, then

KU(θ) ≥ KU∗(θ) for all θ ∈ Ha.

FINDING UMP TESTS : Suppose that our goal is to find the UMP level α test of

H0 : θ = θ0

versus

Ha : θ > θ0.
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Instead of considering this simple-versus-composite test, we first “pretend” like we have

the level α simple-versus-simple test

H0 : θ = θ0

versus

Ha : θ = θa,

where θa > θ0 is arbitrary. If we can then show that neither the test statistic nor the

rejection region for the most powerful level α simple-versus-simple test depends on θa,

then the test with the same rejection region will be UMP level α for the simple-versus-

composite test H0 : θ = θ0 versus Ha : θ > θ0.

CURIOSITY : Why does this work? Essentially we are showing that for a given θa, the

level α simple-versus-simple test is most powerful, by appealing to the Neyman-Pearson

Lemma. However, since the value θa is arbitrary and since the most powerful RR is free

of θa, this same test must be most powerful level α for every value of θa > θ0; i.e., it must

be the uniformly most powerful (UMP) level α test for all θ > θ0.

Example 10.13. Suppose that Y1, Y2, ..., Y15 is an iid sample from a Rayleigh distribution

with pdf

fY (y) =


2y
θ
e−y2/θ, y > 0

0, otherwise.

Find the UMP level α = 0.05 test of

H0 : θ = 1

versus

Ha : θ > 1.

Solution. We begin by using the Neyman-Pearson Lemma to find the most-powerful

level α = 0.05 test for

H0 : θ = 1

versus

Ha : θ = θa,
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where θa > 1. The likelihood function is given by

L(θ) =
15∏
i=1

2yi
θ
e−y2i /θ

=

(
2

θ

)15 15∏
i=1

yi e
−

∑15
i=1 y

2
i /θ

=

(
2

θ

)15 15∏
i=1

yi e
−u/θ,

where the sufficient statistic u =
∑15

i=1 y
2
i . Now, form the ratio

L(θ0)

L(θa)
=

L(1)

L(θa)
=

215
∏15

i=1 yi e
−u(

2
θa

)15∏15
i=1 yi e

−u/θa

= θ15a e−u(1− 1
θa
).

Therefore, the Neyman-Pearson Lemma says that the most-powerful level α = 0.05 test

is created by choosing k such that

P
[
θ15a e−U(1− 1

θa
) < k

∣∣∣θ = 1
]
= 0.05,

where U =
∑15

i=1 Y
2
i . This is not a friendly calculation. However, note that

θ15a e−U(1− 1
θa
) < k ⇐⇒ e−U(1− 1

θa
) <

k

θ15a

⇐⇒ −U

(
1− 1

θa

)
< ln

(
k

θ15a

)

⇐⇒ U >
− ln

(
k
θ15a

)
1− 1

θa

≡ k′, say.

Thus, the problem has now changed to choosing k′ so that

P (U > k′|θ = 1) = 0.05.

This is an easier probability to handle, because we can find the distribution of the suffi-

cient statistic U . In fact, a simple transformation argument shows that

Y ∼ Rayleigh(θ) =⇒ W = Y 2 ∼ exponential(θ),
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see, e.g., Exercise 9.34 (WMS, pp 458). Therefore,

U =
15∑
i=1

Y 2
i =

15∑
i=1

Wi ∼ gamma(15, θ).

When H0 : θ = 1 is true, U ∼ gamma(15, 1). Therefore, we choose k′ so that

0.05
set
= P (U > k′|θ = 1) =

∫ ∞

k′

1

Γ(15)
u14e−udu =⇒ k′ = 21.8865.

I used the R command qgamma(0.95,15,1) to find k′ = 21.8865, the 95th percentile of

U ∼ gamma(15, 1). The Neyman-Pearson Lemma allows us to conclude that the most

powerful level α = 0.05 test of

H0 : θ = 1

versus

Ha : θ = θa

uses the rejection region

RR = {u : u > 21.8865}.

KEY POINT : Note that neither the test statistic U =
∑15

i=1 Y
2
i nor the rejection region

RR = {u : u > 21.8865} depends on the specific value of θa in this simple alternative.

Therefore, this RR is the most powerful rejection region for any θa > 1, that is,

RR = {u : u > 21.8865}

is the UMP level α = 0.05 rejection region for testing

H0 : θ = 1

versus

Ha : θ > 1.

Question. What is the power function K(θ) for this test?

Solution. Note that, in general, U ∼ gamma(15, θ). Therefore,

K(θ) = P (Reject H0|θ) = P (U > 21.8865|θ)

=

∫ ∞

21.8865

1

Γ(15)θ15
u14e−u/θdu

= 1− FU(21.8865),
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Figure 10.3: Power function K(θ) in Example 10.13 with α = 0.05, θ0 = 1, and n = 15.

A horizontal line at α = 0.05 is drawn.

where FU(·) is the cumulative distribution function (cdf) of U ∼ gamma(15, θ). This cdf

does not exist in closed form, but it be calculated in R; see Figure 10.3.

REMARK : UMP level α tests do not always exist. For example, a two-sided test H0 :

θ = θ0 versus Ha : θ ̸= θ0 never has a UMP rejection region. This is because

• the power function of the UMP level α test of H0 : θ = θ0 versus Ha : θ < θ0 will

be larger than the power function of the UMP level α test of H0 : θ = θ0 versus

Ha : θ > θ0 when θ < θ0.

• the power function of the UMP level α test of H0 : θ = θ0 versus Ha : θ > θ0 will

be larger than the power function of the UMP level α test of H0 : θ = θ0 versus

Ha : θ < θ0 when θ > θ0.

For two-sided alternatives, the class of level α tests, say, C, is too large, and finding one

rejection region that uniformly beats all other level α rejection regions is impossible.
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10.10 Likelihood ratio tests

TERMINOLOGY : Suppose that Y1, Y2, ..., Yn is an iid sample from fY (y; θ), where the

parameter θ ∈ Ω. We call Ω the parameter space; that is, Ω represents the set of all

values that θ (scalar or vector) can assume. For example, if

• Y ∼ b(1, θ) =⇒ Ω = {θ : 0 < θ < 1}

• Y ∼ exponential(θ) =⇒ Ω = {θ : θ > 0}

• Y ∼ gamma(α, β) =⇒ Ω = {θ = (α, β)′ : α > 0, β > 0}

• Y ∼ N (µ, σ2) =⇒ Ω = {θ = (µ, σ2)′ : −∞ < µ < ∞, σ2 > 0}.

TERMINOLOGY : Suppose that we partition Ω into two sets Ω0 and Ωa, that is, we

write

Ω = Ω0 ∪ Ωa,

where Ω0 and Ωa are mutually exclusive. A hypothesis test can be stated very generally

as H0 : θ ∈ Ω0 versus Ha : θ ∈ Ωa. We call Ω0 the null space and Ωa the alternative

space.

TERMINOLOGY : Suppose that Y1, Y2, ..., Yn is an iid sample from fY (y; θ), where θ ∈ Ω.

A level α likelihood ratio test (LRT) for

H0 : θ ∈ Ω0

versus

Ha : θ ∈ Ωa

employs the test statistic

λ =
L(Ω̂0)

L(Ω̂)
≡

supθ∈Ω0
L(θ)

supθ∈Ω L(θ)

and uses the rejection region

RR = {λ : λ ≤ k},

where k is chosen such that

P (Reject H0|H0 is true) = α.
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From the definition, we see that 0 ≤ λ ≤ 1, because L(·) is positive and Ω0 ⊂ Ω. Also,

• L(Ω̂0) is the likelihood function evaluated at the maximum likelihood estimator

(MLE) over Ω0, the “restricted” parameter space.

• L(Ω̂) is the likelihood function evaluated at the MLE over Ω, the “unrestricted”

parameter space.

TECHNICAL NOTE : If H0 is a composite hypothesis, we define

α = sup
θ∈Ω0

P (Reject H0|θ) = sup
θ∈Ω0

K(θ),

where K(θ) denotes the power function.

Example 10.14. Suppose that Y1, Y2, ..., Yn is an iid sample from an exponential(θ)

distribution. Find the level α likelihood ratio test (LRT) for

H0 : θ = θ0

versus

Ha : θ ̸= θ0.

Solution. Here, the restricted parameter space is Ω0 = {θ0}, that is, Ω0 contains only

one value of θ. The alternative parameter space is Ωa = {θ : θ > 0, θ ̸= θ0}, and the

unrestricted parameter space is Ω = {θ : θ > 0}. Note that Ω = Ω0 ∪Ωa. The likelihood

function for θ is given by

L(θ) =
n∏

i=1

1

θ
e−yi/θ

=
1

θn
e−

∑n
i=1 yi/θ

= θ−ne−u/θ,

where the sufficient statistic u =
∑n

i=1 yi. Over the restricted (null) space, we have

L(Ω̂0) = sup
θ∈Ω0

L(θ) = L(θ0),
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because Ω0 contains only the singleton θ0. Over the unrestricted space,

L(Ω̂) = sup
θ∈Ω

L(θ) = L(θ̂),

where θ̂ is the maximum likelihood estimator (MLE) of θ. Recall that for the exponential(θ)

model, the MLE is

θ̂ = Y .

Therefore, the likelihood ratio test statistic is

λ =
L(Ω̂0)

L(Ω̂)
=

L(θ0)

L(y)
=

θ−n
0 e−u/θ0

y−ne−u/y
.

Because u =
∑n

i=1 yi = ny, we can rewrite λ as

λ =

(
y

θ0

)n
e−u/θ0

e−ny/y
=

(
e

θ0

)n

yne−ny/θ0 .

Therefore, to find the level α LRT, we would choose k so that

P

[(
e

θ0

)n

Y
n
e−nY /θ0 ≤ k

∣∣∣∣∣θ = θ0

]
= α.

This is an unfriendly request, so let’s approach the problem of choosing k in another way.

EXCURSION : For a > 0, define the function

g(a) =

(
e

θ0

)n

ane−na/θ0

so that

ln g(a) = ln c0 + n ln a− na

θ0
,

where the constant c0 = (e/θ0)
n. Note that

∂ ln g(a)

∂a
=

n

a
− n

θ0
.

If we set this derivative equal to 0 and solve for a, we get the first order critical point

a = θ0.

This value of a maximizes ln g(a) because

∂2 ln g(a)

∂a2
= − n

a2
< 0,
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by the Second Derivative Test. Also, note that

∂ ln g(a)

∂a
=

 n
a
− n

θ0
> 0, if a < θ0

n
a
− n

θ0
< 0, if a > θ0,

so ln g(a) is strictly increasing for a < θ0 and strictly decreasing for a > θ0. However,

because the log function is 1:1, all of these findings apply to the function g(a) as well:

• g(a) is strictly increasing when a < θ0.

• g(a) is strictly decreasing when a > θ0.

• g(a) is maximized when a = θ0.

Therefore, there exist constants c1 < c2 such that

g(a) ≤ k ⇐⇒ a ≤ c1 or a ≥ c2.

This is easy to see from sketching a graph of g(a), for a > 0.

LRT : Now, returning to the problem at hand, we need to choose k so that

P

[(
e

θ0

)n

Y
n
e−nY /θ0 ≤ k

∣∣∣∣∣θ = θ0

]
= α.

The recent excursive argument should convince you that this is equivalent to choosing c1

and c2 so that

P ({Y ≤ c1} ∪ {Y ≥ c2}|θ = θ0) = α.

However, because c1 < c2, the sets {Y ≤ c1} and {Y ≥ c2} must be mutually exclusive.

By Kolmolgorov’s third axiom of probability, we have

α = P ({Y ≤ c1} ∪ {Y ≥ c2}|θ = θ0)

= P (Y ≤ c1|θ = θ0) + P (Y ≥ c2|θ = θ0).

We have changed the problem to now specifying the constants c1 and c2 that satisfy this

most recent expression. This is a much friendlier request because the distribution of Y

is tractable; in fact, a simple mgf argument shows that, in general,

Y ∼ gamma

(
n,

θ

n

)
,
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Therefore, when H0 : θ = θ0 is true, we can take c1 and c2 to satisfy∫ c1

0

1

Γ(n)
(
θ0
n

)nan−1e−a/( θ0
n )da = α/2∫ ∞

c2

1

Γ(n)
(
θ0
n

)nan−1e−a/( θ0
n )da = α/2,

that is, c1 is the lower α/2 quantile of the gamma(n, θ0/n) distribution and c2 is the

corresponding upper α/2 quantile. R makes getting these quantiles simple. It is possible

to get closed-form expressions for c1 and c2. In fact, it can be shown that

c1 =

(
θ0
2n

)
χ2
2n,1−α/2

c2 =

(
θ0
2n

)
χ2
2n,α/2,

where χ2
2n,1−α/2 and χ2

2n,α/2 are the lower and upper α/2 quantiles of the χ2(2n) distri-

bution. Therefore, the level α likelihood ratio test (LRT) uses the rejection region

RR = {y : y ≤ c1 or y ≥ c2} .

ILLUSTRATION : Suppose that α = 0.05, θ0 = 10, and n = 20, so that

c1 =

(
10

40

)
χ2
40,0.975 = 6.1083

c2 =

(
10

40

)
χ2
40,0.025 = 14.8354.

Therefore, the level α = 0.05 LRT employs the rejection region

RR = {y : y ≤ 6.1083 or y ≥ 14.8354}.

For this rejection region, the power function is given by

K(θ) = P (Reject H0|θ)

= P (Y ≤ c1|θ) + P (Y ≥ c2|θ)

=

∫ c1

0

1

Γ(20)
(

θ
20

)20a20−1e−a/( θ
20)da+

∫ ∞

c2

1

Γ(20)
(

θ
20

)20a20−1e−a/( θ
20)da

This power function is shown in Figure 10.4. �

PAGE 46



CHAPTER 10 STAT 513, J. TEBBS

0 5 10 15 20 25 30

0.2
0.4

0.6
0.8

1.0

θ

K(θ
)

Figure 10.4: Power function K(θ) in Example 10.14 with α = 0.05, θ0 = 10, and n = 20.

A horizontal line at α = 0.05 is drawn.

REMARK : In Example 10.14, we were fortunate to know the sampling distribution of

Y when H0 was true. In other situations, the distribution of the test statistic may be

intractable. When this occurs, the following large-sample result can prove to be useful.

ASYMPTOTIC RESULT : Suppose that Y1, Y2, ..., Yn is an iid sample from fY (y; θ),

where θ ∈ Ω, and that we are to test

H0 : θ ∈ Ω0

versus

Ha : θ ∈ Ωa.

Under certain “regularity conditions” (which we will omit), it follows that, under H0,

−2 lnλ
d−→ χ2(ν),

as n → ∞, where ν is the difference between the number of free parameters specified

by θ ∈ Ω0 and the number of free parameters specified in by θ ∈ Ω. The term “free

parameters” will become clear in the next example.
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Example 10.15. McCann and Tebbs (2009) summarize a study examining perceived

unmet need for dental health care for people with HIV infection. Baseline in-person

interviews were conducted with 2,864 HIV infected individuals, aged 18 years and older,

as part of the HIV Cost and Services Utilization Study. All respondents were asked,

“In the last six months, was there a time when you needed dental treatment

but could not get it?”

Based on the data collected, here is the table that cross-classifies all 2,864 subjects by

care denial (yes/no) and insurance type:

Private ins. Medicare w/ ins. No insurance Medicare/no ins. Total

Denied care 49 142 181 175 547

Not denied care 609 697 630 381 2317

Total 658 839 811 556 2864

Are HIV-infected individuals in certain insurance groups more likely to be

denied dental care? To answer this, we would like to test

H0 : p1 = p2 = p3 = p4

versus

Ha : H0 not true,

where pi denotes the population proportion of subjects in insurance group i who are

denied dental care. Perform a level α = 0.05 LRT to test this claim.

Solution. We will assume that the four groups of individuals (stratified by insurance

type) are independent and denote by

Yi = number of individuals in the ith insurance group denied dental care,

for i = 1, 2, 3, 4. Treating the column totals as fixed, we assume that

Yi ∼ b(ni, pi).
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That is, within the ith insurance group, we are envisaging each patient as a “trial;” if a

patient is denied dental care, s/he is treated as a “success.” Here, note that

Ω0 = {θ : θ ∈ [0, 1]4 : p1 = p2 = p3 = p4}

Ω = {θ : θ ∈ [0, 1]4},

where θ = (p1, p2, p3, p4)
′, and Ωa = Ω− Ω0.

• Under H0 : p1 = p2 = p3 = p4, each of the parameters is the same. Therefore,

only 1 of the parameters is allowed to vary (i.e., once we know 1, the other 3 are

uniquely determined).

• Under Ha, all 4 parameters allowed to vary freely.

• Therefore, the difference in the number of free parameters is ν = 4− 1 = 3.

The likelihood function of θ = (p1, p2, p3, p4)
′ is given by the product of the four binomial

probability mass functions; i.e.,

L(p1, p2, p3, p4) =
4∏

i=1

(
ni

yi

)
pyii (1− pi)

ni−yi .

MLE under H0:

When H0 is true, that is, when θ ∈ H0, then

p1 = p2 = p3 = p4 = p,

say, and the likelihood function L reduces to

L(p) =
4∏

i=1

(
ni

yi

)
pyi(1− p)ni−yi

=
4∏

i=1

(
ni

yi

)
p
∑4

i=1 yi(1− p)
∑4

i=1(ni−yi).

The loglikelihood function is given by

lnL(p) = ln c+
4∑

i=1

yi ln p+
4∑

i=1

(ni − yi) ln(1− p),
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where the constant c =
∏4

i=1

(
ni

yi

)
. Taking derivatives with respect to p yields

∂

∂p
lnL(p) =

∑4
i=1 yi
p

−
∑4

i=1(ni − yi)

1− p
.

To find the MLE under H0, we set this partial derivative equal to zero and solve for p.

That is,

∂

∂p
lnL(p)

set
= 0 =⇒ (1− p)

4∑
i=1

yi − p
4∑

i=1

(ni − yi) = 0

=⇒
4∑

i=1

yi − p
4∑

i=1

yi − p
4∑

i=1

ni + p
4∑

i=1

yi = 0

=⇒ p̂ =

∑4
i=1 yi∑4
i=1 ni

.

It is straightforward to show that ∂2/∂p2 lnL(p̂) < 0 so that p̂ maximizes lnL(p) by the

Second Derivative Test.

Unrestricted MLE:

Maximizing L(p1, p2, p3, p4) over the unrestricted space Ω is just as easy. To do this, we

write

L(p1, p2, p3, p4) =
4∏

i=1

(
ni

yi

)
pyii (1− pi)

ni−yi

=
4∏

i=1

(
ni

yi

) 4∏
i=1

pyii

4∏
i=1

(1− pi)
ni−yi ,

so that the loglikelihood function is

lnL(p1, p2, p3, p4) = ln c+
4∑

i=1

yi ln pi +
4∑

i=1

(ni − yi) ln(1− pi).

The unrestricted maximum likelihood estimator of θ = (p1, p2, p3, p4)
′ is obtained by

solving the system

∂ lnL(p1, p2, p3, p4)

∂p1

set
= 0

∂ lnL(p1, p2, p3, p4)

∂p2

set
= 0

∂ lnL(p1, p2, p3, p4)

∂p3

set
= 0

∂ lnL(p1, p2, p3, p4)

∂p4

set
= 0,
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for p1, p2, p3, and p4, producing maximum likelihood estimators p̂1, p̂2, p̂3, and p̂4,

respectively. This system of partial derivatives becomes

y1
p1

− n1 − y1
1− p1

set
= 0

y2
p2

− n2 − y2
1− p2

set
= 0

y3
p3

− n3 − y3
1− p3

set
= 0

y4
p4

− n4 − y4
1− p4

set
= 0.

Solving this system for p1, p2, p3, and p4 gives

p̂1 =
y1
n1

, p̂2 =
y2
n2

, p̂3 =
y3
n3

, p̂4 =
y4
n4

,

the usual sample proportions.

LRT statistic:

The likelihood ratio statistic is given by

λ =
L(Ω̂0)

L(Ω̂)
=

∏4
i=1

(
ni

yi

)
p̂yi(1− p̂)ni−yi∏4

i=1

(
ni

yi

)
p̂yii (1− p̂i)ni−yi

=

∏4
i=1

(
ni

yi

)
p̂
∑4

i=1 yi(1− p̂)
∑4

i=1(ni−yi)∏4
i=1

(
ni

yi

)∏4
i=1 p̂

yi
i

∏4
i=1(1− p̂i)ni−yi

=

(∑4
i=1 yi∑4
i=1 ni

)∑4
i=1 yi

[
1−

(∑4
i=1 yi∑4
i=1 ni

)]∑4
i=1(ni−yi)

∏4
i=1

(
yi
ni

)yi∏4
i=1

[
1−

(
yi
ni

)]ni−yi
.

To find the (exact) level α = 0.05 LRT, one would have to specify the value of k that

satisfies

P


(∑4

i=1 Yi∑4
i=1 ni

)∑4
i=1 Yi

[
1−

(∑4
i=1 Yi∑4
i=1 ni

)]∑4
i=1(ni−Yi)

∏4
i=1

(
Yi

ni

)Yi∏4
i=1

[
1−

(
Yi

ni

)]ni−Yi
≤ k

∣∣∣∣∣ p1 = p2 = p3 = p4

 = 0.05.

Because this is an intractable request, it is more sensible to use the large sample χ2

approximation to −2 lnλ. Under H0,

−2 lnλ
d−→ χ2(ν = 3),
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as mini ni → ∞. Therefore, the statistic −2 lnλ follows an approximate χ2(3) distribu-

tion when H0 is true. Now,

−2 lnλ = −2 ln


(∑4

i=1 Yi∑4
i=1 ni

)∑4
i=1 Yi

[
1−

(∑4
i=1 Yi∑4
i=1 ni

)]∑4
i=1(ni−Yi)

∏4
i=1

(
Yi

ni

)Yi∏4
i=1

[
1−

(
Yi

ni

)]ni−Yi

 .

Furthermore,

0.05 = P (λ ≤ k|H0) = P (−2 lnλ ≥ k′|H0)

so taking k′ = χ2
3,α makes

RR = {λ : −2 lnλ ≥ χ2
3,α}

an approximate level α rejection region for testing H0 versus Ha.

DENTAL CARE DATA: For the dental care data, we have ν = 3, so the approximate

level α = 0.05 rejection region is

RR = {λ : −2 lnλ ≥ χ2
3,0.05 = 7.8147}.

The binomial stratum counts are y1 = 49, y2 = 142, y3 = 181, and y4 = 175. The stratum

sample sizes are n1 = 658, n2 = 839, n3 = 811, and n4 = 556. It is straightforward (but

tedious) to calculate

−2 lnλ = −2 ln

{ (
547
2864

)547 (2317
2864

)2317(
49
658

)49 (142
839

)142 (181
811

)181 (175
556

)175 (609
658

)609 (697
839

)697 (630
811

)630 (381
556

)381
}

≈ 127.7924.

We therefore reject H0 because the test statistic −2 lnλ = 127.7924 falls in the rejection

region. In fact, the probability value is

p-value = P [χ2(3) > 127.7924] < 0.0000000000000001,

indicating that the evidence against H0 is indeed overwhelming. Based on these data,

there is clear evidence that HIV-infected individuals in certain insurance groups are more

likely to be denied dental care.
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11 Linear Regression Models

Complementary reading: Chapter 11 and Appendix A (WMS).

11.1 Introduction

IMPORTANCE : A problem that often arises in economics, engineering, medicine, and

other areas is that of investigating the mathematical relationship between two (or more)

variables. In such settings, the goal is often to model a continuous random variable Y as

a function of one or more independent variables, say, x1, x2, ..., xk. Mathematically,

we can express this model as

Y = g(x1, x2, ..., xk) + ϵ,

where g : Rk → R, and where the random variable ϵ satisfies certain conditions. This is

called a regression model.

• The presence of the random error term ϵ conveys the fact that the relation-

ship between the dependent variable Y and the independent variables through

g(x1, x2, ..., xk) is not perfect.

• The independent variables x1, x2, ..., xk are assumed to be fixed (not random), and

they are measured without error. If E(ϵ) = 0 and V (ϵ) = σ2, then

E(Y |x1, x2, ..., xk) = g(x1, x2, ..., xk)

V (Y |x1, x2, ..., xk) = σ2.

LINEAR MODELS : In this course, we will consider models of the form

Y = β0 + β1x1 + β2x2 + · · ·+ βkxk︸ ︷︷ ︸
g(x1,x2,...,xk)

+ϵ,

that is, g is a linear function of the regression parameters β0, β1, ..., βk. We call this

a linear regression model.
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REMARK : In some problems, a nonlinear regression model may be appropriate. For

example, suppose that Y measures plant growth (in cm, say) and x denotes time. We

would expect the relationship to eventually “level off” as x gets large, as plants can not

continue to grow forever. A popular model for this situation is the nonlinear model

Y =
β0

1 + β1eβ2x︸ ︷︷ ︸
g(x)

+ϵ.

Note that, if β2 < 0, then

lim
x→∞

g(x) = lim
x→∞

(
β0

1 + β1eβ2x

)
= β0.

Therefore, if β2 < 0, this g function has a horizontal asymptote at y = β0, a characteristic

that is consistent with the data we would likely observe.

DESCRIPTION : We call a regression model a linear regression model if the regression

parameters enter the g function in a linear fashion. For example, each of the models is a

linear regression model:

Y = β0 + β1x︸ ︷︷ ︸
g(x)

+ϵ

Y = β0 + β1x+ β2x
2︸ ︷︷ ︸

g(x)

+ϵ

Y = β0 + β1x1 + β2x2 + β3x1x2︸ ︷︷ ︸
g(x1,x2)

+ϵ.

These should be contrasted with the nonlinear model above, where the regression param-

eters β0, β1, and β2 enter the g function nonlinearly. The term “linear” does not refer to

the shape of the regression function g. It refers to the manner in which the regression

parameters β0, β1, ..., βk enter the g function.

GOALS : We will restrict attention to linear (regression) models. Our goals are to

• obtain estimates of the regression parameters and study the sampling distributions

of these estimators

• perform statistical inference for the regression parameters and functions of them

• make predictions about future values of Y based on an estimated model.
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11.2 Simple linear regression

TERMINOLOGY : A simple linear regression model includes only one independent

variable x. The model is of the form

Y = β0 + β1x+ ϵ.

The regression function g(x) = β0 + β1x is a straight line with intercept β0 and slope β1.

If E(ϵ) = 0, then β1 quantifies the change in E(Y ) brought about by a one-unit change

in x.

TERMINOLOGY : When we say, “fit a regression model,” we mean that we would like

to estimate the regression parameters in the model with the observed data. Suppose that

we collect (xi, Yi), i = 1, 2, ..., n, and postulate the simple linear regression model

Yi = β0 + β1xi + ϵi,

for each i = 1, 2, ..., n. Our first goal is to estimate β0 and β1. Formal assumptions for

the error terms ϵi will be given later.

11.2.1 Least squares estimation

LEAST SQUARES : A widely-accepted method of estimating the model parameters β0

and β1 is that of least squares. The method of least squares says to choose the values

of β0 and β1 that minimize

Q(β0, β1) =
n∑

i=1

[Yi − (β0 + β1xi)]
2.

Denote the least squares estimators by β̂0 and β̂1, respectively. These are the values of

β0 and β1 that minimize Q(β0, β1). A two-variable minimization exercise can be used to

find expressions for β̂0 and β̂1. Taking partial derivatives of Q(β0, β1), we obtain

∂Q(β0, β1)

∂β0

= −2
n∑

i=1

(Yi − β0 − β1xi)
set
= 0

∂Q(β0, β1)

∂β1

= −2
n∑

i=1

(Yi − β0 − β1xi)xi
set
= 0.
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Solving for β0 and β1 gives the least squares estimators

β̂0 = Y − β̂1x

β̂1 =

∑n
i=1(xi − x)(Yi − Y )∑n

i=1(xi − x)2
.

11.2.2 Properties of the least squares estimators

INTEREST : We wish to investigate the properties of β̂0 and β̂1 as estimators of the true

regression parameters β0 and β1 in the simple linear regression model

Yi = β0 + β1xi + ϵi,

for i = 1, 2, ..., n. To do this, we need to formally state our assumptions on the error

terms ϵi. Specifically, we will assume that ϵi ∼ iid N (0, σ2). This means that

• E(ϵi) = 0, for i = 1, 2, ..., n

• V (ϵi) = σ2, for i = 1, 2, ..., n, that is, the variance is constant

• the random variables ϵi are independent

• the random variables ϵi are normally distributed.

OBSERVATION : Under the assumption that ϵi ∼ iid N (0, σ2), it follows that

Yi ∼ N (β0 + β1xi, σ
2).

In addition, the random variables Yi are independent. They are not identically dis-

tributed because the mean β0 + β1xi is different for each xi.

Fact 1. The least squares estimators β̂0 and β̂1 are unbiased estimators of β0 and β1,

respectively, that is,

E(β̂0) = β0

E(β̂1) = β1.
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Proof. Algebraically,

β̂1 =

∑n
i=1(xi − x)(Yi − Y )∑n

i=1(xi − x)2
=

∑n
i=1(xi − x)Yi∑n
i=1(xi − x)2

,

since

n∑
i=1

(xi − x)(Yi − Y ) =
n∑

i=1

(xi − x)Yi −
n∑

i=1

(xi − x)Y

=
n∑

i=1

(xi − x)Yi − Y

n∑
i=1

(xi − x)

and
∑n

i=1(xi − x) = 0. Therefore, if we let

ci =
xi − x∑n

i=1(xi − x)2
,

for i = 1, 2, ..., n, we see that β̂1 can be written as

β̂1 =

∑n
i=1(xi − x)Yi∑n
i=1(xi − x)2

=
n∑

i=1

ciYi,

a linear combination of Y1, Y2, ..., Yn. Taking expectations, we have

E(β̂1) = E

(
n∑

i=1

ciYi

)
=

n∑
i=1

ciE(Yi)

=
n∑

i=1

ci(β0 + β1xi)

= β0

n∑
i=1

ci + β1

n∑
i=1

cixi.

However, note that

n∑
i=1

ci =
n∑

i=1

[
xi − x∑n

i=1(xi − x)2

]
=

∑n
i=1(xi − x)∑n
i=1(xi − x)2

= 0

and
n∑

i=1

cixi =
n∑

i=1

[
(xi − x)xi∑n
i=1(xi − x)2

]
=

∑n
i=1(xi − x)2∑n
i=1(xi − x)2

= 1.

Therefore, E(β̂1) = β1 as claimed. To show that β̂0 is unbiased, we first note that

E(β̂0) = E(Y − β̂1x) = E(Y )− xE(β̂1).
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However, E(β̂1) = β1 and

E(Y ) = E

(
1

n

n∑
i=1

Yi

)
=

1

n

n∑
i=1

E(Yi)

=
1

n

n∑
i=1

(β0 + β1xi)

=
1

n

n∑
i=1

β0 +
1

n

n∑
i=1

β1xi

= β0 + β1x.

Therefore,

E(β̂0) = E(Y )− xE(β̂1)

= β0 + β1x− β1x = β0,

as claimed. We have shown that the least squares estimators β̂0 and β̂1 are unbiased.

NOTE : It is important to note that the only assumption we used in the preceding argu-

ment was that E(ϵi) = 0. Therefore, a sufficient condition for the least squares estimators

β̂0 and β̂1 to be unbiased is that E(ϵi) = 0. �

Fact 2. The least squares estimators β̂0 and β̂1 have the following characteristics:

V (β̂0) = σ2

[ ∑n
i=1 x

2
i

n
∑n

i=1(xi − x)2

]
V (β̂1) = σ2

[
1∑n

i=1(xi − x)2

]
Cov(β̂0, β̂1) = σ2

[
−x∑n

i=1(xi − x)2

]
.

REMARK : For these formulae to hold, we need to use the assumptions that E(ϵi) = 0,

V (ϵi) = σ2, and ϵi independent (i.e., normality is not needed).

Proof. Recall that β̂1 can be written as

β̂1 =
n∑

i=1

ciYi,

where the constant

ci =
xi − x∑n

i=1(xi − x)2
,
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for i = 1, 2, ..., n. Therefore,

V (β̂1) = V

(
n∑

i=1

ciYi

)
=

n∑
i=1

c2iV (Yi)

= σ2

n∑
i=1

[
xi − x∑n

i=1(xi − x)2

]2
=

σ2

[
∑n

i=1(xi − x)2]2

[
n∑

i=1

(xi − x)2

]
= σ2

[
1∑n

i=1(xi − x)2

]
,

as claimed. The variance of β̂0 is

V (β̂0) = V (Y − β̂1x)

= V (Y ) + x2V (β̂1)− 2xCov(Y , β̂1).

Note that

V (Y ) = V

(
1

n

n∑
i=1

Yi

)
=

1

n2

n∑
i=1

V (Yi)

=
1

n2

n∑
i=1

σ2 =
nσ2

n2
=

σ2

n
.

Also,

Cov(Y , β̂1) = Cov

(
1

n

n∑
i=1

Yi,

n∑
i=1

ciYi

)

=
1

n

[
n∑

i=1

Cov(Yi, ciYi) +
∑
i̸=j

Cov(Yi, cjYj)

]
=

1

n

n∑
i=1

ciV (Yi) =
σ2

n

n∑
i=1

ci = 0.

Therefore,

V (β̂0) =
σ2

n
+ σ2

[
x2∑n

i=1(xi − x)2

]
= σ2

[
1

n
+

x2∑n
i=1(xi − x)2

]
= σ2

[∑n
i=1(xi − x)2 + nx2

n
∑n

i=1(xi − x)2

]
= σ2

[ ∑n
i=1 x

2
i

n
∑n

i=1(xi − x)2

]
,

as claimed. Finally, the covariance between β̂0 and β̂1 is given by

Cov(β̂0, β̂1) = Cov(Y − β̂1x, β̂1) = Cov(Y , β̂1)− xV (β̂1).
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We have already shown that Cov(Y , β̂1) = 0. Therefore,

Cov(β̂0, β̂1) = −xV (β̂1) = σ2

[
−x∑n

i=1(xi − x)2

]
,

as claimed. �

Fact 3. The least squares estimators β̂0 and β̂1 are normally distributed.

Proof. Recall that β̂1 can be written as

β̂1 =
n∑

i=1

ciYi,

where the constant

ci =
xi − x∑n

i=1(xi − x)2
,

for i = 1, 2, ..., n. However, under our model assumptions,

Yi ∼ N (β0 + β1xi, σ
2).

Therefore, β̂1 is normally distributed since it is a linear combination of Y1, Y2, ..., Yn. That

β̂0 is also normally distributed follows because

β̂0 = Y − β̂1x,

a linear combination of Y and β̂1, both of which are normally distributed. Therefore, β̂0

is normally distributed as well. Note that we have used the normality assumption on the

errors ϵi to prove this fact. �

SUMMARY : In the simple linear regression model

Yi = β0 + β1xi + ϵi,

for i = 1, 2, ..., n, where ϵi ∼ iid N (0, σ2), so far we have shown that

β̂0 ∼ N (β0, c00σ
2) and β̂1 ∼ N (β1, c11σ

2),

where

c00 =

∑n
i=1 x

2
i

n
∑n

i=1(xi − x)2
and c11 =

1∑n
i=1(xi − x)2

.
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11.2.3 Estimating the error variance

REVIEW : In the simple linear regression model

Yi = β0 + β1xi + ϵi,

for i = 1, 2, ..., n, where ϵi ∼ iid N (0, σ2), we have just derived the sampling distributions

of the least squares estimators β̂0 and β̂1. We now turn our attention to estimating σ2,

the error variance.

NOTE : In the simple linear regression model, we define the ith fitted value by

Ŷi = β̂0 + β̂1xi,

where β̂0 and β̂1 are the least squares estimators. We define the ith residual by

ei = Yi − Ŷi.

We define the error (residual) sum of squares by

SSE ≡
n∑

i=1

(Yi − Ŷi)
2.

Fact 4. In the simple linear regression model,

σ̂2 =
SSE

n− 2

is an unbiased estimator of σ2, that is, E(σ̂2) = σ2.

Proof. See WMS, pp 580-581. We will prove this later under a more general setting. �

NOTATION : Your authors denote the unbiased estimator of σ2 by S2. I don’t like this

notation because we have always used S2 to denote the sample variance of Y1, Y2, ..., Yn.

Fact 5. If ϵi ∼ iid N (0, σ2), then

SSE

σ2
=

(n− 2)σ̂2

σ2
∼ χ2(n− 2).

The proof of this fact is beyond the scope of this course.

Fact 6. If ϵi ∼ iid N (0, σ2), then σ̂2 is independent of both β̂0 and β̂1. The proof of

this fact is also beyond the scope of this course.
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11.2.4 Inference for β0 and β1

INTEREST : In the simple linear regression model

Yi = β0 + β1xi + ϵi,

for i = 1, 2, ..., n, where ϵi ∼ iid N (0, σ2), the regression parameters β0 and β1 are

unknown. It is therefore of interest to (a) construct confidence intervals and (b) perform

hypothesis tests for these parameters. In practice, inference for the slope parameter β1 is

of primary interest because of its connection to the independent variable x in the model.

Inference for β0 is usually less meaningful, unless one is explicitly interested in the mean

of Y when x = 0.

INFERENCE FOR β1: Under our model assumptions, recall that the least squares esti-

mator

β̂1 ∼ N (β1, c11σ
2),

where c11 = 1/
∑n

i=1(xi − x)2. Standardizing, we have

Z =
β̂1 − β1√
c11σ2

∼ N (0, 1).

Recall also that

W =
(n− 2)σ̂2

σ2
∼ χ2(n− 2).

Because σ̂2 is independent of β̂1, it follows that Z andW are also independent. Therefore,

t =
β̂1 − β1√
c11σ̂2

=
(β̂1 − β1)/

√
c11σ2√

(n−2)σ̂2

σ2

/
(n− 2)

∼ t(n− 2).

Because t ∼ t(n− 2), t is a pivot and we can write

P

(
−tn−2,α/2 <

β̂1 − β1√
c11σ̂2

< tn−2,α/2

)
= 1− α,

where tn−2,α/2 denotes the upper α/2 quantile of the t(n− 2) distribution. Rearranging

the event inside the probability symbol, we have

P
(
β̂1 − tn−2,α/2

√
c11σ̂2 < β1 < β̂1 + tn−2,α/2

√
c11σ̂2

)
= 1− α,
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which shows that

β̂1 ± tn−2,α/2

√
c11σ̂2.

is a 100(1− α) percent confidence interval for β1. If our interest was to test

H0 : β1 = β1,0

versus

Ha : β1 ̸= β1,0,

where β1,0 is a fixed value (often, β1,0 = 0), we would use

t =
β̂1 − β1,0√

c11σ̂2

as a test statistic and

RR = {t : |t| > tn−2,α/2}

as a level α rejection region. One sided tests would use a suitably-adjusted rejection

region. Probability values are computed as areas under the t(n− 2) distribution.

INFERENCE FOR β0: A completely analogous argument shows that

t =
β̂0 − β0√
c00σ̂2

∼ t(n− 2),

where c00 =
∑n

i=1 x
2
i /n

∑n
i=1(xi−x)2. Therefore, a 100(1−α) percent confidence interval

for β0 is

β̂0 ± tn−2,α/2

√
c00σ̂2.

In addition, a level α test of

H0 : β0 = β0,0

versus

Ha : β0 ̸= β0,0

can be performed using

t =
β̂0 − β0,0√

c00σ̂2

as a test statistic and

RR = {t : |t| > tn−2,α/2}

as a level α rejection region. One sided tests would use a suitably-adjusted rejection

region. Probability values are computed as areas under the t(n− 2) distribution.
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11.2.5 Confidence intervals for E(Y |x∗)

INTEREST : In the simple linear regression model

Yi = β0 + β1xi + ϵi,

for i = 1, 2, ..., n, where ϵi ∼ iid N (0, σ2), we first consider constructing confidence

intervals for linear parametric functions of the form

θ = a0β0 + a1β1,

where a0 and a1 are fixed constants.

ESTIMATION : Using the least squares estimators of β̂0 and β̂1 as point estimators for

β0 and β1, respectively, a point estimator for θ is

θ̂ = a0β̂0 + a1β̂1.

It is easy to see that θ̂ is an unbiased estimator for θ since

E(θ̂) = a0E(β̂0) + a1E(β̂1) = a0β0 + a1β1 = θ.

It is also possible to show that

V (θ̂) ≡ σ2
θ̂
= σ2

[
a20
n

∑n
i=1 x

2
i + a21 − 2a0a1x∑n

i=1(xi − x)2

]
.

Since θ̂ is a linear combination of β̂0 and β̂1, both of which are normally distributed, it

follows that

θ̂ ∼ N (θ, σ2
θ̂
).

INFERENCE : The variance σ2
θ̂
depends on the unknown parameter σ2. An estimate of

σ2
θ̂
is given by

σ̂2
θ̂
= σ̂2

[
a20
n

∑n
i=1 x

2
i + a21 − 2a0a1x∑n

i=1(xi − x)2

]
,

where

σ̂2 =
SSE

n− 2
.
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Because θ̂ ∼ N (θ, σ2
θ̂
), we have by standardization,

Z =
θ̂ − θ

σθ̂

∼ N (0, 1).

Recall also that

W =
(n− 2)σ̂2

σ2
∼ χ2(n− 2).

Because σ̂2 is independent of β̂0 and β̂1, it is independent of θ̂ and hence Z and W are

independent. Therefore,

t =
θ̂ − θ

σ̂θ̂

=
(θ̂ − θ)/σθ̂√

(n−2)σ̂2

σ2

/
(n− 2)

∼ t(n− 2).

Since t is a pivotal quantity, a 100(1− α) percent confidence interval for θ is

θ̂ ± tn−2,α/2σ̂θ̂.

In addition, tests of hypotheses concerning θ use the t(n− 2) distribution.

SPECIAL CASE : A special case of the preceding result is estimating the mean value of

Y for a fixed value of x, say, x∗. In our simple linear regression model, we know that

E(Y |x∗) = β0 + β1x
∗,

which is just a linear combination of the form θ = a0β0+a1β1, where a0 = 1 and a1 = x∗.

Therefore,

θ̂ ≡ Ê(Y |x∗) = β̂0 + β̂1x
∗

is an unbiased estimator of θ ≡ E(Y |x∗) = β0 + β1x
∗ and its variance is

V (θ̂) = σ2
θ̂
= σ2

[
a20
n

∑n
i=1 x

2
i + a21 − 2a0a1x∑n

i=1(xi − x)2

]
= σ2

[
1

n
+

(x∗ − x)2∑n
i=1(xi − x)2

]
.

Applying the preceding general results to this special case, a 100(1 − α) percent con-

fidence interval for E(Y |x∗) = β0 + β1x
∗ is given by

(β̂0 + β̂1x
∗)± tn−2,α/2

√
σ̂2

[
1

n
+

(x∗ − x)2∑n
i=1(xi − x)2

]
.
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NOTE : The confidence interval for E(Y |x∗) = β0 + β1x
∗ will be different for different

values of x∗; see pp 597 (WMS). It is easy to see that the width of the confidence interval

will be smallest when x∗ = x and will increase as the distance between x∗ and x increases.

That is, more precise inference for θ = E(Y |x∗) = β0 + β1x
∗ will result when x∗ is close

to x. When x∗ is far away from x, our precision may not be adequate. It is sometimes

desired to estimate E(Y |x∗) = β0 + β1x
∗ for a value of x∗ outside the range of x values

in the observed data. This is called extrapolation. In order for these inferences to be

valid, we must believe that the model is accurate even for x values outside the range

where we have observed data. In some situations, this may be reasonable; in others, we

may have no basis for making such a claim without data to support it.

11.2.6 Prediction intervals for Y ∗

PREDICTION : For some research questions, we may not be interested in the mean

E(Y |x∗) = β0 + β1x
∗, but rather in the actual value of Y we may observe when x = x∗.

On the surface, this may sound like the same problem, but they are very different.

EXAMPLE : Suppose that we have adopted the simple linear regression model

Y = β0 + β1x+ ϵ,

where Y = 1st year final course percentage in MATH 141 and x = SAT MATH score.

Consider these (very different) questions:

• What is an estimate of the mean MATH 141 course percentage for those students

who made a SAT math score of x = 700?

• What MATH 141 course percentage would you predict for your friend Joe, who

made a SAT math score of x = 700?

The first question deals with estimating E(Y |x∗ = 700), a population mean. The second

question deals with predicting the value of the random variable Y , say Y ∗, that comes

from a distribution with mean E(Y |x∗ = 700). Estimating E(Y |x∗ = 700) is much easier

than predicting Y ∗.
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GOAL: Our goal is to construct a prediction interval for a new value of Y , which we

denote by Y ∗. Our point predictor for Y ∗, when x = x∗, is

Ŷ ∗ = β̂0 + β̂1x
∗.

This point predictor is the same as the point estimator we used to estimate E(Y |x∗) =

β0 + β1x
∗. However, we use a different symbol in this context to remind ourselves that

we are predicting Y ∗, not estimating E(Y |x∗). We call Ŷ ∗ a prediction to make the

distinction clear.

TERMINOLOGY : Define the random variable

U = Y ∗ − Ŷ ∗.

We call U the prediction error. Note that

E(U) = E(Y ∗ − Ŷ ∗) = E(Y ∗)− E(Ŷ ∗)

= (β0 + β1x
∗)− E(β̂0 + β̂1x

∗)

= (β0 + β1x
∗)− (β0 + β1x

∗) = 0.

That is, the prediction error U is an unbiased estimator of 0. The variance of U is

V (U) = V (Y ∗ − Ŷ ∗) = V (Y ∗) + V (Ŷ ∗)− 2Cov(Y ∗, Ŷ ∗).

Under our model assumptions, we know that V (Y ∗) = σ2. In addition,

V (Ŷ ∗) = V (β̂0 + β̂1x
∗) = σ2

[
1

n
+

(x∗ − x)2∑n
i=1(xi − x)2

]
,

which is the same as the variance of Ê(Y |x∗). Finally,

Cov(Y ∗, Ŷ ∗) = 0,

because of the independence assumption. More specifically, Ŷ ∗ is a function of Y1, Y2, ..., Yn,

the observed data. The value Y ∗ is a new value of Y , and, hence, is independent of

Y1, Y2, ..., Yn. Therefore,

V (U) = V (Y ∗ − Ŷ ∗) = V (Y ∗) + V (Ŷ ∗)− 2Cov(Y ∗, Ŷ ∗)

= σ2 + σ2

[
1

n
+

(x∗ − x)2∑n
i=1(xi − x)2

]
= σ2

[
1 +

1

n
+

(x∗ − x)2∑n
i=1(xi − x)2

]
.
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We finally note that the prediction error U = Y ∗ − Ŷ ∗ is normally distributed because it

is a linear combination of Y ∗ and Ŷ ∗, both of which are normally distributed. We have

shown that

U = Y ∗ − Ŷ ∗ ∼ N
{
0, σ2

[
1 +

1

n
+

(x∗ − x)2∑n
i=1(xi − x)2

]}
.

Standardizing, we have

Z =
Y ∗ − Ŷ ∗√

σ2
[
1 + 1

n
+ (x∗−x)2∑n

i=1(xi−x)2

] ∼ N (0, 1).

Recall also that

W =
(n− 2)σ̂2

σ2
∼ χ2(n− 2).

Because σ̂2 is independent of β̂0 and β̂1, it is independent of Ŷ
∗ and hence Z and W are

independent. Therefore,

t =
Z√

W/(n− 2)
=

Y ∗ − Ŷ ∗√
σ̂2
[
1 + 1

n
+ (x∗−x)2∑n

i=1(xi−x)2

] ∼ t(n− 2).

Using t as a pivot, we can write

P

−tn−2,α/2 <
Y ∗ − Ŷ ∗√

σ̂2
[
1 + 1

n
+ (x∗−x)2∑n

i=1(xi−x)2

] < tn−2,α/2

 = 1− α,

where tn−2,α/2 denotes the upper α/2 quantile of the t(n− 2) distribution. Rearranging

the event inside the probability symbol, we have

P

(
Ŷ ∗ − tn−2,α/2

√
σ̂2
[
1 + 1

n
+ (x∗−x)2∑n

i=1(xi−x)2

]
< Y ∗

< Ŷ ∗ + tn−2,α/2

√
σ̂2
[
1 + 1

n
+ (x∗−x)2∑n

i=1(xi−x)2

])
= 1− α.

We call

Ŷ ∗ ± tn−2,α/2

√
σ̂2

[
1 +

1

n
+

(x∗ − x)2∑n
i=1(xi − x)2

]
is a 100(1− α) percent prediction interval for Y ∗.
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NOTE : It is of interest to compare the confidence interval for E(Y |x∗), given by

(β̂0 + β̂1x
∗)± tn−2,α/2

√
σ̂2

[
1

n
+

(x∗ − x)2∑n
i=1(xi − x)2

]
,

to the prediction interval for Y ∗, given by

(β̂0 + β̂1x
∗)± tn−2,α/2

√
σ̂2

[
1 +

1

n
+

(x∗ − x)2∑n
i=1(xi − x)2

]
.

As we can see, the prediction interval when x = x∗ will always be wider than the corre-

sponding confidence interval for E(Y |x∗). This is a result of the additional uncertainty

which arises from having to predict the value of a new random variable.

11.2.7 Example

Example 11.1. A botanist is studying the absorption of salts by living plant cells. She

prepares n = 30 dishes containing potato slices and adds a bromide solution to each dish.

She waits a duration of time x (measured in hours) and then analyzes the potato slices

for absorption of bromide ions (y, measured in mg/1000g). Here are the data.

Dish x y Dish x y Dish x y

1 16.4 5.2 11 65.5 15.3 21 121.6 23.0

2 18.2 1.0 12 68.6 11.2 22 121.8 22.3

3 21.6 4.8 13 75.4 16.9 23 122.4 24.6

4 22.3 2.7 14 76.3 12.3 24 124.4 22.4

5 24.1 1.1 15 88.0 15.3 25 128.0 28.1

6 29.7 3.5 16 92.0 19.9 26 128.0 20.5

7 34.6 8.7 17 96.6 21.1 27 131.2 26.5

8 35.2 10.1 18 98.1 19.5 28 140.7 31.3

9 56.5 11.4 19 103.9 20.7 29 145.8 29.1

10 58.7 10.8 20 115.9 22.4 30 149.5 32.6

Table 11.1: Botany data. Absorption of bromide ions (y, measured in mg/1000g) and

time (x, measured in hours).
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Figure 11.1: Botany data. Absorption of bromide ions (y, measured in mg/1000g) versus

time (x, measured in hours). The least squares regression line has been superimposed.

REGRESSION MODEL: From the scatterplot in Figure 11.1, the linear regression model

Yi = β0 + β1xi + ϵi,

for i = 1, 2, ..., 30, appears to be appropriate. Fitting this model in R, we get the output:

> summary(fit)

Call: lm(formula = absorp ~ time)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.700374 0.894462 -0.783 0.44

time 0.205222 0.009509 21.582 <2e-16 ***

Residual standard error: 2.236 on 28 degrees of freedom

Multiple R-squared: 0.9433, Adjusted R-squared: 0.9413

F-statistic: 465.8 on 1 and 28 DF, p-value: < 2.2e-16
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OUTPUT : The Estimate output gives the least squares estimates β̂0 ≈ −0.700 and

β̂1 ≈ 0.205. The equation of the least squares regression line is therefore

Ŷ = −0.700 + 0.205x,

or, in other words,

̂ABSORPTION = −0.700 + 0.205TIME.

The Std.Error output gives

0.894462 = ŝe(β̂0) =
√
c00σ̂2

0.009509 = ŝe(β̂1) =
√
c11σ̂2,

which are the estimated standard errors of β̂0 and β̂1, respectively, where

σ̂2 =
SSE

30− 2
= (2.236)2 ≈ 5.00

is the square of the Residual standard error. The t value output gives the t statistics

t = −0.783 =
β̂0 − 0√
c00σ̂2

t = 21.582 =
β̂1 − 0√
c11σ̂2

,

which test H0 : β0 = 0 versus Ha : β0 ̸= 0 and H0 : β1 = 0 versus Ha : β1 ̸= 0,

respectively. Two-sided probability values are in Pr(>|t|). We see that

• there is insufficient evidence against H0 : β0 = 0 (p-value = 0.44).

• there is strong evidence against H0 : β1 = 0 (p-value < 0.0001). This means that

the absorption rate Y is (significantly) linearly related to duration time x.

CONFIDENCE INTERVALS : Ninety-five percent confidence intervals for β0 and β1 are

β̂0 ± t28,0.025ŝe(β̂0) =⇒ −0.700± 2.048(0.894) =⇒ (−2.53, 1.13)

β̂1 ± t28,0.025ŝe(β̂1) =⇒ 0.205± 2.048(0.010) =⇒ (0.18, 0.23).

We are 95 percent confident that β0 is between −2.53 and 1.13. We are 95 percent

confident that β1 is between 0.18 and 0.23.
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PREDICTION : Suppose that we are interested estimating E(Y |x) and predicting a new

Y when x∗ = 80 hours. We use R to compute the following:

> predict(fit,data.frame(time=80),level=0.95,interval="confidence")

fit lwr upr

15.71735 14.87807 16.55663

> predict(fit,data.frame(time=80),level=0.95,interval="prediction")

fit lwr upr

15.71735 11.06114 20.37355

• Note that

Ê(Y |x∗) = Ŷ ∗ = β̂0 + β̂1x
∗ = −0.700 + 0.205(80) ≈ 15.71735.

• A 95 percent confidence interval for E(Y |x∗ = 80) is (14.88, 16.56). When the

duration time is x = 80 hours, we are 95 percent confident that the mean absorption

is between 14.88 and 16.56 mg/1000g.

• A 95 percent prediction interval for Y ∗, when x = 80, is (11.06, 20.37). When

the duration time is x = 80 hours, we are 95 percent confident that the absorption

for a new dish will be between 11.06 and 20.37 mg/1000g. �

11.3 Correlation

RECALL: In the simple linear regression model

Yi = β0 + β1xi + ϵi,

for i = 1, 2, ..., n, where ϵi ∼ iid N (0, σ2), it is assumed that the independent variable x is

fixed. This assumption is plausible in designed experiments, say, where the investigator

has control over which values of x will be included in the experiment. For example,

• x = dose of a drug, Y = change in blood pressure for a human subject
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• x = concentration of toxic substance, Y = number of mutant offspring observed

for a pregnant rat

• x = time, Y = absorption of bromide ions.

In other settings, it is unreasonable to think that the researcher can “decide” beforehand

which values of x will be observed. Consider the following examples:

• X = weight, Y = height of a human subject

• X = average heights of plants in a plot, Y = yield

• X = STAT 513 HW score, Y = STAT 513 final exam score.

In each of these instances, the independent variable X is best regarded as random. It

is unlikely that the researcher can control (fix) its value.

IMPORTANT : When both X and Y are best regarded as random, it is conventional to

model the observed data as realizations of (X, Y ), a bivariate random vector. A popular

model for (X,Y ) is the bivariate normal distribution.

RECALL: The random vector (X, Y ) is said to have a bivariate normal distribution

if its (joint) pdf is given by

fX,Y (x, y) =
1

2πσXσY

√
1− ρ2

e−Q/2

for all (x, y)′ ∈ R2, where

Q =
1

1− ρ2

[(
x− µX

σX

)2

− 2ρ

(
x− µX

σX

)(
y − µY

σY

)
+

(
y − µY

σY

)2
]
.

Under the bivariate normal model, recall from STAT 511 that

E(Y |X) = β0 + β1X,

where

β0 = µY − β1µX

β1 = ρ

(
σY

σX

)
.
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IMPORTANT : Note that because

β1 = ρ

(
σY

σX

)
,

the correlation ρ and the (population) slope parameter β1 have the same sign.

ESTIMATION : Suppose that (X1, Y1), (X2, Y2), ..., (Xn, Yn) is an iid sample of size n from

a bivariate normal distribution with marginal means µX and µY , marginal variances σ2
X

and σ2
Y , and correlation ρ. The likelihood function is given by

L(µX , µY , σ
2
X , σ

2
Y , ρ) =

n∏
i=1

fX,Y (xi, yi)

=

(
1

2πσXσY

√
1− ρ2

)n

e−
∑n

i=1 Qi/2,

where

Qi =
1

1− ρ2

[(
xi − µX

σX

)2

− 2ρ

(
xi − µX

σX

)(
yi − µY

σY

)
+

(
yi − µY

σY

)2
]
.

The maximum likelihood estimators are

µ̂X = X, µ̂Y = Y , σ̂2
X =

1

n

n∑
i=1

(Xi −X)2, σ̂2
Y =

1

n

n∑
i=1

(Yi − Y )2,

and

ρ̂ = r =

∑n
i=1(Xi −X)(Yi − Y )√∑n

i=1(Xi −X)2
∑n

i=1(Yi − Y )2
.

HYPOTHESIS TEST : In the bivariate normal model, suppose that it is desired to test

H0 : ρ = 0

versus

Ha : ρ ̸= 0.

Since ρ and β1 always have the same sign, mathematically, this is equivalent to testing

H0 : β1 = 0

versus

Ha : β1 ̸= 0.
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That is, we can use the statistic

t =
β̂1√
c11σ̂2

to test H0 : ρ = 0 versus Ha : ρ ̸= 0. A level α rejection region is

RR = {t : |t| > tα/2,n−2}.

One sided tests can be performed similarly.

RESULT : Simple calculations show that

t =
β̂1√
c11σ̂2

=
r
√
n− 2√
1− r2

.

Therefore, the test of H0 : ρ = 0 versus Ha : ρ ̸= 0 (or any other suitable Ha) can be

performed using only the calculated value of r.

REMARK : Even though the tests

H0 : β1 = 0

versus

Ha : β1 ̸= 0

and

H0 : ρ = 0

versus

Ha : ρ ̸= 0

are carried out in the exact same manner, it is important to remember that the inter-

pretation of the results is very different, depending on which test we are performing.

• In the first test, we are determining whether or not there is a linear relationship

between Y and x. The independent variable x is best regarded as fixed.

• In the second test, we are actually determining whether or not the random variables

X and Y are independent. Recall that in the bivariate normal model,

X and Y independent ⇐⇒ ρ = 0.
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REMARK : In some problems, it may be of interest to test

H0 : ρ = ρ0

versus

Ha : ρ ̸= ρ0

(or any other suitable Ha), where ρ0 ̸= 0. In this case, there is no equivalence between

the two tests (as when ρ0 = 0) that we saw before. We are forced to use a different test

(i.e., one that is based on large sample theory).

ASYMPTOTIC RESULT : Suppose that (X1, Y1), (X2, Y2), ..., (Xn, Yn) is an iid sample

of size n from a bivariate normal distribution with marginal means µX and µY , marginal

variances σ2
X and σ2

Y , and correlation ρ. Let

r =

∑n
i=1(Xi −X)(Yi − Y )√∑n

i=1(Xi −X)2
∑n

i=1(Yi − Y )2

denote the maximum likelihood estimator of ρ. For large n, the statistic

W =
1

2
ln

(
1 + r

1− r

)
∼ AN

[
1

2
ln

(
1 + ρ

1− ρ

)
,

1

n− 3

]
.

IMPLEMENTATION : This asymptotic result above can be used to test

H0 : ρ = ρ0

versus

Ha : ρ ̸= ρ0

(or any other suitable Ha), where ρ0 ̸= 0. The test statistic is the standardized value of

W , computed under H0, that is,

Z =

1
2
ln
(
1+r
1−r

)
− 1

2
ln
(

1+ρ0
1−ρ0

)
1/
√
n− 3

.

An approximate level α rejection region is

RR = {z : |z| > zα/2},

where zα/2 is the upper α/2 quantile of the standard normal distribution. One sided tests

can be performed similarly.
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11.4 Multiple linear regression models

11.4.1 Introduction

PREVIEW : We have already considered the simple linear regression model

Yi = β0 + β1xi + ϵi,

for i = 1, 2, ..., n. Our interest now is to extend this basic model to include multiple

independent variables x1, x2, ..., xk. Specifically, we consider models of the form

Yi = β0 + β1xi1 + β2xi2 + · · ·+ βkxik + ϵi,

for i = 1, 2, ..., n. We call this a multiple linear regression model.

• There are now p = k + 1 regression parameters β0, β1, ..., βk. These are unknown

and are to be estimated with the observed data.

• Schematically, we can envision the observed data as follows:

Individual Y x1 x2 · · · xk

1 Y1 x11 x12 · · · x1k

2 Y2 x21 x22 · · · x2k

...
...

...
...

. . .
...

n Yn xn1 xn2 · · · xnk

That is, each of the n individuals contributes a response Y and a value of each of

the independent variables x1, x2, ..., xk.

• We continue to assume that ϵi ∼ iid N (0, σ2).

• We also assume that the independent variables x1, x2, ..., xk are fixed and measured

without error. Therefore, Y is normally distributed with

E(Y |x1, x2, ..., xk) = β0 + β1x1 + β2x2 + · · ·+ βkxk

V (Y |x1, x2, ..., xk) = σ2.
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PREVIEW : To fit the multiple linear regression model

Yi = β0 + β1xi1 + β2xi2 + · · ·+ βkxik + ϵi,

we will still use the method of least squares. However, simple computing formulae for

the least squares estimators of β0, β1, ..., βk are no longer available (as they were in the

simple linear regression model). It is advantageous to express multiple linear regression

models in terms of matrices and vectors. This greatly streamlines notation and makes

calculations tractable.

11.4.2 Matrix representation

MATRIX REPRESENTATION : Consider the multiple linear regression model

Yi = β0 + β1xi1 + β2xi2 + · · ·+ βkxik + ϵi,

for i = 1, 2, ..., n. Define

Y =


Y1

Y2

...

Yn

 , X =


1 x11 x12 · · · x1k

1 x21 x22 · · · x2k

...
...

...
. . .

...

1 xn1 xn2 · · · xnk

 , β =



β0

β1

β2

...

βk


, ϵ =


ϵ1

ϵ2
...

ϵn

 .

With these definitions, the model above can be expressed equivalently as

Y = Xβ + ϵ.

In this equivalent representation,

• Y is an n× 1 (random) vector of responses

• X is an n× p (fixed) matrix of independent variable measurements (p = k + 1)

• β is a p× 1 (fixed) vector of unknown population regression parameters

• ϵ is an n× 1 (random) vector of unobserved errors.
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LEAST SQUARES : The notion of least squares is the same as it was in the simple linear

regression model. To fit a multiple linear regression model, we want to find the values of

β0, β1, ..., βk that minimize

Q(β0, β1, ..., βk) =
n∑

i=1

[Yi − (β0 + β1xi1 + β2xi2 + · · ·+ βkxik)]
2,

or, in matrix notation, the value of β that minimizes

Q = Q(β) = (Y −Xβ)′(Y −Xβ).

Because Q(β) is a scalar function of the p = k + 1 elements of β, it is possible to use

calculus to determine the values of the p elements that minimize it. Formally, we can

take the p partial derivatives with respect to each of β0, β1, ..., βk and set these equal to

zero; i.e.,

∂Q(β)

∂β
=


∂Q
∂β0

∂Q
∂β1

...

∂Q
∂βk


set
=


0

0
...

0

 .

These are called the normal equations. Solving the normal equations for β0, β1, ..., βk

gives the least squares estimators, which we denote by β̂0, β̂1, ..., β̂k.

NORMAL EQUATIONS : Using the calculus of matrices makes this much easier; in

particular, the normal equations above can be expressed as

X′Xβ = X′Y.

Provided that X′X is full rank, the (unique) solution is

β̂ = (X′X)−1X′Y.

This is the least squares estimator of β. The fitted regression model is

Ŷ = Xβ̂,

or, equivalently,

Ŷi = β̂0 + β̂1xi1 + β̂2xi2 + · · ·+ β̂kxik.
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NOTE : For the least squares estimator β̂ to be unique, we need X to be of full column

rank; i.e., r(X) = p = k + 1. That is, there must be no linear dependencies among the

columns of X. If r(X) < p, then X′X does not have a unique inverse. In this case, the

normal equations can not be solved uniquely. We will henceforth assume that X is of

full column rank.

11.4.3 Random vectors: Important results

IMPORTANCE : Because multiple linear regression models are best presented in terms of

(random) vectors and matrices, it is important to extend the notions of mean, variance,

and covariance to random vectors. Doing so allows us to examine sampling distributions

and the resulting inference that arises in multiple linear regression models.

TERMINOLOGY : Suppose that Z1, Z2, ..., Zn are random variables. We call

Z =


Z1

Z2

...

Zn


a random vector. The multivariate probability density function (pdf) of Z is de-

noted by fZ(z). The function fZ(z) describes probabilistically how the random variables

Z1, Z2, ..., Zn are jointly distributed.

• If Z1, Z2, ..., Zn are independent variables, then

fZ(z) =
n∏

i=1

fZi
(zi),

where fZi
(zi) is the marginal pdf of Zi.

• If Z1, Z2, ..., Zn are iid from a common marginal pdf, say, fZ(z), then

fZ(z) =
n∏

i=1

fZ(zi).
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TERMINOLOGY : Suppose Z1, Z2, ..., Zn are random variables with means E(Zi) = µi

and variances V (Zi) = σ2
i , for i = 1, 2, ..., n, and covariances Cov(Zi, Zj) = σij for i ̸= j.

The mean of a random vector Z is given by

E(Z) = E


Z1

Z2

...

Zn

 =


E(Z1)

E(Z2)
...

E(Zn)

 =


µ1

µ2

...

µn

 = µ.

The variance of Z is

V (Z) = V


Z1

Z2

...

Zn

 =


σ2
1 σ12 · · · σ1n

σ21 σ2
2 · · · σ2n

...
...

. . .
...

σn1 σn2 · · · σ2
n

 = V.

• V is an n× n matrix. It is also called the variance-covariance matrix of Z.

• V consists of the n variances σ2
1, σ

2
2, ..., σ

2
n on the diagonal and the 2

(
n
2

)
covariance

terms Cov(Zi, Zj), for i ̸= j, on the off-diagonal.

• Since Cov(Zi, Zj) = Cov(Zj, Zi), V is symmetric; i.e., V′ = V.

TERMINOLOGY : Suppose that

Y =


Y1

Y2

...

Yn

 and Z =


Z1

Z2

...

Zm


are random vectors. The covariance between Y and Z is

Cov(Y,Z) =


Cov(Y1, Z1) Cov(Y1, Z2) · · · Cov(Y1, Zm)

Cov(Y2, Z1) Cov(Y2, Z2) · · · Cov(Y2, Zm)
...

...
. . .

...

Cov(Yn, Z1) Cov(Yn, Z2) · · · Cov(Yn, Zm)


n×m

.
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RESULTS : Suppose Z is a random vector with mean E(Z) = µ and variance-covariance

matrix V (Z) = V. Suppose a is a nonrandom (constant) vector and that A and B are

nonrandom (constant) matrices.

1. E(a+BZ) = a+BE(Z) = a+Bµ

2. V (a+BZ) = BV (Z)B′ = BVB′

3. Cov(AY,BZ) = ACov(Y,Z)B′.

TERMINOLOGY : LetY be an n×1 random vector with mean µ and variance-covariance

matrix V. Let A be an n × n nonrandom matrix. We call Y′AY a quadratic form.

The mean of a quadratic form is

E(Y′AY) = µ′Aµ+ tr(AV),

where tr(·) means “trace,” that is, tr(AV) is the sum of the diagonal elements of AV.

REMARK : It is important to see that a quadratic formY′AY is a scalar random variable.

Therefore, its mean E(Y′AY) is a scalar constant. Quadratic forms are important in the

theory of linear (regression) models. It turns out that sums of squares (which appear

in analysis of variance tables) can always be written as quadratic forms.

11.4.4 Multivariate normal distribution

TERMINOLOGY : Suppose that Z1, Z2, ..., Zn are iid N (0, 1) random variables. The

joint pdf of Z = (Z1, Z2, ..., Zn)
′, for all z ∈ Rn, is given by

fZ(z) =
n∏

i=1

fZ(zi) =
n∏

i=1

1√
2π

e−z2i /2

=

(
1√
2π

)n

e−
∑n

i=1 z
2
i /2 = (2π)−n/2 exp(−z′z/2).

If Z has a pdf given by fZ(z), we say that Z has a standard multivariate normal dis-

tribution; i.e., a multivariate normal distribution with mean 0 and variance-covariance
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matrix I. Here,

0 =


0

0
...

0

 and I =


1 0 · · · 0

0 1 · · · 0
...

...
. . .

...

0 0 · · · 1

 .

That is, 0 is an n×1 zero vector and I is the n×n identity matrix. We write Z ∼ Nn(0, I).

Note that

Z1, Z2, ..., Zn ∼ iid N (0, 1) ⇐⇒ Z ∼ Nn(0, I).

TERMINOLOGY : The random vector Y = (Y1, Y2, ..., Yn)
′ is said to have a multivari-

ate normal distribution with mean µ and variance-covariance matrix V if its joint

pdf is given by

fY(y) = (2π)−n/2|V|−1/2 exp

{
−1

2
(y − µ)′V−1(y − µ)

}
,

for all y ∈ Rn. We write Y ∼ Nn(µ,V).

FACTS :

• If Y = (Y1, Y2, ..., Yn)
′ ∼ Nn(µ,V), then Yi ∼ N (µi, σ

2
i ), for each i = 1, 2, ..., n.

• If Y ∼ Nn(µ,V) and am×1 and Bm×n are nonrandom, then

U = a+BY ∼ Nm(a+Bµ,BVB′).

APPLICATION : Consider the multiple linear regression model

Yi = β0 + β1xi1 + β2xi2 + · · ·+ βkxik + ϵi,

for i = 1, 2, ..., n, where ϵi ∼ iid N (0, σ2). Equivalently, we can write this model as

Y = Xβ + ϵ,

where ϵ ∼ Nn(0, σ
2I). Note that

E(Y) = E(Xβ + ϵ) = Xβ + E(ϵ) = Xβ + 0 = Xβ
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and

V (Y) = V (Xβ + ϵ) = V (ϵ) = σ2I.

Because Y is a linear combination of ϵ, which is normally distributed by assumption, it

follows that

Y ∼ Nn(Xβ, σ2I). �

11.4.5 Estimating the error variance

REVIEW : Consider the multiple linear regression model

Y = Xβ + ϵ,

where ϵ ∼ Nn(0, σ
2I). Recall that the least squares estimator of β is given by

β̂ = (X′X)−1X′Y.

Our next task is to estimate the error variance σ2.

TERMINOLOGY : We define the error (residual) sum of squares as

SSE = (Y −Xβ̂)′(Y −Xβ̂)

= (Y − Ŷ)′(Y − Ŷ) = e′e.

• The n× 1 vector Ŷ = Xβ̂ contains the least squares fitted values.

• The n× 1 vector e = Y − Ŷ contains the least squares residuals.

TERMINOLOGY : Consider the multiple linear regression model Y = Xβ+ϵ and define

M = X(X′X)−1X′.

M is called the hat matrix. Many important quantities in linear regression can be

written as functions of the hat matrix. For example, the vector of fitted values can be

written as

Ŷ = Xβ̂ = X(X′X)−1X′Y = MY.
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The vector of residuals can be written as

e = Y − Ŷ = Y −MY = (I−M)Y.

The error (residual) sum of squares can be written as

SSE = (Y − Ŷ)′(Y − Ŷ) = Y′(I−M)Y.

Note that SSE = Y′(I−M)Y is a quadratic form.

FACTS : The matrix M possesses the following properties:

• M is symmetric, i.e., M′ = M.

• M is idempotent, i.e., M2 = M.

• MX = X, i.e., M projects each column of X onto itself.

RESULT : Consider the multiple linear regression model

Y = Xβ + ϵ,

where ϵ ∼ Nn(0, σ
2I). Let p = k + 1 denote the number of regression parameters in the

model. The quantity

σ̂2 =
SSE

n− p

is an unbiased estimator of σ2, that is, E(σ̂2) = σ2.

Proof. Recall that SSE = Y′(I−M)Y. Because E(Y) = Xβ and V (Y) = σ2I, we have

E(SSE) = E[Y′(I−M)Y]

= (Xβ)′(I−M)Xβ + tr[(I−M)σ2I].

The first term (Xβ)′(I−M)Xβ = 0 because

(I−M)Xβ = Xβ −MXβ = Xβ −Xβ = 0.

Because the tr(·) function is linear,

tr[(I−M)σ2I] = σ2[tr(I)− tr(M)]

= σ2{n− tr[X(X′X)−1X′]}.
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Since tr(AB) = tr(BA) for any matrices A and B, taking A = X and B = (X′X)−1X′,

we can write the last expression as

σ2{n− tr[X(X′X)−1X′]} = σ2{n− tr[(X′X)−1X′X]}

= σ2[n− tr(Ip)] = σ2(n− p),

since Ip = (X′X)−1X′X is p× p. We have shown that E(SSE) = σ2(n− p). Thus,

E(σ̂2) = E

(
SSE

n− p

)
=

σ2(n− p)

n− p
= σ2,

showing that σ̂2 is an unbiased estimator of σ2. �

RESULT : Consider the multiple linear regression model

Y = Xβ + ϵ,

where ϵ ∼ Nn(0, σ
2I). Let p = k + 1 denote the number of regression parameters in the

model. Under these model assumptions,

SSE

σ2
=

(n− p)σ̂2

σ2
∼ χ2(n− p).

The proof of this result is beyond the scope of this course.

11.4.6 Sampling distribution of β̂

GOAL: Consider the multiple linear regression model

Y = Xβ + ϵ,

where ϵ ∼ Nn(0, σ
2I). We now investigate the sampling distribution of the least

squares estimator

β̂ = (X′X)−1X′Y.

MEAN AND VARIANCE : The mean of β̂ is given by

E(β̂) = E[(X′X)−1X′Y]

= (X′X)−1X′E(Y)

= (X′X)−1X′Xβ = β.
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This shows that β̂ is an unbiased estimator of β. The variance of β̂ is

V (β̂) = V [(X′X)−1X′Y]

= (X′X)−1X′V (Y)[(X′X)−1X′]′

= (X′X)−1X′σ2IX(X′X)−1

= σ2(X′X)−1X′X(X′X)−1 = σ2(X′X)−1.

NORMALITY : Since β̂ = (X′X)−1X′Y is a linear combination of Y, which is (multi-

variate) normal under our model assumptions, it follows that β̂ is normally distributed

as well. Therefore, we have shown that

β̂ ∼ Np[β, σ
2(X′X)−1]. �

IMPLICATIONS : The following results are direct consequences of our recent discussion:

1. E(β̂j) = βj, for j = 0, 1, ..., k; that is, the least squares estimators are unbiased.

2. V (β̂j) = cjjσ
2, for j = 0, 1, ..., k, where

cjj = (X′X)−1
jj

is the corresponding jth diagonal element of (X′X)−1. An estimate of V (β̂j) is

V̂ (β̂j) = cjjσ̂
2 = σ̂2(X′X)−1

jj ,

where

σ̂2 =
SSE

n− p
.

3. Cov(β̂i, β̂j) = cijσ
2, where

cij = (X′X)−1
ij

is the corresponding ith row, jth column entry of (X′X)−1, for i, j = 0, 1, ..., k. An

estimate of Cov(β̂i, β̂j) is

Ĉov(β̂i, β̂j) = cijσ̂
2 = σ̂2(X′X)−1

ij .

4. Marginally, β̂j ∼ N (βj, cjjσ
2), for j = 0, 1, ..., k.
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11.4.7 Inference for regression parameters

IMPORTANCE : Consider our multiple linear regression model

Yi = β0 + β1xi1 + β2xi2 + · · ·+ βkxik + ϵi,

for i = 1, 2, ..., n, where ϵi ∼ iid N (0, σ2). Confidence intervals and hypothesis tests for

βj can help us assess the importance of using the independent variable xj in a model with

the other independent variables. That is, inference regarding βj is always conditional

on the other variables being included in the model.

CONFIDENCE INTERVALS : Since β̂j ∼ N (βj, cjjσ
2), for j = 0, 1, 2, ..., k, it follows,

from standardization, that

Zj =
β̂j − βj√
cjjσ2

∼ N (0, 1).

Recall also that

W =
(n− p)σ̂2

σ2
∼ χ2(n− p).

Because σ̂2 is independent of β̂j, it follows that Z andW are also independent. Therefore,

t =
β̂j − βj√
cjjσ̂2

=
(β̂j − βj)/

√
cjjσ2√

(n−p)σ̂2

σ2

/
(n− p)

∼ t(n− p).

Because t ∼ t(n− p), t is a pivot and we can write

P

(
−tn−p,α/2 <

β̂j − βj√
cjjσ̂2

< tn−p,α/2

)
= 1− α,

where tn−p,α/2 denotes the upper α/2 quantile of the t(n− p) distribution. Rearranging

the event inside the probability symbol, we have

P
(
β̂j − tn−p,α/2

√
cjjσ̂2 < βj < β̂j + tn−p,α/2

√
cjjσ̂2

)
= 1− α.

This shows that

β̂j ± tn−p,α/2

√
cjjσ̂2.

is a 100(1− α) percent confidence interval for βj.
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HYPOTHESIS TESTS : Suppose that we want to test

H0 : βj = βj,0

versus

Ha : βj ̸= βj,0,

where βj,0 is a fixed value (often, βj,0 = 0). We use

t =
β̂j − βj,0√

cjjσ̂2

as a test statistic and

RR = {t : |t| > tn−p,α/2}

as a level α rejection region. One sided tests would use a suitably-adjusted rejection

region. Probability values are computed as areas under the t(n− p) distribution.

11.4.8 Confidence intervals for E(Y |x∗)

RECALL: In the simple linear regression model

Yi = β0 + β1xi + ϵi,

for i = 1, 2, ..., n, where ϵi ∼ iid N (0, σ2), we learned how to obtain confidence intervals

for the mean response E(Y |x∗) = β0 + β1x
∗. Extending this to multiple linear regression

models is straightforward.

GOAL: Consider the multiple linear regression model

Yi = β0 + β1xi1 + β2xi2 + · · ·+ βkxik + ϵi,

for i = 1, 2, ..., n, where ϵi ∼ iid N (0, σ2), or, equivalently,

Y = Xβ + ϵ,

where ϵ ∼ Nn(0, σ
2I). Our goal is to construct confidence intervals for linear parametric

functions of the form

θ = a0β0 + a1β1 + · · ·+ akβk = a′β,
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where

a =


a0

a1
...

ak

 and β =


β0

β1

...

βk

 .

INFERENCE : A point estimator for θ = a′β is

θ̂ = a′β̂,

where β̂ = (X′X)−1X′Y. It is easy to see that θ̂ is an unbiased estimator for θ since

E(θ̂) = E(a′β̂) = a′E(β̂) = a′β = θ.

The variance of θ̂ is given by

V (θ̂) = V (a′β̂) = a′V (β̂)a = a′σ2(X′X)−1a = σ2a′(X′X)−1a.

Since θ̂ = a′β̂ is a linear combination of β̂, which is normally distributed, θ̂ is also

normally distributed. Therefore, we have shown that

θ̂ ∼ N [θ, σ2a′(X′X)−1a].

Standardizing, we have

Z =
θ̂ − θ√

σ2a′(X′X)−1a
∼ N (0, 1).

It also follows that

t =
θ̂ − θ√

σ̂2a′(X′X)−1a
∼ t(n− p),

where p = k + 1 and

σ̂2 =
SSE

n− p
.

Since t is a pivotal quantity, a 100(1− α) percent confidence interval for θ = a′β is

θ̂ ± tn−p,α/2

√
σ̂2a′(X′X)−1a.

In addition, tests of hypotheses concerning θ use the t(n− p) distribution.
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SPECIAL CASE : A special case of the preceding result is estimating the mean value of

Y for a fixed value of x = (x1, x2, ..., xk)
′, say,

x∗ =


x∗
1

x∗
2

...

x∗
k

 .

In our multiple linear regression model, we know that

E(Y |x∗) = β0 + β1x
∗
1 + β2x

∗
2 + · · ·+ βkx

∗
k,

which is just a linear combination of the form θ = a0β0 + a1β1 + · · ·+ akβk = a′β, where

a =


1

x∗
1

...

x∗
k

 .

Therefore,

θ̂ ≡ ̂E(Y |x∗) = β̂0 + β̂1x
∗ + β̂2x

∗
2 + · · ·+ β̂kx

∗
k = a′β̂

is an unbiased estimator of θ = E(Y |x∗), and its variance is

V (θ̂) = σ2a′(X′X)−1a,

where a is as given above. Applying the preceding general results to this special case, a

100(1− α) percent confidence interval for E(Y |x∗), the mean of Y when x = x∗, is

θ̂ ± tn−p,α/2

√
σ̂2a′(X′X)−1a.

11.4.9 Prediction intervals for Y ∗

RECALL: In the simple linear regression model, we learned how to obtain prediction

intervals for a new response Y ∗. Extending this to multiple linear regression models is

straightforward.
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GOAL: Consider the multiple linear regression model

Yi = β0 + β1xi1 + β2xi2 + · · ·+ βkxik + ϵi,

for i = 1, 2, ..., n, where ϵi ∼ iid N (0, σ2), or, equivalently,

Y = Xβ + ϵ,

where ϵ ∼ Nn(0, σ
2I). Suppose that we would like to predict the value of a new response

Y ∗, for a fixed value of x = (x1, x2, ..., xk)
′, say,

x∗ =


x∗
1

x∗
2

...

x∗
k

 .

Our point predictor for Y ∗, based on the least squares fit, is

Ŷ ∗ = β̂0 + β̂1x
∗
1 + β̂2x

∗
2 + · · ·+ β̂kx

∗
k = a′β̂,

where a = (1, x∗
1, x

∗
2, ..., x

∗
k)

′ and β̂ = (X′X)−1X′Y. Define the error in prediction by

U = Y ∗ − Ŷ ∗. Analogously to the simple linear regression case,

U = Y ∗ − Ŷ ∗ ∼ N{0, σ2[1 + a′(X′X)−1a]}.

Using the fact that (n− p)σ̂2/σ2 ∼ χ2(n− p), it follows that

t =
Y ∗ − Ŷ ∗√

σ̂2 [1 + a′(X′X)−1a]
∼ t(n− p).

Therefore,

Ŷ ∗ ± tn−p,α/2

√
σ̂2 [1 + a′(X′X)−1a],

is a 100(1− α) percent prediction interval for Y ∗.

REMARK : Comparing the prediction interval for Y ∗ to the analogous 100(1−α) percent

confidence interval for E(Y |x∗), we see that the intervals are again identical except the

prediction interval has an extra “1” in the estimated standard error. This results from

the extra variability that arises when predicting Y ∗ as opposed to estimating E(Y |x∗).
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11.4.10 Example

Example 11.2. The taste of matured cheese is related to the concentration of several

chemicals in the final product. In a study from the LaTrobe Valley of Victoria, Aus-

tralia, samples of cheddar cheese were analyzed for their chemical composition and were

subjected to taste tests. For each specimen, the taste Y was obtained by combining the

scores from several tasters. Data were collected on the following variables:

Y = taste score (TASTE)

x1 = concentration of acetic acid (ACETIC)

x2 = concentration of hydrogen sulfide (H2S)

x3 = concentration of lactic acid (LACTIC).

Variables ACETIC and H2S were both measured on the log scale. The variable LACTIC

has not been transformed. Table 11.2 contains concentrations of the various chemicals

in n = 30 specimens of cheddar cheese and the observed taste score.

Specimen TASTE ACETIC H2S LACTIC Specimen TASTE ACETIC H2S LACTIC

1 12.3 4.543 3.135 0.86 16 40.9 6.365 9.588 1.74

2 20.9 5.159 5.043 1.53 17 15.9 4.787 3.912 1.16

3 39.0 5.366 5.438 1.57 18 6.4 5.412 4.700 1.49

4 47.9 5.759 7.496 1.81 19 18.0 5.247 6.174 1.63

5 5.6 4.663 3.807 0.99 20 38.9 5.438 9.064 1.99

6 25.9 5.697 7.601 1.09 21 14.0 4.564 4.949 1.15

7 37.3 5.892 8.726 1.29 22 15.2 5.298 5.220 1.33

8 21.9 6.078 7.966 1.78 23 32.0 5.455 9.242 1.44

9 18.1 4.898 3.850 1.29 24 56.7 5.855 10.20 2.01

10 21.0 5.242 4.174 1.58 25 16.8 5.366 3.664 1.31

11 34.9 5.740 6.142 1.68 26 11.6 6.043 3.219 1.46

12 57.2 6.446 7.908 1.90 27 26.5 6.458 6.962 1.72

13 0.7 4.477 2.996 1.06 28 0.7 5.328 3.912 1.25

14 25.9 5.236 4.942 1.30 29 13.4 5.802 6.685 1.08

15 54.9 6.151 6.752 1.52 30 5.5 6.176 4.787 1.25

Table 11.2: Cheese data. ACETIC, H2S, and LACTIC are independent variables. The

response variable is TASTE.
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REGRESSION MODEL: Suppose the researchers postulate that each of the three chemi-

cal composition variables x1, x2, and x3 is important in describing the taste. In this case,

they might initially consider the multiple linear regression model

Yi = β0 + β1xi1 + β2xi2 + β3xi3 + ϵi,

for i = 1, 2, ..., 30. We now use R to fit this model using the method of least squares.

Here is the output:

> summary(fit)

Call: lm(formula = taste ~ acetic + h2s + lactic)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -28.877 19.735 -1.463 0.15540

acetic 0.328 4.460 0.074 0.94193

h2s 3.912 1.248 3.133 0.00425 **

lactic 19.670 8.629 2.279 0.03109 *

Residual standard error: 10.13 on 26 degrees of freedom

Multiple R-squared: 0.6518, Adjusted R-squared: 0.6116

F-statistic: 16.22 on 3 and 26 DF, p-value: 3.810e-06

OUTPUT : The Estimate output gives the values of the least squares estimates:

β̂0 ≈ −28.877 β̂1 ≈ 0.328 β̂2 ≈ 3.912 β̂3 ≈ 19.670.

Therefore, the fitted least squares regression model is

Ŷ = −28.877 + 0.328x1 + 3.912x2 + 19.670x3,

or, in other words,

T̂ASTE = −28.877 + 0.328ACETIC+ 3.912H2S+ 19.670LACTIC.
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The Std.Error output gives

19.735 = ŝe(β̂0) =
√

c00σ̂2 =
√

σ̂2(X′X)−1
00

4.460 = ŝe(β̂1) =
√

c11σ̂2 =
√

σ̂2(X′X)−1
11

1.248 = ŝe(β̂2) =
√

c22σ̂2 =
√

σ̂2(X′X)−1
22

8.629 = ŝe(β̂3) =
√

c33σ̂2 =
√

σ̂2(X′X)−1
33 ,

where

σ̂2 =
SSE

30− 4
= (10.13)2 ≈ 102.63

is the square of the Residual standard error. The t value output gives the t statistics

t = −1.463 =
β̂0 − 0√
c00σ̂2

t = 0.074 =
β̂1 − 0√
c11σ̂2

t = 3.133 =
β̂2 − 0√
c22σ̂2

t = 2.279 =
β̂3 − 0√
c33σ̂2

.

These t statistics can be used to test H0 : βi = 0 versus H0 : βi ̸= 0, for i = 0, 1, 2, 3.

Two-sided probability values are in Pr(>|t|). At the α = 0.05 level,

• we do not reject H0 : β0 = 0 (p-value = 0.155). Interpretation: In the model

which includes all three independent variables, the intercept term β0 is not statis-

tically different from zero.

• we do not reject H0 : β1 = 0 (p-value = 0.942). Interpretation: ACETIC does not

significantly add to a model that includes H2S and LACTIC.

• we reject H0 : β2 = 0 (p-value = 0.004). Interpretation: H2S does significantly

add to a model that includes ACETIC and LACTIC.

• we rejectH0 : β3 = 0 (p-value = 0.031). Interpretation: LACTIC does significantly

add to a model that includes ACETIC and H2S.
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CONFIDENCE INTERVALS : Ninety-five percent confidence intervals for the regression

parameters β0, β1, β2, and β3, respectively, are

β̂0 ± t26,0.025ŝe(β̂0) =⇒ −28.877± 2.056(19.735) =⇒ (−69.45, 11.70)

β̂1 ± t26,0.025ŝe(β̂1) =⇒ 0.328± 2.056(4.460) =⇒ (−8.84, 9.50)

β̂2 ± t26,0.025ŝe(β̂2) =⇒ 3.912± 2.056(1.248) =⇒ (1.35, 6.48)

β̂3 ± t26,0.025ŝe(β̂3) =⇒ 19.670± 2.056(8.629) =⇒ (1.93, 37.41).

PREDICTION : Suppose that we are interested estimating E(Y |x∗) and predicting a new

Y when ACETIC = 5.5, H2S = 6.0, and LACTIC = 1.4, so that

x∗ =


5.5

6.0

1.4

 .

We use R to compute the following:

> predict(fit,data.frame(acetic=5.5,h2s=6.0,lactic=1.4),level=0.95,interval="confidence")

fit lwr upr

23.93552 20.04506 27.82597

> predict(fit,data.frame(acetic=5.5,h2s=6.0,lactic=1.4),level=0.95,interval="prediction")

fit lwr upr

23.93552 2.751379 45.11966

• Note that

̂E(Y |x∗) = Ŷ ∗ = β̂0 + β̂1x
∗
1 + β̂2x

∗
2 + β̂3x

∗
3

= −28.877 + 0.328(5.5) + 3.912(6.0) + 19.670(1.4) ≈ 23.936.

• A 95 percent confidence interval for E(Y |x∗) is (20.05, 27.83). When ACETIC =

5.5, H2S = 6.0, and LACTIC = 1.4, we are 95 percent confident that the mean taste

rating is between 20.05 and 27.83.

• A 95 percent prediction interval for Y ∗, when x = x∗, is (2.75, 45.12). When

ACETIC = 5.5, H2S = 6.0, and LACTIC = 1.4, we are 95 percent confident that the

taste rating for a new cheese specimen will be between 2.75 and 45.12.
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11.5 The analysis of variance for linear regression

IMPORTANCE : The fit of a linear regression model (simple or linear) can be summarized

in an analysis of variance (ANOVA) table. An ANOVA table provides a partition

of the variability in the observed data. This partition, in turn, allows us to assess the

overall fit of the model.

MODEL: Consider the linear regression model

Y = Xβ + ϵ,

where ϵ ∼ Nn(0, σ
2I), and let M = X(X′X)−1X′ denote the hat matrix. Recall that

Ŷ = MY and e = (I − M)Y denote the vectors of least squares fitted values and

residuals, respectively.

SUMS OF SQUARES : Start with the simple quadratic form Y′Y = Y′IY. Note that

Y′Y = Y′(M+ I−M)Y

= Y′MY +Y′(I−M)Y

= Y′MMY +Y′(I−M)(I−M)Y

= Ŷ′Ŷ + e′e.

This equation can be expressed equivalently as

n∑
i=1

Y 2
i =

n∑
i=1

Ŷ 2
i +

n∑
i=1

(Yi − Ŷi)
2.

TERMINOLOGY : We call

• Y′Y =
∑n

i=1 Y
2
i the uncorrected total sum of squares

• Ŷ′Ŷ =
∑n

i=1 Ŷ
2
i the uncorrected regression (model) sum of squares

• e′e =
∑n

i=1(Yi − Ŷi)
2 the error (residual) sum of squares.

CORRECTED VERSIONS : When we fit a linear regression model, we are often in-

terested in the regression coefficients that are attached to independent variables; i.e.,
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β1, β2, ..., βk. We generally are not interested in the intercept term β0, the overall mean

of Y (ignoring the independent variables). Therefore, it is common to “remove” the

effects of fitting the intercept term β0. This removal is accomplished by subtracting nY
2

from both sides of the last equation. This gives

n∑
i=1

Y 2
i − nY

2
=

n∑
i=1

Ŷ 2
i − nY

2
+

n∑
i=1

(Yi − Ŷi)
2,

or, equivalently,
n∑

i=1

(Yi − Y )2︸ ︷︷ ︸
SST

=
n∑

i=1

(Ŷi − Y )2︸ ︷︷ ︸
SSR

+
n∑

i=1

(Yi − Ŷi)
2

︸ ︷︷ ︸
SSE

.

We call

• SST the corrected total sum of squares

• SSR the corrected regression (model) sum of squares

• SSE the error (residual) sum of squares.

QUADRATIC FORMS : To enhance our understanding of the partitioning of sums of

squares, we express the SST = SSR + SSE partition in terms of quadratic forms. The

basic uncorrected partition is given by

Y′Y = Y′MY +Y′(I−M)Y.

To write the corrected partition, we subtract nY
2
= Y′n−1JY from both sides of the

last equation, where

J =


1 1 · · · 1

1 1 · · · 1
...

...
. . .

...

1 1 · · · 1


n×n

is the n× n matrix of ones. This gives

Y′Y −Y′n−1JY = Y′MY −Y′n−1JY +Y′(I−M)Y

or, equivalently,

Y′(I− n−1J)Y︸ ︷︷ ︸
SST

= Y′(M− n−1J)Y︸ ︷︷ ︸
SSR

+Y′(I−M)Y︸ ︷︷ ︸
SSE

.
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ANOVA TABLE : The general form of an ANOVA table for linear regression (simple or

multiple) is given below:

Source df SS MS F

Regression p− 1 SSR MSR = SSR
p−1

F = MSR
MSE

Error n− p SSE MSE = SSE
n−p

Total n− 1 SST

NOTES :

• The corrected partition SSR + SSE = SST appears in the column labeled “SS”

(sum of squares).

• The column labeled “df” gives the degrees of freedom for each quadratic form.

Mathematically,
p− 1 = r(M− n−1J)

n− p = r(I−M)

n− 1 = r(I− n−1J).

That is, the degrees of freedom are the ranks of the quadratic form matrices in

Y′(I− n−1J)Y = Y′(M− n−1J)Y +Y′(I−M)Y.

Note also that the degrees of freedom add down (as the SS do).

• The column labeled “MS” contains the mean squares

MSR =
SSR

p− 1

MSE =
SSE

n− p
.

That is, the mean squares are the SS divided by the corresponding degrees of

freedom. Note that

σ̂2 = MSE =
SSE

n− p

is our unbiased estimator of the error variance σ2 in the underlying model.

• The ANOVA table F statistic will be discussed next.
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F STATISTIC : The F statistic in the ANOVA table is used to test

H0 : β1 = β2 = · · · = βk = 0

versus

Ha : at least one of the βj is nonzero.

In other words, F tests whether or not at least one of the independent variables

x1, x2, ..., xk is important in describing the response Y . If H0 is rejected, we do not

know which one or how many of the βj’s are nonzero; only that at least one is. In this

light, one could argue that this test is not all that meaningful.

JUSTIFICATION : When H0 is true,

SSR

σ2
∼ χ2(p− 1),

SSE

σ2
∼ χ2(n− p),

and SSR and SSE are independent. These facts would be proven in a more advanced

course. Therefore, when H0 is true,

F =

SSR/σ2

p−1

SSE/σ2

n−p

=
SSR/(p− 1)

SSE/(n− p)
=

MSR

MSE
∼ F (p− 1, n− p).

The test above uses a one-sided, upper tail rejection region. Specifically, a level α rejection

region is

RR = {F : F > Fp−1,n−p,α},

where Fp−1,n−p,α denotes the upper α quantile of the F distribution with p−1 (numerator)

and n − p (denominator) degrees of freedom. Probability values are computed as areas

to the right of F on the F (p− 1, n− p) distribution.

TERMINOLOGY : Since

SST = SSR + SSE,

the proportion of the total variation in the data explained by the model is

R2 =
SSR

SST
.

The statistic R2 is called the coefficient of determination. The larger the R2, the

more variation that is being explained by the regression model.
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Example 11.2 (continued). In Example 11.2, we fit the multiple linear regression model

Yi = β0 + β1xi1 + β2xi2 + β3xi3 + ϵi,

for i = 1, 2, ..., 30. The ANOVA table, obtained using SAS, is shown below.

Analysis of Variance

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 3 4994.50861 1664.83620 16.22 <.0001

Error 26 2668.37806 102.62993

Corrected Total 29 7662.88667

The F statistic is used to test

H0 : β1 = β2 = β3 = 0

versus

Ha : at least one of the βj is nonzero.

ANALYSIS : Based on the F statistic (F = 16.22), and the corresponding probability

value (p-value < 0.0001), we conclude that at least one of ACETIC, H2S, and LACTIC is

important in describing taste (that is, we reject H0). The coefficient of determination is

R2 =
SSR

SST
=

4994.51

7662.89
≈ 0.652.

That is, about 65.2 percent of the variability in the taste data is explained by the inde-

pendent variables. If we analyze these data using R, we get the following:

anova.fit<-anova(lm(taste~acetic+h2s+lactic))

anova.fit

Response: taste

Df Sum Sq Mean Sq F value Pr(>F)

acetic 1 2314.14 2314.14 22.5484 6.528e-05 ***

h2s 1 2147.11 2147.11 20.9209 0.0001035 ***

lactic 1 533.26 533.26 5.1959 0.0310870 *

Residuals 26 2668.38 102.63
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NOTE : The convention used by R is to “split up” the (corrected) regression sum of

squares

SSR = 4994.50861

into sums of squares for each of the three independent variables ACETIC, H2S, and LACTIC,

as they are added sequentially to the model (these are called sequential sums of

squares). The sequential sums of squares for the independent variables add to the

SSR (up to rounding error) for the model, that is,

SSR = 4994.51 = 2314.14 + 2147.11 + 533.26

= SS(ACETIC) + SS(H2S) + SS(LACTIC).

In words,

• SS(ACETIC) is the sum of squares added when compared to a model that includes

only an intercept term.

• SS(H2S) is the sum of squares added when compared to a model that includes an

intercept term and ACETIC.

• SS(LACTIC) is the sum of squares added when compared to a model that includes

an intercept term, ACETIC, and H2S.

11.6 Reduced versus full model testing

SETTING : Consider the (full) multiple regression model

Yi = β0 + β1xi1 + β2xi2 + · · ·+ βkxik + ϵi,

for i = 1, 2, ..., n, where ϵi ∼ iid N (0, σ2), or, equivalently,

Y = Xβ + ϵ,

where ϵ ∼ Nn(0, σ
2I). We now consider the question of whether or not a smaller model

is adequate for the data. That is, can we remove some of the independent variables and

write a smaller model that does just as well at describing the data as the full model?
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REMARK : Besides their ease of interpretation, smaller models confer statistical benefits.

Remember that for each additional independent variable we add to the model, there is an

associated regression parameter that has to be estimated. For each additional regression

parameter that we have to estimate, we lose a degree of freedom for error. Remember

that MSE, our estimator for the error variance σ2 uses the degrees of freedom for error

in its computation. Thus, the fewer error degrees of freedom we have, the less precise

estimate we have of σ2. With an imprecise estimate of σ2, hypothesis tests, confidence

intervals, and prediction intervals are less informative.

TERMINOLOGY : We call

Yi = β0 + β1xi1 + β2xi2 + · · ·+ βgxig + βg+1xi(g+1) + · · ·+ βkxik + ϵi

the full model because it includes all of the independent variables x1, x2, ..., xk. We call

Yi = γ0 + γ1xi1 + γ2xi2 + · · ·+ γgxig + ϵi

a reduced model because it includes only the independent variables x1, x2, ..., xg, where

g < k, that is, independent variables xg+1, xg+2, ..., xk are not included in the reduced

model.

MATRIX NOTATION : In matrix notation, the full model is

Y = Xβ + ϵ,

where

X =


1 x11 x12 · · · x1g x1(g+1) · · · x1k

1 x21 x22 · · · x2g x2(g+1) · · · x2k

...
...

...
. . .

...
...

. . .
...

1 xn1 xn2 · · · xng xn(g+1) · · · xnk

 , β =



β0

β1

β2

...

βg

βg+1

...

βk



.
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In matrix notation, the reduced model is

Y = X0γ + ϵ,

where

X0 =


1 x11 x12 · · · x1g

1 x21 x22 · · · x2g

...
...

...
. . .

...

1 xn1 xn2 · · · xng

 , γ =



γ0

γ1

γ2
...

γg


.

That is, the matrix X0 is simply X with the last (k − g) columns removed.

TESTING PROBLEM : In order to determine whether or not the extra independent

variables xg+1, xg+2, ..., xk should be included in the regression, we are interested in testing

the reduced model versus the full model, that is,

H0 : Y = X0γ + ϵ

versus

Ha : Y = Xβ + ϵ.

In terms of the regression parameters in the full model, we are essentially testing

H0 : βg+1 = βg+2 = · · · = βk = 0

versus

Ha : not H0.

INTUITION : Define the hat matrices for the reduced and full models by M0 =

X0(X
′
0X0)

−1X′
0 and M = X(X′X)−1X′, respectively. We know that

SSRF = Y′(M− n−1J)Y

SSRR = Y′(M0 − n−1J)Y

are the (corrected) regression sum of squares for the full and reduced models, respectively.

Since the regression sum of squares SSR can never decrease by adding independent vari-

ables, it follows that

SSRF = Y′(M− n−1J)Y ≥ Y′(M0 − n−1J)Y = SSRR.
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In the light of this, our intuition should suggest the following:

• If SSRF = Y′(M − n−1J)Y and SSRR = Y′(M0 − n−1J)Y are “close,” then

the additional independent variables xg+1, xg+2, ..., xk do not add too much to the

regression, and the reduced model is adequate at describing the data.

• if SSRF = Y′(M − n−1J)Y and SSRR = Y′(M0 − n−1J)Y are not “close,” then

the additional independent variables xg+1, xg+2, ..., xk add a significant amount to

the regression. This suggests that the reduced model does an insufficient job of

describing the data when compared to the full model.

• We therefore make our decision by examining the size of

SSRF − SSRR = Y′(M− n−1J)Y −Y′(M0 − n−1J)Y = Y′(M−M0)Y.

If this difference is “large,” then the reduced model does not do a good job of

describing the data (when compared to the full model).

• We are assuming that the full model already does a good job of describing the data;

we are trying to find a smaller model that does just as well.

TEST STATISTIC : Theoretical arguments in linear models show that when the reduced

model is correct,

F =
Y′(M−M0)Y/(k − g)

MSEF

∼ F (k − g, n− p),

where p = k + 1 and MSEF is the mean squared error computed from the full model.

Therefore, a level α rejection region for testing

H0 : Y = X0γ + ϵ

versus

Ha : Y = Xβ + ϵ

is given by

RR = {F : F > Fk−g,n−p,α},

where Fk−g,n−p,α is the upper α quantile of the F (k − g, n− p) distribution.
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Example 11.2 (continued). In Example 11.2, consider the full model

Yi = β0 + β1xi1 + β2xi2 + β3xi3 + ϵi.

Suppose we believe that a simple linear regression model with ACETIC (x1) only does just

as well as the full model at describing TASTE. In this case, the reduced model is

Yi = γ0 + γ1xi1 + ϵi.

IMPLEMENTATION : To test the reduced model versus the full model, we first compute

the ANOVA tables from both model fits. The ANOVA table from the full model fit

(using SAS) is

Analysis of Variance: Full Model

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 3 4994.50861 1664.83620 16.22 <.0001

Error 26 2668.37806 102.62993

Corrected Total 29 7662.88667

The ANOVA table from the reduced model fit (using SAS) is

Analysis of Variance: Reduced Model

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 1 2314.14151 2314.14151 12.11 0.0017

Error 28 5348.74515 191.02661

Corrected Total 29 7662.88667

Therefore, the difference in the (corrected) regression sum of squares is

Y′(M−M0)Y = SSRF − SSRR

= 4994.50861− 2314.14151 = 2680.367

and the test statistic is

F =
Y′(M−M0)Y/(k − g)

MSEF

=
2680.367/(3− 1)

102.62993
≈ 13.058.
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A level α = 0.05 rejection region is

RR = {F : F > F2,26,0.05 = 3.369}.

I used the R command qf(0.95,2,26) to compute F2,26,0.05. Because the test statistic

F falls in the rejection region, we reject H0 at the α = 0.05 level. We conclude that the

reduced model does not do as well as the full model in describing TASTE. The probability

value for the test is

p-value = P (F2,26 > 13.058) ≈ 0.0001,

computed using the 1-pf(13.058,2,26) in R.

IMPORTANT : It is interesting to note that the sum of squares

2680.367 = Y′(M−M0)Y

= SS(H2S) + SS(LACTIC) = 2147.11 + 533.26.

That is, we can obtain Y′(M − M0)Y by adding the sequential sum of squares corre-

sponding to the independent variables not in the reduced model.

REMARK : It is possible to implement this test completely in R. Here is the output:

> fit.full<-lm(taste~acetic+h2s+lactic)

> fit.reduced<-lm(taste~acetic)

> anova(fit.reduced,fit.full,test="F")

Model 1: taste ~ acetic

Model 2: taste ~ acetic + h2s + lactic

Res.Df RSS Df Sum of Sq F Pr(>F)

1 28 5348.7

2 26 2668.4 2 2680.4 13.058 0.0001186 ***

ANALYSIS : R’s convention is to produce the F statistic

F =
Y′(M−M0)Y/(k − g)

MSEF

=
2680.367/(3− 1)

102.62993
≈ 13.058

automatically with the corresponding p-value in Pr(>F).
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12 An Introduction to Bayesian Inference

Complementary reading: Chapter 16 (WMS).

12.1 Introduction

THE BIG PICTURE : Statistical inference deals with drawing conclusions, after observ-

ing numerical data, about quantities that are not observed (e.g., model parameters, etc.).

For example, if Y1, Y2, ..., Yn is an iid N (µ, σ2) sample, we may be interested in using the

data Y = y to make statements about the values of µ and σ2, the parameters which

describe the distribution (i.e., the population) from which the data y are taken. We

can make these statements using point estimates, confidence interval estimates, or by

performing hypothesis tests that are pertinent to the problem at hand.

CLASSICAL APPROACH : Up until now, in your exposure to statistics, you have most

likely been taught exclusively the classical or frequentist approach to inference; that

is, you have been taught to regard the model parameter θ (scalar or vector-valued) as a

fixed, but unknown value and to use the data Y = y to make some statement about θ.

This classical approach can be summarized as follows:

1. Treat the parameter θ as a fixed (but unknown) quantity.

2. Assume that Y1, Y2, ..., Yn is a sample (perhaps an iid sample) from the probability

distribution fY (y; θ), where θ ∈ Ω.

3. Observe the data Y = y.

4. Draw inference about θ based on the observed data y.

Example 12.1. In a public-health study, researchers would like to learn about the preva-

lence of HIV in Houston, TX, among heterosexual male intravenous drug users (IVDUs)

not receiving treatment for their addiction. In this study, the goal is to estimate θ, the
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(unknown) proportion of HIV positives in this population. A sample of n individuals will

be obtained from the population and the positive/negative statuses of the individuals

Y1, Y2, ..., Yn will be modeled as iid Bernoulli(θ) observations, where 0 < θ < 1. Under

the classical approach, the prevalence θ is regarded as fixed (but unknown), and the data

Y = y are used to draw inference about θ.

BAYESIAN APPROACH : Instead of treating model parameters as fixed quantities and

modeling only the data Y , the Bayesian sets up a full probability model; that is, a joint

probability distribution for the data Y and the model parameters in θ.

• The model for the θ should be consistent with our prior knowledge of the underlying

scientific problem and of the data collection process. For example, in Example 12.1,

what prior knowledge might we have about θ, the probability of HIV infection?

• In the Bayesian approach, unobserved model parameters are not treated as fixed

quantities; rather, they themselves are modeled as random quantities which vary

according to a probability distribution; this is called the prior distribution.

• The prior distribution reflects (or models) our prior beliefs about θ. The Bayesian

approach allows us to then incorporate this knowledge into the inferential proce-

dure. We now describe the mathematics of how this is done.

12.2 Bayesian posteriors

IMPORTANT : One primary goal of any Bayesian analysis is to obtain the posterior

distribution for θ. The posterior distribution combines our a priori knowledge about θ

and information in the observed data Y . We now present a general algorithm on how to

find the posterior distribution in any problem.

1. Start by choosing a prior distribution for θ, say, θ ∼ g(θ). This distribution

reflects our a priori knowledge regarding θ. We will discuss methods for choosing

g(θ) in due course.
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2. Construct the conditional distribution fY |θ(y|θ). For example, if Y1, Y2, ..., Yn

is an iid sample from fY (yi; θ), the distribution of Y , conditional on θ, is given by

fY |θ(y|θ) =
n∏

i=1

fY (yi; θ).

Note that this is simply L(θ|y), the likelihood function of θ.

3. Find the joint distribution of Y and θ; this is

fY ,θ(y, θ) = fY |θ(y|θ)g(θ).

This follows from the definition of a conditional distribution in STAT 511 (remem-

bering that θ is regarded as a random variable).

4. Compute mY (y), the marginal distribution of the data Y ; this is given by

mY (y) =

∫
θ

fY ,θ(y, θ)dθ.

5. The posterior distribution is the conditional distribution of θ, given Y = y.

Again, from the definition of conditional distributions, the posterior is

g(θ|y) = fY ,θ(y, θ)

mY (y)
=

fY ,θ(y, θ)∫
θ
fY ,θ(y, θ)dθ

.

Under the Bayesian framework, all inference regarding θ (e.g., estimation, testing,

etc.) is conducted using the posterior distribution g(θ|y).

REMARK : The Bayesian approach allows the researcher to incorporate prior information

about θ. Clearly, in many problems, this would be desirable. For example, if we are

talking about HIV infection in Houston, we know that, at least, the prevalence θ should

not be large. In fact, a wide variety of estimates of HIV prevalence have appeared in the

literature, ranging up to about 3 million infected in the United States (this is about one

percent nationwide). If Houston and this male IVDU cohort “follows the pattern” of this

nationwide estimate, taking a Bayesian approach affords the researcher the flexibility to

incorporate this prior information into the analysis. On the other hand, the classical

approach does not allow one to exploit this prior information.
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Example 12.2. In our Houston HIV example (see Example 12.1), suppose that we

model the positive/negative statuses Y1, Y2, ..., Yn, conditional on θ, as iid Bernoulli(θ)

observations, where 0 < θ < 1. Since we are considering HIV prevalence, we know θ

is likely small, so we decide to model θ as a realization from a beta(α, β) distribution,

where α < β; this is the prior distribution. This prior distribution is reasonable since

• the support of a beta random variable is R = (0, 1) which coincides with the

Bernoulli(θ) parameter space; i.e., Ω = {θ : 0 < θ < 1}.

• the beta(α, β) family is very flexible; that is, the pdf can assume many different

shapes by changing α and β; furthermore, taking α < β provides a pdf that is

concentrated closer to θ = 0 than to θ = 1.

• the beta(α, β) distribution turns out to be a conjugate prior for the Bernoulli

likelihood (we’ll explain this later).

Following the previously-mentioned steps, we now derive g(θ|y), the posterior distribution

of θ.

1. The prior distribution for θ is θ ∼ beta(α, β); thus, for 0 < θ < 1,

g(θ) =
Γ(α + β)

Γ(α)Γ(β)
θα−1(1− θ)β−1.

2. The conditional distribution of the data Y , given θ, is, for yi = 0, 1,

fY |θ(y|θ) =
n∏

i=1

fY (yi; θ) =
n∏

i=1

θyi(1− θ)1−yi

= θ
∑n

i=1 yi(1− θ)n−
∑n

i=1 yi = θu(1− θ)n−u,

where the sufficient statistic u =
∑n

i=1 yi.

3. The joint distribution of Y and θ, for values of yi = 0, 1 and 0 < θ < 1, is

fY ,θ(y, θ) = fY |θ(y|θ)g(θ)

= θu(1− θ)n−u × Γ(α + β)

Γ(α)Γ(β)
θα−1(1− θ)β−1

=
Γ(α + β)

Γ(α)Γ(β)
θu+α−1(1− θ)n+β−u−1.
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4. The marginal distribution of the data Y , for yi = 0, 1, is

mY (y) =

∫
θ

fY ,θ(y, θ)dθ =

∫ 1

0

Γ(α + β)

Γ(α)Γ(β)
θu+α−1(1− θ)n+β−u−1dθ

=
Γ(α + β)

Γ(α)Γ(β)

∫ 1

0

θu+α−1(1− θ)n+β−u−1︸ ︷︷ ︸
beta(u+α,n+β−u) kernel

dθ

=
Γ(α + β)

Γ(α)Γ(β)

Γ(u+ α)Γ(n+ β − u)

Γ(n+ α + β)
,

where u =
∑n

i=1 yi.

5. The posterior distribution g(θ|y) is, for 0 < θ < 1, given by

g(θ|y) = fY ,θ(y, θ)

mY (y)
=

Γ(α+β)
Γ(α)Γ(β)

θu+α−1(1− θ)n+β−u−1

Γ(α+β)
Γ(α)Γ(β)

Γ(u+α)Γ(n+β−u)
Γ(n+α+β)

=
Γ(n+ α + β)

Γ(u+ α)Γ(n+ β − u)
θu+α−1(1− θ)n+β−u−1.

Note that g(θ|y) is the beta(u+α, n+β−u) pdf; that is, the posterior distribution

of θ, given the data y, is beta(u+ α, n+ β − u), where u =
∑n

i=1 yi.

UPDATE : We started by modeling the unknown prevalence θ as a beta(α, β) random

variable, we then observed the data y from the study, and we finally updated our prior

beliefs, based on the data y, to arrive at the posterior distribution of θ. Schematically,

θ ∼ beta(α, β)︸ ︷︷ ︸
prior distribution

=⇒ Observe data y =⇒ θ ∼ beta(u+ α, n+ β − u)︸ ︷︷ ︸
posterior distribution

.

We see that the posterior distribution depends on (a) the prior distribution through the

values of α and β, and on (b) the data y through the sufficient statistic u =
∑n

i=1 yi. It

is also interesting to note that both the prior and posterior distributions are members of

the beta family (this is due to conjugacy).

ILLUSTRATION : In our Houston HIV example, suppose that n = 100; that is, we

observe 100 IVDU subjects, and that our prior distribution is θ ∼ beta(1, 19); that is, a

beta distribution with α = 1 and β = 19. This may be a reasonable prior distribution

since the prior mean E(θ) = 0.05, which is “small,” consistent (at least) with our prior
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Figure 12.1: Binomial-beta Bayesian prior and posteriors in Example 12.2. Upper left:

θ ∼ beta(1, 19), prior; Upper right: Posterior distribution of θ when u = 1, beta(2, 118);

Lower left: Posterior distribution of θ when u = 5, beta(6, 114); Lower right: Posterior

distribution of θ when u = 15, beta(16, 104). The sufficient statistic is u =
∑100

i=1 yi.

belief that θ is likely not large. In Figure 12.1, we depict this prior distribution of θ

(upper left) and posterior distributions based on three different values of u =
∑100

i=1 yi.

Consider the following table, which describes three possible realizations of this study

(that is, three different values of u).

Prior, g(θ) Observed data Posterior, g(θ|y)

beta(1, 19) u = 1 beta(2, 118)

beta(1, 19) u = 5 beta(6, 114)

beta(1, 19) u = 15 beta(16, 104)
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NOTE : Figure 12.1 illustrates the effect that the observed data y (through the sufficient

statistic) can have on the posterior distribution g(θ|y). For u = 1, the posterior is left-

shifted from the prior. For u = 5, the posterior remains located in a similar position as

the prior, although the variability has been reduced. For u = 15, the posterior is notably

right-shifted from the prior. �

Example 12.3. An animal biologist is interested in modeling the number of rat pups

per mother, Y , for Rattus rattus, commonly known as the “black rat.” Suppose that

Y1, Y2, ..., Yn denote litter sizes for a sample of n rat mothers and assume that Y1, Y2, ..., Yn,

conditional on θ, is an iid sample from a Poisson distribution with mean θ. In turn, θ is

modeled as a gamma(α, β) random variable. A Bayesian approach is taken to exploit the

information from previous rat studies; to be specific, it is known that the mean number

of pups per litter is around 5-7, but can be as high as 20. A gamma prior distribution is

reasonable since

• the support of a gamma random variable is R = (0,∞) which coincides with the

Poisson(θ) parameter space; i.e., Ω = {θ : θ > 0}.

• the gamma(α, β) family is very flexible; that is, the pdf can assume many different

shapes by changing α and β; right skewed is consistent with prior knowledge.

• the gamma(α, β) distribution is a conjugate prior for the Poisson likelihood.

We derive g(θ|y), the posterior distribution of θ, following the steps mentioned previously.

1. The prior distribution for θ is θ ∼ gamma(α, β); thus, for θ > 0,

g(θ) =
1

Γ(α)βα
θα−1e−θ/β.

2. The conditional distribution of the data Y , given θ, is, for yi = 0, 1, ...,

fY |θ(y|θ) =
n∏

i=1

fY (yi; θ) =
n∏

i=1

θyie−θ

yi!

=
θ
∑n

i=1 yie−nθ∏n
i=1 yi!

=
θue−nθ∏n
i=1 yi!

,

where the sufficient statistic u =
∑n

i=1 yi.
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3. The joint distribution of Y and θ, for values of yi = 0, 1, ..., and θ > 0, is

fY ,θ(y, θ) = fY |θ(y|θ)g(θ)

=
θue−nθ∏n
i=1 yi!

× 1

Γ(α)βα
θα−1e−θ/β

=
1

Γ(α)βα
∏n

i=1 yi!
θu+α−1e−θ/(n+1/β)−1

.

4. The marginal distribution of the data Y , for yi = 0, 1, ..., is

mY (y) =

∫
θ

fY ,θ(y, θ)dθ =

∫ ∞

0

1

Γ(α)βα
∏n

i=1 yi!
θu+α−1e−θ/(n+1/β)−1

dθ

=
1

Γ(α)βα
∏n

i=1 yi!

∫ ∞

0

θu+α−1e−θ/(n+1/β)−1︸ ︷︷ ︸
gamma[u+α,(n+1/β)−1] kernel

dθ

=
1

Γ(α)βα
∏n

i=1 yi!
Γ(u+ α)

(
1

n+ 1/β

)u+α

,

where u =
∑n

i=1 yi.

5. The posterior distribution g(θ|y) is, for θ > 0, given by

g(θ|y) = fY ,θ(y, θ)

mY (y)
=

1
Γ(α)βα

∏n
i=1 yi!

θu+α−1e−θ/(n+1/β)−1

1
Γ(α)βα

∏n
i=1 yi!

Γ(u+ α)
(

1
n+1/β

)u+α

=
1

Γ(u+ α)
(

1
n+1/β

)u+α θ
u+α−1e−θ/(n+1/β)−1

.

Note that g(θ|y) is the gamma[u + α, (n + 1/β)−1] pdf; that is, the posterior dis-

tribution of θ, given the data y, is gamma[u+ α, (n+ 1/β)−1], where u =
∑n

i=1 yi.

UPDATE : We started by modeling the unknown mean θ as a gamma(α, β) random

variable, we then observed the data y from the study, and we finally updated our prior

beliefs, based on the data y, to arrive at the posterior distribution of θ. Schematically,

θ ∼ gamma(α, β)︸ ︷︷ ︸
prior distribution

=⇒ Observe data y =⇒ θ ∼ gamma[u+ α, (n+ 1/β)−1]︸ ︷︷ ︸
posterior distribution

.

We see that the posterior distribution depends on (a) the prior distribution through the

values of α and β, and on (b) the data y through the sufficient statistic u =
∑n

i=1 yi. It

PAGE 115



CHAPTER 12 STAT 513, J. TEBBS

is also interesting to note that both the prior and posterior distributions are members of

the gamma family (due to conjugacy).

ILLUSTRATION : In our rat pup example, suppose that n = 10; that is, we observe the

litter sizes of 10 rat mothers, and that our prior distribution is θ ∼ gamma(2, 3); that is, a

gamma distribution with α = 2 and β = 3. These choices of α and β provide a prior mean

E(θ) = 6, which is consistent with our prior knowledge. In Figure 12.2, we depict this

prior distribution (upper left) and posterior distributions based on three different values

of u =
∑10

i=1 yi. Consider the following table, which describes three possible realizations

of this study (that is, three different values of u).

Prior, g(θ) Observed data Posterior, g(θ|y)

gamma(2, 3) u = 32 gamma(34, 0.0968)

gamma(2, 3) u = 57 gamma(59, 0.0968)

gamma(2, 3) u = 90 gamma(92, 0.0968)

NOTE : Figure 12.2 illustrates the effect that the observed data y (through the sufficient

statistic u) can have on the posterior distribution g(θ|y). Similarly to Example 12.2, we

see the posterior distributions are much less variable than the prior, with central locations

depending heavily on the observed data y. �

REMARK : We have presented a 5-step algorithm to construct the posterior distribution

of θ, given the data Y = y. It turns out that Step 4, the step that deals with deriving

the marginal distribution mY (y), is not really needed. In addition, when a sufficient

statistic U = U(Y ) is available, the posterior calculation becomes even easier. Starting

with Step 3, we have the joint distribution of Y and θ, given by

fY ,θ(y, θ) = fY |θ(y|θ)g(θ).

Suppose that U = U(Y ) is a sufficient statistic for θ. By the Factorization Theorem, we

know that the likelihood function fY |θ(y|θ) can be written as

fY |θ(y|θ) = k1(u, θ)k2(y),
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Figure 12.2: Poisson-gamma Bayesian prior and posteriors in Example 12.3. Up-

per left: θ ∼ gamma(2, 3), prior; Upper right: Posterior distribution of θ when

u = 32, gamma(34, 0.0968); Lower left: Posterior distribution of θ when u =

57, gamma(59, 0.0968); Lower right: Posterior distribution of θ when u = 90,

gamma(92, 0.0968). The sufficient statistic is u =
∑10

i=1 yi.

where k1 and k2 are both nonnegative functions; k1 depends on θ and the sufficient

statistic u, and k2 is free of θ. Therefore, the joint distribution of Y and θ can be written

as

fY ,θ(y, θ) = k1(u, θ)g(θ)k2(y).

Therefore, the posterior distribution satisfies

g(θ|y) = fY ,θ(y, θ)

mY (y)
=

k1(u, θ)g(θ)k2(y)

mY (y)
∝ k1(u, θ)g(θ).

This result should convince us of two important facts.
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• The posterior distribution g(θ|y) is always a function of the sufficient statistic U .

• Because the posterior distribution g(θ|y) is a bona fide density function (remember,

it is regarded as a function of θ), the factor k2(y)/mY (y), which is free of θ, is simply

the “right constant” that makes g(θ|y) integrate to 1.

In the light of these two findings, we can present a “shortcut” algorithm to construct the

posterior distribution g(θ|y) when a sufficient statistic U exists. Note that there is no

harm in denoting the posterior distribution by g(θ|u) since it must depend on u.

1. Start by choosing a prior distribution for θ, say, θ ∼ g(θ). This step is unchanged

from before.

2. Find the conditional distribution of the sufficient statistic U , given θ; denote this

distribution by fU |θ(u|θ). This step should be simple if you remember the distribu-

tion of sufficient statistics (you can quickly derive this distribution otherwise).

3. Write the joint distribution of U and θ; this is

fU,θ(u, θ) = fU |θ(u|θ)g(θ).

4. The posterior distribution g(θ|u) is proportional to the joint distribution fU,θ(u, θ),

that is,

g(θ|u) ∝ fU,θ(u, θ) = fU |θ(u|θ)g(θ).

Therefore, all you have to do is examine fU |θ(u|θ)g(θ) and classify the part of this

function that depends on θ as the kernel of a well-known distribution (e.g., beta,

gamma, normal, etc.). Because the posterior g(θ|u) is proportional to this kernel,

the posterior distribution must match the distribution identified by the kernel.

Example 12.4. We now illustrate this “shortcut” posterior construction method us-

ing (a) the binomial-beta model in Example 12.2 and (b) the Poisson-gamma model in

Example 12.3.
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• In Example 12.2, conditional of θ, Y1, Y2, ..., Yn is an iid sample from a Bernoulli

distribution with mean θ. The sufficient statistic is

U =
n∑

i=1

Yi ∼ b(n, θ)

so that

fU |θ(u|θ) =
(
n

u

)
θu(1− θ)n−u,

for u = 0, 1, ..., n. In turn, θ follows a beta(α, β) prior distribution. Therefore,

g(θ|u) ∝ fU |θ(u|θ)g(θ) =

(
n

u

)
θu(1− θ)n−u × Γ(α + β)

Γ(α)Γ(β)
θα−1(1− θ)β−1

=

(
n

u

)
Γ(α + β)

Γ(α)Γ(β)
θu+α−1(1− θ)n+β−u−1︸ ︷︷ ︸
beta(u+α,n+β−u) kernel

.

We can immediately deduce that the posterior distribution of θ, given the data

(through the sufficient statistic u), is beta with parameters u + α and n + β − u.

This was our same finding in Example 12.2.

• In Example 12.3, conditional of θ, Y1, Y2, ..., Yn is an iid sample from a Poisson

distribution with mean θ. The sufficient statistic is

U =
n∑

i=1

Yi ∼ Poisson(nθ)

so that

fU |θ(u|θ) =
(nθ)ue−nθ

u!
,

for u = 0, 1, ...,. In turn, θ follows a gamma(α, β) prior distribution. Therefore,

g(θ|u) ∝ fU |θ(u|θ)g(θ) =
(nθ)ue−nθ

u!
× 1

Γ(α)βα
θα−1e−θ/β

=
nu

u!Γ(α)βα
θu+α−1e−θ/(n+1/β)−1︸ ︷︷ ︸

gamma[u+α,(n+1/β)−1] kernel

.

We can immediately deduce that the posterior distribution of θ, given the data

(through the sufficient statistic u), is gamma with parameters u+α and (n+1/β)−1.

This was our same finding in Example 12.3.
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12.3 Prior model selection

DISCUSSION : In Example 12.3, recall that we made the following assumptions:

• Y1, Y2, ..., Yn are iid Poisson(θ).

• The prior distribution for θ is θ ∼ gamma(α, β).

• Recall also that the posterior distribution of θ, given the data y, is also gamma

(but with “updated” shape and scale parameters).

Suppose that, in Example 12.3, we instead took θ to have a N (µ0, σ
2
0) prior distribution,

where both µ0 and σ2
0 are known. For this choice, it is easy to show that the joint

distribution of Y and θ is, for values of yi = 0, 1, ..., and for θ ∈ R, given by

fY ,θ(y, θ) =
θue−[nθ+(θ−µ0)2/2σ2

0 ]

√
2πσ0

∏n
i=1 yi!

,

where the sufficient statistic u =
∑n

i=1 yi. The marginal distribution of the data Y is

mY (y) =

∫
θ

fY ,θ(y, θ)dθ =

∫ ∞

−∞

θue−[nθ+(θ−µ0)2/2σ2
0 ]

√
2πσ0

∏n
i=1 yi!

dθ.

Unfortunately, this marginal distribution does not exist in closed form (we can’t get a

closed form antiderivative of the integrand above). Therefore, the posterior distribution

will not exist in closed form either.

QUESTION : In Example 12.3, why is it that when θ ∼ gamma(α, β), the posterior

g(θ|y) exists in closed form (and is a gamma pdf), but when θ ∼ N (µ0, σ
2
0), it does not?

12.3.1 Conjugate priors

TERMINOLOGY : Let F = {fY (y; θ); θ ∈ Ω} denote a class of probability density (mass)

functions indexed by the parameter θ. A class G of prior distributions is said to be a

conjugate family for F if the posterior distribution g(θ|y) ∈ G, for all fY (y; θ) ∈ F

and for all priors g(θ) ∈ G.
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Table 12.1: Some common conjugate families.

Family Parameter Conjugate family Prior hyperparameters

binomial(n, p) p beta(α, β) α, β

Poisson(λ) λ gamma(α, β) α, β

N (θ, σ2
0) θ N (µ, τ 2) µ, τ 2

N (µ0, σ
2) σ2 Inverse gamma(α, β) α, β

exponential(1/θ) θ gamma(α, β) α, β

multinomial(n,p) p Dirichlet(α1, α2, ..., αk+1) α1, α2, ..., αk+1

TERMINOLOGY : The parameters that index the prior distribution are called hyperpa-

rameters. For example, the beta prior has two hyperparameters, α and β. The Bayesian

approach we have outlined so far (often called the “classical Bayesian approach”) requires

that the researcher specifies the values of all hyperparameters. There are more advanced

Bayesian approaches that do not require prior model hyperparameter selection.

CONJUGACY : The basic justification for the use of conjugate prior distributions is that

they simplify the computations and that one can write out a closed-form expression for the

posterior distribution g(θ|y). Thus, in single-parameter problems, conjugate priors are

chosen often for convenience. However, in multiple-parameter problems, conjugate priors

may not exist. Conceptually, there is nothing to prevent one from using a nonconjugate

prior in the general Bayesian approach. In this case, although it may not be possible to

write out a closed-form expression for g(θ|y), it is generally possible to approximate it

numerically using Bayesian simulation techniques.

12.3.2 Noninformative priors

TERMINOLOGY : When there is a general lack of a priori knowledge about the param-

eters of interest, prior models can be difficult to choose. It might also be desired for the

prior distribution g(θ) to play a minimal role in determining the posterior distribution
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g(θ|y), and, hence, the resulting inference. Such distributions are called noninforma-

tive priors; they are also referred to as “vague,” “diffuse,” or “flat” priors. The rationale

for using a noninformative prior is to “let the data speak for themselves” and to have

the prior distribution contribute only minimally.

Example 12.5. Consider the following two research situations:

• A researcher is interested in reporting an estimate for p, the proportion of individ-

uals who experience an allergic reaction to a new drug. Since the drug is new, we

might have a genuine lack of knowledge as to where (the distribution of) p is likely

located. In this case, one could noninformatively take p ∼ beta(1, 1); that is, a beta

prior with parameters α = β = 1. Recall that the beta(1, 1) distribution is the same

as a U(0, 1) distribution. This distribution is flat over Ω = {p : 0 < p < 1}, so its

contribution to the posterior g(p|y) will be minimal.

• A medical investigation is undertaken to learn about the relationship between brain

lesion frequency for patients with advanced multiple sclerosis. A Poisson(λ) model

is assumed for Y , the number of brain lesions per subject. A largely noninformative

prior for λ is a gamma(α = 1/2, β = 100) distribution; this distribution is relatively

flat over Ω = {λ : λ > 0}, so it will not have a large effect in determining the

posterior g(λ|y). �

JEFFREYS’ PRIORS : One approach used to elicit a noninformative prior distribution

is due to Jeffreys, whose “principle” leads to specifying g(θ) ∝ [J(θ)]1/2, where

J(θ) = −E

[
∂2 log fY (Y ; θ)

∂θ2

∣∣∣∣∣θ
]

and fY (y; θ) denotes the conditional pdf (pmf) for Y , given θ.

Example 12.6. Suppose that Y1, Y2, ..., Yn, conditional on θ, are iid Bernoulli(θ). Derive

Jeffreys’ prior.

Solution. The probability mass function for Y ∼ Bernoulli(θ), for y = 0, 1, is given by

fY (y; θ) = θy(1− θ)1−y, and thus,

log fY (y; θ) = y log θ + (1− y) log(1− θ).

PAGE 122



CHAPTER 12 STAT 513, J. TEBBS

The first and second derivatives of log fY (y; θ) are

∂ log fY (y; θ)

∂θ
=

y

θ
− 1− y

1− θ

and
∂2 log fY (y; θ)

∂θ2
= − y

θ2
− 1− y

(1− θ)2
.

Thus,

J(θ) = −E

[
∂2 log fY (Y ; θ)

∂θ2

∣∣∣∣∣θ
]

= E

[
Y

θ2
+

1− Y

(1− θ)2

]
=

1

θ
+

1

(1− θ)
=

1

θ(1− θ)
.

Thus, Jeffreys’ prior is taken as

g(θ) ∝ [J(θ)]1/2 =

[
1

θ(1− θ)

]1/2
= θα−1(1− θ)β−1,

where α = β = 1/2. Of course, we recognize this as the beta(1/2,1/2) kernel; thus, the

beta(1/2,1/2) distribution is the Jeffreys’ noninformative prior for θ. �

BAYESIAN CRITICISMS : Some classical (i.e., non-Bayesian) statisticians seem to be

bothered by the fact that the prior distribution for the parameter θ needs to specified

beforehand by the researcher.

• Of course, classical statisticians are fine with choosing a model for Y , but, for some

reason, they cringe at the thought of adding an additional model for θ. I would

argue that in almost every real problem, the researcher will have some information

regarding θ that can be conveniently included in the statistical model.

• Furthermore, if the amount of data observed is large; that is, large enough for the

likelihood to dominate the prior model, the prior’s contribution will be small. If

this occurs, then the posterior distribution is likely not to be affected too greatly

by the chosen prior model, unless the prior is just terribly misspecified.

• More advanced modeling problems, tackled from a non-Bayesian point of view, can

prove to be very difficult and very messy. These problems are often times much

easier addressed by attacking them from a Bayesian point of view. Usually, much

more computation is needed (to simulate posteriors), but this is hardly a big deal.
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12.4 Point estimation

REMARK : The Bayesian is primarily interested in the posterior distribution g(θ|y) be-

cause, by combining the prior model and information from the likelihood function, the

posterior distribution contains all the information regarding θ. However, in practice,

numerical summaries of the posterior distribution g(θ|y) are often desired.

POSTERIOR POINT ESTIMATION : As in the classical framework, we now consider

constructing a point estimator for θ, focusing on measures of central location. To describe

the location of the posterior distribution g(θ|y), the commonly-used numerical summaries

of location are the mean, mode, and median.

• The posterior mean of θ is given by

θ̂B = E(θ|Y = y) =

∫
θ

θg(θ|y)dθ.

That is, θ̂B is the mean of θ, computed using the posterior distribution.

• The posterior mode of θ is given by

θ̂∗B = argmax
θ

g(θ|y).

That is, θ̂∗B is the value of θ that maximizes the function g(θ|y).

• The posterior median θ̃B solves the equation

0.5 = P (θ ≤ θ̃B|y) =
∫ θ̃B

−∞
g(θ|y)dθ.

That is, θ̃B the 50th percentile of the posterior distribution.

Example 12.7. Recall Example 12.2, where we considered the prevalence of HIV

infection among male IVDU subjects. In that example, the prior distribution was

θ ∼ beta(1, 19). Based on 100 male positive/negative statuses, modeled as an iid

Bernoulli sample, we found the posterior distribution to be θ ∼ beta(u + 1, 119 − u),
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Figure 12.3: Binomial-beta Bayesian prior and posteriors in Example 12.2. Upper left:

θ ∼ beta(1, 19), prior; Upper right: Posterior distribution of θ when u = 1, beta(2, 118);

Lower left: Posterior distribution of θ when u = 5, beta(6, 114); Lower right: Posterior

distribution of θ when u = 15, beta(16, 104). The sufficient statistic is u =
∑100

i=1 yi.

where u =
∑100

i=1 yi denotes the total number of positives among the 100 male subjects.

The table below gives the values of the posterior mean (θ̂B), mode (θ̂∗B), and median (θ̃B)

for three different values of u. The figure above depicts the three posterior distributions.

Prior, g(θ) Data Posterior, g(θ|u) θ̂B θ̂∗B θ̃B MLE

beta(1, 19) u = 1 beta(2, 118) 0.0167 0.0085 0.0141 0.0100

beta(1, 19) u = 5 beta(6, 114) 0.0500 0.0424 0.0475 0.0500

beta(1, 19) u = 15 beta(16, 104) 0.1333 0.1271 0.1313 0.1500
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COMPUTATIONS : To compute the posterior mean θ̂B, note that the posterior distri-

bution is θ ∼ beta(u+ 1, 119− u) so that

θ̂B = E(θ|Y = y) =
u+ 1

120
.

To compute the posterior mode θ̂∗B, we need to find the value of θ that maximizes the

beta(u+ 1, 119− u) posterior density; i.e., the value of θ that maximizes

g(θ|y) = Γ(120)

Γ(u+ 1)Γ(120− u)
θu(1− θ)118−u,

for fixed u. Because the log function is increasing, the value of θ that maximizes g(θ|y)

is the same value of θ that maximizes

log g(θ|y) = log Γ(120)− log Γ(u+ 1)− log Γ(120− u) + u log θ + (118− u) log(1− θ).

To find the maximizer, we set the derivative of the log posterior equal to zero and solve

for θ; that is, we solve the following equation for θ:

0
set
=

∂

∂θ
log g(θ|y) = u

θ
− 118− u

1− θ
=⇒ θ =

u

118
≡ θ̂∗B.

To find the posterior median θ̃B, we solve

0.5 = P (θ ≤ θ̃B|y) =
∫ θ̃B

0

Γ(120)

Γ(u+ 1)Γ(120− u)
θu(1− θ)118−udθ,

for θ̃B. This is just the 50th percentile of the beta(u+1, 119−u) distribution, which can

be easily found using software (e.g., using the qbeta function in R).

REMARK : In the general binomial-beta Bayesian setting (outlined in Example 12.2),

since the posterior distribution θ ∼ beta(u + α, n− u + β), the posterior mean is easily

computed; that is,

θ̂B ≡ E(θ|Y = y) =

∫ 1

0

θg(θ|y)dθ =
u+ α

n+ α+ β
.

It is insightful to note that we can express θ̂B as

θ̂B =
u+ α

n+ α + β
=

(
n

n+ α+ β

)(u
n

)
+

(
α + β

n+ α + β

)(
α

α + β

)
,

PAGE 126



CHAPTER 12 STAT 513, J. TEBBS

a weighted average of the maximum likelihood estimate θ̂ = u/n and the prior mean

α/(α + β), where the weights are n/(n + α + β) and (α + β)/(n + α + β), respectively.

Note that the prior mean receives less weight as n increases. This makes sense intuitively;

namely, if we have a larger sample size, we should weight the maximum likelihood esti-

mate more and the prior mean less. On the other hand, if n is small, then the maximum

likelihood estimate may not possess enough information about θ; in this case, we would

want to weigh our prior beliefs more heavily.

12.5 Interval estimation

DIATRIBE : From a classical point of view, we have, at great length (mostly in STAT

512/513) discussed the construction and interpretation of confidence intervals.

• Recall that a 100(1−α) percent confidence interval for θ includes this fixed param-

eter 100(1 − α) percent of the time in repeated sampling. The word “confidence”

is carefully (perplexingly?) chosen so that we don’t say “the probability that our

computed interval contains θ is 1− α.”

• The classical statistician regards θ as a fixed constant. Therefore, if the observed

confidence interval is (4.12, 12.39), say, it does not make sense to even think about

P (4.12 < θ < 12.39) since the “event” inside the probability symbol does not

contain anything random.

• Instead, we remember that if we were to repeat the experiment or study over and

over again, each time under identical conditions, our interval estimation procedure

would produce intervals that contain θ approximately 100(1 − α) percent of the

time, and the computed interval we obtained (from the actual study) is just an

example of one of these potentially observed intervals.

• Personally, I think this notion is rather confusing, since, in practice (that is, with

real data), we only get to see the one observed confidence interval, not a large

number of them. In addition, novice statistics students (and even experienced sci-
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entists) find the notion of “repeated sampling,” inherent to the notion of a sampling

distribution, to be both frustrating and unintuitive. Unfortunately, the correct in-

terpretation of confidence intervals relies on this notion.

• For what it is worth, I find probability values (p-values), which are also based on

the notion of repeated sampling, to be equally as confusing.

RECALL: Bayesian point estimators are often a measure of central tendency of the

posterior distribution g(θ|y), such as a mean, median, mode, or perhaps even some other

functional. It is also important to report posterior uncertainty. This can be done by using

credible intervals (also known as posterior probability intervals). Such intervals

are the Bayesian analogues of classical (frequentist) confidence intervals. However, their

interpretation, as we will see now, is quite different.

CREDIBLE INTERVALS : If g(θ|y) is the posterior distribution of θ, given the data

Y = y, then for any interval A = (θL, θU), the credible probability of A is

P (θL < θ < θU |y) =
∫ θU

θL

g(θ|y)dθ.

If g(θ|y) is a discrete posterior distribution, we simply replace the integral with a sum.

If P (θL < θ < θU |y) = 1 − α, then we call (θL, θU) a 100(1 − α) percent credible

interval. We interpret a 100(1− α) percent credible interval A = (θL, θU) as follows:

“The probability that θ is between θL and θU is 1− α.”

This is true since g(θ|y) is the (updated) probability distribution of θ given the data y.

Note that the interpretation of a Bayesian credible interval is far more straightforward

than the interpretation of a classical confidence interval. However, the ease of interpreta-

tion comes with additional assumptions. The Bayesian model requires the specification

of a prior distribution g(θ).

CONSTRUCTION : A 100(1 − α) percent credible interval results when the credible

probability of A = (θL, θU) is 1− α. Here are two popular ways to construct 100(1− α)

percent credible intervals:
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• Simply take the endpoints of A to be the lower and upper α/2 quantiles of g(θ|y);

this is called an equal tail (ET) credible interval.

• Take A to be the region of values that contain 100(1− α) percent of the posterior

probability in such a way that the posterior density g(θ|y) within the region A is

never lower than outside A; this is called a highest posterior density (HPD)

credible interval.

REMARK : Intuitively, if g(θ|y) is unimodal and symmetric, then the ET and HPD

intervals are the same interval. The ET interval is often preferred in practice because it

is easier to compute.

Example 12.8. Recall Example 12.2, where we considered the prevalence of HIV

infection among male IVDU subjects. In that example, the prior distribution was

θ ∼ beta(1, 19). Based on 100 male positive/negative statuses, modeled as an iid

Bernoulli sample, we found the posterior distribution to be θ ∼ beta(u + 1, 119 − u),

where u =
∑100

i=1 yi. The table below gives the 95 percent equal tail (ET) credible inter-

val and the large-sample 95 percent Wald interval for three different values of u. The

figure on the next page depicts the three posterior distributions.

Prior, g(θ) Data Posterior, g(θ|u) 95% ET interval 95% Wald interval

beta(1, 19) u = 1 beta(2, 118) (0.0020, 0.0459) (−0.0010, 0.0295)

beta(1, 19) u = 5 beta(6, 114) (0.0187, 0.0953) (0.0073, 0.0927)

beta(1, 19) u = 15 beta(16, 104) (0.0788, 0.1994) (0.0800, 0.2200)

COMPUTATIONS : Credible intervals come directly from the posterior distribution

g(θ|u). Because the posterior distribution of θ ∼ beta(u + 1, 119 − u), to compute

the 95 percent equal tail (ET) interval, we need to find the values of θL and θU that

satisfy the following integral equations:

0.025 = P (θ < θL|u) =
∫ θL

0

g(θ|u)dθ =

∫ θL

0

Γ(120)

Γ(u+ 1)Γ(120− u)
θu(1− θ)118−u︸ ︷︷ ︸

beta(u+1,119−u) density

dθ
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Figure 12.4: Binomial-beta Bayesian prior and posteriors in Example 12.2. Upper left:

θ ∼ beta(1, 19), prior; Upper right: Posterior distribution of θ when u = 1, beta(2, 118);

Lower left: Posterior distribution of θ when u = 5, beta(6, 114); Lower right: Posterior

distribution of θ when u = 15, beta(16, 104). The sufficient statistic is u =
∑100

i=1 yi.

and

0.025 = P (θ > θU |u) =
∫ 1

θU

g(θ|u)dθ =

∫ 1

θU

Γ(120)

Γ(u+ 1)Γ(120− u)
θu(1− θ)118−udθ,

respectively. In other words, we need to find the lower and upper 0.025 quantiles of the

beta(u+1, 119−u) distribution. Computing these quantiles is easily done using software

(e.g., using the qbeta function in R). The classical 95 percent Wald interval for θ is

computed as usual; i.e.,

θ̂ ± 1.96

√
θ̂(1− θ̂)

100
.
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• Perhaps the most glaring deficiency with the classical Wald interval is that its

lower endpoint can be negative; that is, the interval itself can extend outside the

parameter space (0, 1). On the other hand, Bayesian credible intervals can never

extend beyond the parameter space because the posterior distribution is guaranteed

to never fall outside of it.

• The prior information “pulls” the ET interval in the direction of the prior mean,

here, E(p) = 0.05. This is evident by looking at the ET intervals based on u = 1,

which is pulled to the right, and u = 15, which is pulled to the left.

12.6 Hypothesis tests

REMARK : On an introductory level, hypothesis testing is far less formal within a

Bayesian framework than it is within the classical framework. In fact, many Bayesians do

not even advocate their use, and, instead, simply summarize the posterior distributions

(e.g., with point/interval estimates) without applying a formal test. Thus, our discussion

of hypothesis tests will not be as rigorous as it was in a classical context (Chapter 10).

SETTING : Suppose that Y1, Y2, ..., Yn is an iid sample from fY (y; θ), where the prior

distribution θ ∼ g(θ). Within a Bayesian framework, suppose that we would like to test

the hypothesis

H0 : θ ∈ Ω0

versus

Ha : θ ∈ Ωa,

where Ω = Ω0 ∪Ωa. As we have already learned, for the Bayesian, all inference is carried

out using the posterior distribution g(θ|y). This is a valid probability distribution, so

the probabilities

P (H0 is true|y) = P (θ ∈ Ω0|y) =
∫
Ω0

g(θ|y)dθ

and

P (Ha is true|y) = P (θ ∈ Ωa|y) =
∫
Ωa

g(θ|y)dθ
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make perfect sense and can be computed exactly. As for a decision rule, the Bayesian

can choose to reject H0 when

P (θ ∈ Ω0|y) < P (θ ∈ Ωa|y);

i.e., reject H0 when P (θ ∈ Ω0|y) < 0.5. If one wants to heavily guard against erroneously

rejecting H0, one can choose this threshold probability to be very small, say, 0.1 or 0.01.

REMARK : It is worth noting that statements like P (H0 is true|y) and P (Ha is true|y)

make no sense to the classical statistician because θ is a nonrandom quantity. Taking

this perspective, the classical statistician is interested in using tests with good size and

power properties. On the other hand, concepts like “Type I Error probability” (i.e., size)

and power do not make sense to the Bayesian.

Example 12.9. Recall Example 12.2, where we considered the prevalence of HIV

infection among male IVDU subjects. In that example, the prior distribution was

θ ∼ beta(1, 19). Based on 100 positive/negative statuses, modeled as an iid Bernoulli

sample, we found the posterior distribution to be θ ∼ beta(u + 1, 119 − u), where

u =
∑100

i=1 yi. Suppose that we would like to test H0 : θ ≤ 0.05 versus Ha : θ > 0.05. The

table below gives the posterior probabilities P (θ ≤ 0.05|u) for three different values of u.

Prior, g(θ) Data Posterior, g(θ|u) P (θ ≤ 0.05|u)

beta(1, 19) u = 1 beta(2, 118) 0.9837

beta(1, 19) u = 5 beta(6, 114) 0.5502

beta(1, 19) u = 15 beta(16, 104) 0.0003

COMPUTATIONS : The posterior probability P (θ ≤ 0.05|u) is computed using the pos-

terior distribution g(θ|u). Because the posterior distribution of θ ∼ beta(u+1, 119− u),

P (θ ≤ 0.05|u) =
∫ 0.05

0

Γ(120)

Γ(u+ 1)Γ(120− u)
θu(1− θ)118−u︸ ︷︷ ︸

beta(u+1,119−u) density

dθ,

which, again, is easily computed using software (e.g., using the pbeta function in R).
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13 Survival Analysis

13.1 Introduction

INTRODUCTION : The statistical analysis of lifetime data is important in many areas,

including biomedical applications (e.g., clinical trials, etc.), engineering, and actuarial

science. The term “lifetime” means “time to event,” where an event may refer to death,

machine/part failure, insurance claim, natural disaster, eradication of infection, etc.

• In chronic disease clinical trials; e.g., trials involving cancer, AIDS, diabetes, car-

diovascular disease, etc., the primary endpoint (variable) of interest may be time

to death, time to relapse of disease, etc. For such trials, we are usually interested

in comparing the distribution of the time to event among competing treatments.

• Typically, clinical trials occur over a finite period of time; therefore, the time to

event is not measured on all patients in the study. This results in what is referred

to as censored data. Also, since patients generally enter a clinical trial at different

calendar times (staggered entry), the amount of follow-up time varies for different

individuals.

• The combination of censoring and staggered entry creates challenges in the analysis

of such data that do not allow standard statistical techniques to be used. This area

of (bio)statistics is called survival analysis.

Example 13.1. A randomized clinical trial involves 64 cancer patients with severe

aplastic anemia. This condition occurs when an individual’s bone marrow stops making

enough new blood cells (this is a very serious condition; patients who are left untreated

usually die in less than one year). Prior to the trial, all 64 patients were treated with

a high dose of cyclophosphamide (a drug designed to prepare patients for transplant by

lowering the body’s immune system), followed by an infusion of bone marrow from a

family member. Patients were then assigned to one of two treatment groups:
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Table 13.1: Time to diagnosis of severe AGVHD for cancer patients. Starred subjects

represent censored observations.

CSP + MTX MTX only

3* 65 324 528* 9* 25 104* 395*

8 77* 356* 547* 11 28 106* 428*

10 82* 378* 691 12 28 156 469

12* 98* 408* 769* 20* 31 218 602

16 155* 411 1111* 20 35* 230* 681*

17 189 420* 1173 22 35* 231* 690

22 199* 449* 1213* 25 46 316* 1112*

64* 247* 490 1357 25* 49* 393 1180

• Group 1: Cyclosporine and methotrexate (CSP+MTX)

• Group 2: Methotrexate only (MTX)

Cyclosporine also lowers the body’s immune system (to prevent rejection of marrow from

a donor). Methotrexate is designed to slow the growth of cancer cells. An important

endpoint (variable) is the time from treatment assignment until the diagnosis of a life-

threatening stage of acute graft versus host disease (AGVHD), a frequent complication

where the donor’s bone marrow cells attack the patient’s organs and tissue. Table 13.1

presents these times (in days) for the 64 patients. In this trial, only 30 of the 64 patents

actually reached the endpoint (i.e., were diagnosed with AGVHD). The remaining 34

patients were censored (i.e., they were never diagnosed with AGVHD).

• How should we model the diagnosis times? How should we compare the two groups?

• What effects do censoring/staggered entry have on the resulting analysis?

• Figure 13.1 displays estimates of the survivor distributions. It appears that those

in the CSP+MTX group have a longer time to diagnosis of AGVHD. How are these

estimates constructed? Is the difference between the two groups significant?
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Figure 13.1: Kaplan-Meier survival function estimates of the time to diagnosis of AGVHD

for two treatment groups.

13.2 Describing the distribution of time to an event

TERMINOLOGY : Let the random variable T denote the time to an event. It is under-

stood to mean that T is a positive random variable, for which there is an unambiguous

start (point of infection, start of treatment, etc.) and end (death, diagnosis, etc.) with

the period in between corresponding to T . Random variables T with positive support

are called lifetime random variables.

• survival time (from birth to death)

• the time from treatment of infection/disease to death (this may be tricky if indi-

viduals die from “other causes;” more about this later)

• the time to diagnosis of a more severe condition (e.g., AIDS, etc.)
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NOTE : The time of interest may not always correspond to something deleterious such

as death. For example, we may consider the time to the eradication of an infection,

measured from the initiation of an antibiotic used to treat patients with the infection. In

this situation, it is preferable to shorten the distribution of times, whereas, in the other

situations (e.g., when death is the endpoint), it is desirable to lengthen time.

DESCRIPTION : We now describe some different, but equivalent, ways of defining the

distribution of T . In our discussion, we assume that T is continuous.

• The cumulative distribution function (cdf)

FT (t) = P (T ≤ t).

• The survivor function

ST (t) = P (T > t) = 1− FT (t).

• The probability density function

fT (t) =
d

dt
FT (t) = − d

dt
ST (t).

Also, recall that

FT (t) =

∫ t

0

fT (u)du

and

ST (t) =

∫ ∞

t

fT (u)du.

Example 13.2. A simple parametric model for T is the exponential distribution. Recall

that if T ∼ exponential(β), the pdf of T is

fT (t) =

 1
β
e−t/β, t > 0

0, otherwise.

The cdf of T is

FT (t) =

 0, t ≤ 0

1− e−t/β, t > 0.
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Figure 13.2: The survivor function of T ∼ exponential(1).

The survivor function of T is

ST (t) = 1− FT (t) =

 1, t ≤ 0

e−t/β, t > 0.

A graph of the survivor function appears in Figure 13.2 when β = 1. Note that ST (1) =

e−1 ≈ 0.367; i.e., only 36.7 percent of the population “survives” one year, say (if T is

measured in years). Also,

ST (ϕ0.5) = e−ϕ0.5 = 0.5 =⇒ ϕ0.5 = S−1
T (0.5) = ln 2 ≈ 0.693;

i.e., the median survival ϕ0.5 = 0.693 years.

TERMINOLOGY : We say that the distribution of a survival time T1 is stochastically

larger than another survival time T2, and write T1 ≥st T2, if the survival function of T1

is greater than or equal to the survival function of T2 for all t; that is,

S1(t) = P (T1 > t) ≥ P (T2 > t) = S2(t), for all t ≥ 0.
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Figure 13.3: Mortality rate for a human population.

TERMINOLOGY : The mortality rate, at time t, is the proportion of the population

who fail between times t and t+ 1 among individuals alive at time t. Usually, t is taken

to be an integer in terms of some unit of time (e.g., day, month, year, etc.); i.e.,

mT (t) = P (t ≤ T < t+ 1|T ≥ t).

The mortality rate for a human population might look like Figure 13.3.

TERMINOLOGY : The hazard rate is just a “continuous version” of a mortality rate.

Informally, the hazard rate λT (t) is the limit of the mortality rate if the interval of time is

taken to be arbitrarily small; i.e., the mortality rate is the instantaneous rate of failure

at time t, given that the individual is alive at time t. That is,

λT (t) = lim
h→0

P (t ≤ T < t+ h|T ≥ t)

h
.

NOTE : The hazard rate is not a probability; rather, it is a probability rate. Therefore,

it is possible that a hazard rate may exceed one.
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REMARK : The hazard rate (or hazard function) is very important characteristic of a

lifetime distribution. It indicates the way the risk of failure varies with time, and this

is of interest in most applications. Distributions with increasing hazard functions are

seen for individuals for whom some kind of aging or “wear out” takes place (like people).

Certain types of electronic devices may actually display a decreasing hazard function.

NOTE : It is insightful to note that

λT (t) = lim
h→0

P (t ≤ T < t+ h|T ≥ t)

h

= lim
h→0

P (t ≤ T < t+ h)

hP (T ≥ t)

=
1

P (T ≥ t)
lim
h→0

FT (t+ h)− F (t)

h
=

fT (t)

ST (t)
=

− d
dt
ST (t)

ST (t)
= − d

dt
log{ST (t)}.

Integrating both sides of the last equation, we get

− log{ST (t)} =

∫ t

0

λT (u)du ≡ ΛT (t).

The function ΛT (t) is called the cumulative hazard function. Consequently,

ST (t) = exp

{
−
∫ t

0

λT (u)du

}
= exp {−ΛT (t)} .

REMARK : Because of these one-to-one relationships, we can describe the distribution

of the continuous survival time T by using fT (t), FT (t), ST (t), λT (t), or ΛT (t).

Example 13.3. Suppose that T ∼ Weibull(α, β), where α and β are parameters larger

than zero. This model is very common in engineering, and it has also been used in

medical and actuarial science applications. The pdf of T is

fT (t) =


(
α

β

)
tα−1exp(−tα/β), t > 0

0, otherwise.

The cdf of T is

FT (t) =

 0, t ≤ 0

1− exp(−tα/β), t > 0.

The survivor function of T is

ST (t) = 1− FT (t) =

 1, t ≤ 0

exp(−tα/β), t > 0.
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Figure 13.4: Weibull hazard functions with β = 1. Upper left: α = 3. Upper right:

α = 1.5. Lower left: α = 1. Lower right: α = 0.5.

Therefore, the hazard function, for t > 0, is

λT (t) =
fT (t)

ST (t)
=

(
α
β

)
tα−1exp(−tα/β)

exp(−tα/β)
=

(
α

β

)
tα−1.

Plots of Weibull hazard functions are given in Figure 13.4. It is easy to show

• λT (t) is increasing if α > 1, (population gets weaker with aging)

• λT (t) is constant if α = 1 (constant hazard; exponential distribution), and

• λT (t) is decreasing if α < 1 (population gets stronger with aging).

REMARK : In most clinical trials applications and research in survival analysis, it has

become common to use nonparametric (and semiparametric) models where the shape

of the distribution function is left unspecified. This is the approach we take henceforth.
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13.3 Censoring and life table estimates

REMARK : Two important issues arise in survival analysis (in particular, clinical trials)

when time to event data are being considered.

• Some individuals are still alive (the event of interest has not occurred) at the time

of analysis. This results in right censored data.

• The length of follow-up varies due to staggered entry over calendar time. Patient

time is measured from entry into the study.

In addition to censoring occurring because of insufficient follow-up (e.g., due to the study

ending), it may also occur for other reasons. For example,

• loss to follow-up; e.g., the patient stops coming to the clinic or moves away

• death from other causes (competing risks).

These different forms of censoring are referred to as random right censoring. Random

censoring creates difficulties in the analysis as is illustrated by the following example.

Example 13.4. Data from 146 individuals, who previously had myocardial infarction

(MI); i.e., a heart attack, and participated in a clinical trial for an antihypertensive

treatment (that is, a treatment to lower high blood pressure), are given in Table 13.2.

The data have been grouped into one-year intervals, and all time is measured in terms

of patient time. Here, the endpoint T is time to death.

Question: How should we estimate the five-year survival rate ST (5)?

Solution. Two naive answers are given by

76 deaths in 5 years

146 individuals
= 0.521 =⇒ ŜT (5) = 0.479.

76 deaths in 5 years

146-29 individuals
= 0.650 =⇒ ŜT (5) = 0.350.

• The first estimate would be appropriate if all 29 individuals withdrawn in the first

5 years were withdrawn (censored) exactly at the 5-year mark; i.e., at time t = 5.
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Table 13.2: Myocardial infarction data. Measured in patient time.

Number alive and

Year since under observation at Number dying Number censored

entry into study beginning of interval during interval or withdrawn

[0, 1) 146 27 3

[1, 2) 116 18 10

[2, 3) 88 21 10

[3, 4) 57 9 3

[4, 5) 45 1 3

[5, 6) 41 2 11

[6, 7) 28 3 5

[7, 8) 20 1 8

[8, 9) 11 2 1

[9, 10) 8 2 6

This corresponds to censoring on the right. This is probably not the case, so this

estimate is overly optimistic; i.e., this overestimates ST (5).

• The second estimate would be appropriate if all 29 individuals withdrawn in the

first 5 years were withdrawn (censored) immediately upon entering the study; i.e.,

at time t = 0. This corresponds to censoring on the left. This is probably not the

case either, so this estimate is overly pessimistic; i.e., this underestimates ST (5).

LIFE-TABLE ESTIMATES : Note that ST (5) can be expressed as

ST (5) =
5∏

i=1

qi,

where

qi = 1− P (i− 1 ≤ T < i|T ≥ i− 1)︸ ︷︷ ︸
mortality rate at year t = i− 1

,

for i = 1, 2, ..., 5. So, we just need to estimate qi. Note that 1− qi is the mortality rate

mT (t) at year t = i− 1.
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RIGHT CENSORING : Suppose that anyone withdrawn (censored) in an interval of time

is censored at the end of that interval (right censoring). Our table then looks like

Time n(t) d(t) w(t) m̂T (t) =
d(t)
n(t) 1− m̂T (t) ŜR

T (t) =
∏
{1− m̂T (t)}

[0, 1) 146 27 3 0.185 0.815 0.815

[1, 2) 116 18 10 0.155 0.845 0.689

[2, 3) 88 21 10 0.239 0.761 0.524

[3, 4) 57 9 3 0.158 0.842 0.441

[4, 5) 45 1 3 0.022 0.972 0.432

Thus, if right censoring was used, our estimate of the 5-year survival probability, based

on the life-table, would be ŜR
T (5) = 0.432.

LEFT CENSORING : Suppose that anyone withdrawn (censored) in an interval of time

is censored at the beginning of that interval (left censoring). Our table then looks like

Time n(t) d(t) w(t) m̂T (t) =
d(t)

n(t)−w(t) 1− m̂T (t) ŜL
T (t) =

∏
{1− m̂T (t)}

[0, 1) 146 27 3 0.189 0.811 0.811

[1, 2) 116 18 10 0.170 0.830 0.673

[2, 3) 88 21 10 0.269 0.731 0.492

[3, 4) 57 9 3 0.167 0.833 0.410

[4, 5) 45 1 3 0.024 0.976 0.400

Thus, if left censoring was used, our estimate of the 5-year survival probability, based on

the life-table, would be ŜL
T (5) = 0.400.

SUMMARY :

• Our (extremely) naive estimates ranged from 0.350 to 0.479.

• Our life-table estimates range from 0.400 to 0.432, depending on whether we as-

sumed censoring occurred on the left or right of each interval.

• It is likely censoring occurs at a time inside the interval (not always on the end-

points). Thus, ŜR
T (5) and ŜL

T (5) are still too optimistic and pessimistic, respectively.
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Figure 13.5: Myocardial infarction data in Example 13.4. Life-table estimate of the

survival distribution ST (t).

COMPROMISE : A compromise is to use the following table:

Time n(t) d(t) w(t) m̂T (t) =
d(t)

n(t)−w(t)/2 1− m̂T (t) ŜT (t) =
∏
{1− m̂T (t)}

[0, 1) 146 27 3 0.187 0.813 0.813

[1, 2) 116 18 10 0.162 0.838 0.681

[2, 3) 88 21 10 0.253 0.747 0.509

[3, 4) 57 9 3 0.162 0.838 0.426

[4, 5) 45 1 3 0.023 0.977 0.417

From this table, our estimate is ŜT (5) = 0.417, which is, of course, between ŜR
T (5) and

ŜL
T (5). This is called the life-table estimate. The value n(t) − w(t)/2 is called the

effective sample size. A plot of the estimated survival probabilities is in Figure 13.5.

INFERENCE : Of course, life-table estimates are computed from a sample of data, and,

hence, are subject to natural sampling variability (as any other estimator is). Theoretical
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arguments show that, for a fixed t, ŜT (t) is approximately normal with mean ST (t) and

variance which is consistently estimated by

v̂ar[ŜT (t)] = {ŜT (t)}2
t∑

j=1

dj
(nj − wj/2)(nj − dj − wj/2)

,

where nj = n(j), dj = d(j), and wj = w(j). The formula for v̂ar[ŜT (t)] is called

Greenwood’s formula. An approximate (large-sample) confidence interval for ST (t) is

therefore given by

ŜT (t)± zα/2ŝe[ŜT (t)],

where ŝe[ŜT (t)] = v̂ar[ŜT (t)]
1/2.

MI DATA: Consider the following table used to find estimated standard errors for the

MI data in Example 13.4:

Time n(t) d(t) w(t) ŜT (t)
∑

j
dj

(nj−wj/2)(nj−dj−wj/2)
ŝe[ŜT (t)]

[0, 1) 146 27 3 0.813 0.00159 0.032

[1, 2) 116 18 10 0.681 0.00327 0.039

[2, 3) 88 21 10 0.509 0.00735 0.044

[3, 4) 57 9 3 0.426 0.01084 0.044

[4, 5) 45 1 3 0.417 0.01138 0.044

For the MI data, an approximate 95 percent confidence interval for ST (5) is given by

0.417± 1.96(0.044) =⇒ (0.331, 0.503).

We are 95 percent confident that the proportion of patients surviving 5 years after an

MI episode is between 0.331 and 0.503.

13.4 The Kaplan-Meier estimator

NOTE : In Example 13.4, we saw that the bias in estimating the survival function (incor-

rectly assuming that censoring occurs at the left or right of each interval) decreases when
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the interval is taken to be smaller (e.g., 1 year as opposed to 5 year intervals). Thus, if

the data are not grouped (i.e., we know the exact times), we could apply the life-table

estimator using intervals with very small lengths.

KAPLAN-MEIER ESTIMATOR: The “limit” of the life-table estimator; i.e., when the

interval lengths are taken so small that at most one observation occurs within any interval,

is called the product-limit estimator or the Kaplan-Meier estimator. Kaplan and

Meier (1958) derived this limiting estimator using likelihood theory (not as the limit of

the life-table estimator). However, it is instructive and intuitive to consider the KM

estimator as a limit of the life-table estimator.

NON-INFORMATIVE CENSORING : In order for life table estimators to give unbiased

results, there is an implicit assumption that individuals who are censored are at the

same risk of failure as those who are still alive and are uncensored. This assumption is

called the non-informative censoring assumption. Those at risk, at any time t, should

be representative of the entire population alive at the same time so that the estimated

mortality rates reflect the true population mortality rates.

REMARK : If censoring only occurs because of staggered entry, then the assumption of

independent censoring seems plausible. However, when censoring results from loss to

follow-up or death from a competing risk, then this assumption may be suspect because

the censoring processes depend on the survival time. If at all possible, censoring from

these latter situations should be kept to a minimum.

Example 13.5. Computing the Kaplan-Meier estimate. In this example, we work with

a small (fictitious) data set to illustrate how the KM estimate is computed. Suppose we

have the following death and censoring times for n = 10 patients.

Time 4.5 7.5 8.5 11.5 13.5 15.5 16.5 17.5 19.5 21.5

Censored 1 1 0 1 0 1 1 0 1 0

Here, “1” means the observation was a death and “0” means the observation was censored.
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That is, we have 6 deaths and 4 censored observations (out of the 10 patients). Denote

m̂T (t) =
d(t)

n(t)
=

number of deaths in an interval

number at risk at beginning of the interval
,

an estimate of the mortality rate at time t. Consider the following calculations:

Time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

m̂T (t) 0 0 0 0 1
10

0 0 1
9

0 0 0 1
7

0 0 0 1
5

1
4

0 0 1
2

1− m̂T (t) 1 1 1 1 9
10

1 1 8
9

1 1 1 6
7

1 1 1 4
5

3
4

1 1 1
2

ŜT (t) 1 1 1 1 9
10

· · 8
10

· · · 48
70

· · · 192
350

144
350

· · 144
700

The Kaplan-Meier (or product limit) estimator will be a step function taking jumps at

times where an event (death) occurs. Thus, since there is at most one occurrence in any

interval of time, the KM estimator of the survival function ST (t) is computed by

ŜT (t) =
∏
j:tj≤t

(
1− 1

nj

)
,

where nj is the number of individuals still at risk at time tj. By convention, the KM

estimator is taken to be right continuous. The KM estimate for the data in Example

13.5, along with 95 percent confidence bands, is given in Figure 13.6. The confidence

bands are computed as the endpoints of

ŜT (t)± 1.96× ŝe[ŜT (t)],

where the (estimated) standard error is computed using Greenwood’s formula. R auto-

mates the entire analysis; here is the output.

> summary(fit)

Call: survfit(formula=Surv(survtime,status)~1,conf.type="plain")

time n.risk n.event survival std.err lower 95% CI upper 95% CI

4.5 10 1 0.900 0.0949 0.7141 1.000

7.5 9 1 0.800 0.1265 0.5521 1.000

11.5 7 1 0.686 0.1515 0.3888 0.983

15.5 5 1 0.549 0.1724 0.2106 0.887

16.7 4 1 0.411 0.1756 0.0673 0.756

19.5 2 1 0.206 0.1699 0.0000 0.539
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Figure 13.6: Kaplan-Meier estimate of ST (t) for the data in Example 13.5. Confidence

bands have been included.

DESCRIPTION : In describing censored survival data, it is useful to conceptualize the

existence of two latent variables for each individual corresponding to the failure time

and censoring time. The term “latent” means “missing” or “not observed.”

• For the ith individual, denote the failure time by Ti and the censoring time by

Ci. Only one of these variables is observed for the ith individual (the other is not).

• The random variable Ti corresponds to the ith individual’s survival time if that

individual were observed until death, whereas Ci corresponds to the time that the

ith individual would have been censored assuming death did not intervene.

• For example, Ci may be the time from entry into the study until the time of analysis.

If censoring were to occur for other reasons, (e.g., loss to follow up, competing risks,

etc.) this would have to be accounted for in the analysis.
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OBSERVABLES : In actuality, for the ith individual, we get to observe the minimum

of Ti and Ci, which we denote by the random variable

Xi = min{Ti, Ci}.

We also get to see whether the individual failed (died) or was censored; i.e., we get to see

∆i = I(Ti ≤ Ci) =

 1, if Ti ≤ Ci

0, if Ti > Ci.

Therefore, the variables (Xi,∆i), i = 1, 2, ..., n, are the observables in a survival exper-

iment, whereas Ti and Ci are latent variables which are useful in conceptualizing the

problem.

GOAL: Although not always observed, the main goal in survival analysis is to make

inference about the probability distribution of the latent variable T . For example, in

the one-sample problem, we are usually interested in estimating the survival function

ST (t) = P (T > t) with the available data

{(Xi,∆i); i = 1, 2, ..., n}.

If we define the number of individuals at risk at time t in our sample by

n(t) =
n∑

i=1

I(Xi ≥ t);

i.e., n(t) is the number of individuals in the sample who have neither died nor have been

censored by time t, then the KM estimator for the survival distribution ST (t) is given by

KM(t) =
∏

{i:Xi≤t}

{
n(Xi)− 1

n(Xi)

}∆i

=
∏

{i:Xi≤t}

{
1− 1

n(Xi)

}∆i

.

This is the definition of the KM estimator when there are no tied survival times in our

sample. This formula emerges as the “limit” of the life-table estimator, that is, when we

are allowed to partition patient time into very small intervals (as in Example 13.5) so

that at most one event can occur in each interval.
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DEALING WITH TIES : Let d(t) denote the number of observed deaths in the sample

at time t; that is,

d(t) =
n∑

i=1

I(Xi = t,∆i = 1).

Generally, d(t) is equal to 0 or equal to 1 with continuous survival data (where there are

no ties). More generally, however, d(t) may be greater than 1 when ties are allowed. In

this situation, we can write the KM estimator as

KM(t) =
∏
A(u)

{
1− d(u)

n(u)

}
,

where A(u) is the set of all death times u less than or equal to t. A consistent estimator

of the variance of the KM estimator is also taken as the limit of Greenwood’s formula;

in particular,

v̂ar[KM(t)] = {KM(t)}2
∑
A(u)

[
d(u)

n(u){n(u)− d(u)}

]
.

Thus, for a fixed t, because KM(t) is approximately normal in large samples, a 100(1−α)

percent confidence interval for the survival function ST (t) is given by

KM(t)± zα/2ŝe{KM(t)},

where ŝe{KM(t)} = v̂ar[KM(t)]1/2.

Example 13.6. In this example, we simulate a set of censored survival data for n = 100

individuals and plot the resulting KM estimate of ST (t).

• We assume that the true survival times are exponential with mean β = 5 years.

We generate Ti ∼ iid exponential(5).

• We assume that the true censoring times are exponential with mean β = 10 years.

We generate Ci ∼ iid exponential(10).

• Note that the censoring time distribution is stochastically larger than the survival

time distribution. Because the observed time is Xi = min{Ti, Ci}, this means that

fewer observations will be censored.
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Figure 13.7: KM estimate of ST (t) using simulated data in Example 13.6. Confidence

bands are included.

RESULTS : I have displayed below the results for the first 5 individuals:

survtime.1.5. censtime.1.5. obstime.1.5.

1 6.805 9.380 6.805

2 6.592 9.552 6.592

3 6.678 5.919 5.919

4 5.640 14.223 5.640

5 5.829 3.690 3.690

• Note that obstime (Xi) is the minimum of survtime (Ti) and censtime (Ci).

• The KM estimate of ST (t) is given in Figure 13.7. Note that in this example, the

true ST (t) is

ST (t) =

 1, t ≤ 0

e−t/5, t > 0.

• Note that the true median survival time is

ϕ0.5 = S−1
T (0.5) = 5ln(2) ≈ 3.468.

PAGE 151



CHAPTER 13 STAT 513, J. TEBBS

Example 13.7. Sickle-Santanello et al. (1988, Cytometry) present data on n = 80 male

subjects with advanced tongue cancer. There were actually two types of cancerous tumors

examined in the study, but for the purposes of this discussion, we will not distinguish

between the two tumor types. The endpoint was time to death (measured in weeks from

entry into the study). Among the 80 subjects, there were 52 deaths and 28 individuals

censored. Below is the R output from the analysis. The KM estimate of ST (t) is displayed

in Figure 13.8.

time n.risk n.event survival std.err lower 95% CI upper 95% CI

1 79 1 0.987 0.0126 0.9627 1.000

3 78 3 0.949 0.0247 0.9010 0.998

4 75 2 0.924 0.0298 0.8656 0.982

5 73 2 0.899 0.0339 0.8322 0.965

8 71 1 0.886 0.0357 0.8160 0.956

10 69 1 0.873 0.0375 0.7998 0.947

12 68 1 0.860 0.0391 0.7839 0.937

13 67 3 0.822 0.0432 0.7372 0.906

16 64 2 0.796 0.0455 0.7070 0.885

18 62 1 0.783 0.0465 0.6921 0.875

23 61 1 0.771 0.0475 0.6774 0.864

24 60 1 0.758 0.0484 0.6628 0.853

26 59 2 0.732 0.0501 0.6338 0.830

27 57 2 0.706 0.0515 0.6054 0.807

28 55 1 0.693 0.0521 0.5913 0.796

30 54 3 0.655 0.0538 0.5495 0.760

32 51 1 0.642 0.0542 0.5358 0.748

41 50 1 0.629 0.0546 0.5221 0.736

42 49 1 0.616 0.0550 0.5086 0.724

51 48 1 0.604 0.0554 0.4951 0.712

56 47 1 0.591 0.0556 0.4817 0.700

62 45 1 0.578 0.0559 0.4680 0.687

65 44 1 0.564 0.0562 0.4543 0.675

67 43 1 0.551 0.0564 0.4408 0.662

69 41 1 0.538 0.0566 0.4270 0.649

70 40 1 0.524 0.0568 0.4132 0.636

72 39 1 0.511 0.0569 0.3995 0.622

73 38 1 0.498 0.0569 0.3859 0.609

77 35 1 0.483 0.0571 0.3715 0.595

91 27 1 0.465 0.0577 0.3524 0.578

93 26 1 0.448 0.0582 0.3335 0.562

96 24 1 0.429 0.0587 0.3139 0.544

100 22 1 0.409 0.0592 0.2935 0.525

104 20 3 0.348 0.0600 0.2304 0.466

112 13 1 0.321 0.0610 0.2016 0.441
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Figure 13.8: Tongue cancer data. KM estimate of ST (t) in Example 13.7. Confidence

bands are included.

129 11 1 0.292 0.0621 0.1703 0.414

157 8 1 0.256 0.0642 0.1298 0.381

167 7 1 0.219 0.0645 0.0925 0.346

181 5 1 0.175 0.0648 0.0482 0.302

Question: From these data, what is an estimate of the one year survival probability?

two year survival probability? That is, what are ŜT (52) and ŜT (104)?

Answers: From the R output, we have

ŜT (51) = 0.604.

Because ŜT (t) remains constant for all t ∈ [51, 56), this is also our estimate for

ST (52). A 95 percent confidence interval for the one year survival probability ST (52)

is (0.4951, 0.712). An estimate of the two year survival probability ST (104) is 0.348 (95

percent CI = 0.2304 to 0.466).
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13.5 Two-sample tests

GOAL: In survival data applications, especially in clinical trials, the goal is often to

compare two or more groups of individuals. If the primary endpoint is time to an event

(e.g., death, etc.), then an important issue is determining if one treatment increases or

decreases the distribution of this time. Let Z denote the treatment group assignment. If

there are two treatments of interest, then Z ∈ {1, 2}.

TWO-SAMPLE PROBLEM : The problem of comparing two treatments can be posed as

a hypothesis test. If we denote by S1(t) and S2(t) the survival functions for treatments

1 and 2, respectively, the null hypothesis of no treatment difference is

H0 : S1(t) = S2(t),

for all t > 0, or, equivalently, in terms of the hazard functions,

H0 : λ1(t) = λ2(t),

for all t > 0, where λj(t) = − d
dt
log{Sj(t)}, for j = 1, 2. One possible alternative

hypothesis specifies that the survival time for one treatment is stochastically larger (or

smaller) than the other treatment. For example, we might test H0 against

Ha : S1(t) ≤ S2(t),

for all t > 0, with strict inequality for some t, or Ha : S1(t) ≥ S2(t). A two-sided

alternative specifies

Ha : S1(t) ̸= S2(t),

for some t > 0.

APPROACH : To address the two sample survival problem, we will make use of a non-

parametric test; that is, we will use a test statistic whose distribution (under H0) does

not depend on the shape of the underlying survival functions (at least, not asymptoti-

cally). The most widely-used test in censored survival analysis is the logrank test which

we now describe.
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NOTATION : Data from a two sample censored survival analysis problem can be ex-

pressed as a sample of triplets; namely,

{(Xi,∆i, Zi); i = 1, 2, ..., n},

where Xi = min{Ti, Ci}. Recall that for the ith individual,

Ti = latent failure time

Ci = latent censoring time.

The failure indicator for the ith individual is given by

∆i =

 1, if Ti ≤ Ci

0, if Ti > Ci

and the treatment indicator is

Zi =

 1, ith individual in treatment group 1

2, ith individual in treatment group 2.

NOTATION : Let n1 be the number of individuals assigned to treatment 1; i.e.,

n1 =
n∑

i=1

I(Zi = 1),

and n2 be the number of individuals assigned to treatment 2; i.e.,

n2 =
n∑

i=1

I(Zi = 2),

so that n = n1 + n2. The number at risk at time u from treatment 1 is denoted by

n1(u); i.e.,

n1(u) =
n∑

i=1

I(Xi ≥ u, Zi = 1).

That is, n1(u) is the number of individuals in treatment group 1 who have neither died

nor have been censored at time u. Similarly,

n2(u) =
n∑

i=1

I(Xi ≥ u, Zi = 2)

is the number at risk at time u from treatment group 2.
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NOTATION : The number of deaths at time u in treatment group 1 is denoted by

d1(u); i.e.,

d1(u) =
n∑

i=1

I(Xi = u,∆i = 1, Zi = 1).

Similarly,

d2(u) =
n∑

i=1

I(Xi = u,∆i = 1, Zi = 2)

is the number of deaths at time u in treatment group 2. The number of deaths at time

u for both treatment groups is

d(u) = d1(u) + d2(u).

This notation allows for the possibility of having more than one death occurring at the

same time (that is, “tied” survival times).

REMARK : A formal derivation of the logrank test statistic, as well as asymptotic con-

siderations, relies on martingale theory. We will avoid this more advanced material

and take the following informal approach.

• At any time u where a death is observed; i.e., when d(u) ≥ 1, the data available to

us can be summarized in the following 2× 2 table:

Treatment 1 Treatment 2 Total

Number of deaths d1(u) d2(u) d(u)

Number alive n1(u)− d1(u) n2(u)− d2(u) n(u)− d(u)

Total n1(u) n2(u) n(u)

If H0 : S1(t) = S2(t) is true, then we would expect

d1(u)−
n1(u)

n(u)
d(u)

to be “close” to zero (actually, its expectation is zero under H0).

• Therefore, consider constructing this same 2×2 table at each point in time u where

an event (death) occurs. That is, consider constructing a sequence of 2× 2 tables,
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where each table in the sequence corresponds to a unique time u where d(u) ≥ 1.

Using similar logic, the sum ∑
A(u)

[
d1(u)−

n1(u)

n(u)
d(u)

]
where A(u) = {u : d(u) ≥ 1} denotes the set of all distinct death times u, should

be close to zero when H0 is true (again, its expectation is equal to zero under H0).

• We now examine what would happen if H0 : S1(t) = S2(t) is not true:

– If the hazard rate for treatment 1 was greater than the hazard rate for treat-

ment 2 over all u, then we would expect

d1(u)−
n1(u)

n(u)
d(u) > 0.

– If the hazard rate for treatment 1 was less than the hazard rate for treatment

2 over all u, then we would expect

d1(u)−
n1(u)

n(u)
d(u) < 0.

• The last observation suggests that H0 : S1(t) = S2(t) should be rejected if the

statistic

T ∗ =
∑
A(u)

[
d1(u)−

n1(u)

n(u)
d(u)

]
,

is too large or too small, depending on the alternative we are interested in.

• In order to gauge the strength of evidence against H0, we must be able to evaluate

the distribution of T ∗ (at least, approximately) when H0 is true. To do this, T ∗

needs to be standardized appropriately. Specifically, this standardized version is

the logrank test statistic, given by

TLR =
T ∗

se(T ∗)
=

∑
A(u)

[
d1(u)−

n1(u)

n(u)
d(u)

]
√√√√∑

A(u)

n1(u)n2(u)d(u){n(u)− d(u)}
n2(u){n(u)− 1}

.

We now examine the sampling distribution of TLR when H0 is true.
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SAMPLING DISTRIBUTION : We now informally argue that when H0 : S1(t) = S2(t)

is true, the logrank test statistic TLR ∼ AN (0, 1), for large n. To see why this is true,

consider again the 2× 2 table:

Treatment 1 Treatment 2 Total

Number of deaths d1(u) · d(u)

Number alive · · n(u)− d(u)

Total n1(u) n2(u) n(u)

Conditional on the marginal counts, the random variable d1(u) follows a hypergeometric

distribution with probability mass function

P{d1(u) = d} =

(
n1(u)

d

)(
n2(u)

d(u)− d

)
(
n(u)

d(u)

) .

Thus, the conditional mean and variance of d1(u) are

n1(u)

n(u)
d(u)

and
n1(u)n2(u)d(u){n(u)− d(u)}

n2(u){n(u)− 1}
,

respectively. It can be shown that

T ∗ =
∑
A(u)

[
d1(u)−

n1(u)

n(u)
d(u)

]

is the sum of uncorrelated pieces d1(u) − n1(u)
n(u)

d(u), each with mean zero under H0 (not

intuitive) and that the sum∑
A(u)

n1(u)n2(u)d(u){n(u)− d(u)}
n2(u){n(u)− 1}

is the variance of T ∗ when H0 is true (also not intuitive). With both of these results in

place, it follows that, under H0 : S1(t) = S2(t), the logrank test statistic TLR ∼ AN (0, 1)

by a version of the Central Limit Theorem for martingale type data.
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TESTING PROCEDURE : To test

H0 : S1(t) = S2(t)

versus

H0 : S1(t) ̸= S2(t),

an approximate level α rejection region is

RR = {TLR : |TLR| > zα/2},

where zα/2 is the upper α/2 quantile of a N (0, 1) distribution. One sided tests use a

suitably adjusted rejection region.

• If we were interested in showing that treatment 1 is better (i.e., longer survival

times) than treatment 2, then we would reject H0 when TLR < −zα, since, under

Ha : S1(t) ≥ S2(t), we would expect the observed number of deaths from treatment

1 to be less than that expected under H0.

• If we wanted to show that treatment 2 is better than treatment 1 (insofar as

prolonging survival), then we would reject H0 when TLR > zα, since, under

Ha : S1(t) ≤ S2(t), we would expect the observed number of deaths from treatment

1 to be larger than that expected under H0.

NOTE : To “derive” the form of the logrank test, we have summarized the data using

only 2×2 tables at the distinct death times. In constructing the logrank test statistic, we

never made any assumptions regarding the shape of the underlying survival distributions.

This explains why this test is nonparametric in nature.

Example 13.8. Highly active antiretroviral therapy (HAART) is the combination of

several antiretroviral medications used to slow the rate at which HIV makes copies of

itself (multiplies) in the body. Is a combination of antiretroviral medications more ef-

fective than using just one medication (monotherapy) in the treatment of HIV? In a

two-group clinical trial involving patients with advanced AIDS, 24 patients receive a

standard monotherapy (treatment 1) and 24 patients receive a new HAART (treatment

2). Death/censoring times, measured in days, are given Table 13.3. The Kaplan-Meier

estimates for these data (by treatment) are given in Figure 13.9.
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Table 13.3: Time to death in patients with advanced AIDS. Measured in days. Starred

subjects represent censored observations.

Standard treatment HAART

14 333 706 1730 64 863 1873 2380

17 444 909 1834 178 998 1993 2680

128 558 1213 2244* 478 1205 1999 2696

129 568 1216* 2246 533 1232 2140 2896

164 677 1420 2565 742 1232 2204* 3223

228 702 1527 3004 756 1433 2361 3344*

OUTPUT : The fit.1 output gives point and confidence interval estimates for the median

survival times; estimated standard errors are computed using Greenwood’s formula.

> fit.1

Call: survfit(formula = Surv(survtime, delta) ~ treat)

records n.max n.start events median 0.95LCL 0.95UCL

treat=1 24 24 24 22 704 558 1730

treat=2 24 24 24 22 1653 1205 2380

Therefore,

• we are 95 percent confident that the median survival time for treatment group 1

(monotherapy) is between 558 and 1730 days.

• we are 95 percent confident that the median survival time for treatment group 2

(HAART) is between 1205 and 2380 days.

> fit.2

Call: survdiff(formula = Surv(survtime, delta) ~ treat)

N Observed Expected (O-E)^2/E (O-E)^2/V

treat=1 24 22 15.8 2.44 3.98

treat=2 24 22 28.2 1.36 3.98

Chisq = 4 on 1 degrees of freedom, p = 0.0461
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OUTPUT : The fit.2 output gives the value of the square of the logrank statistic, that

is, it gives

T 2
LR =


∑
A(u)

[
d1(u)−

n1(u)

n(u)
d(u)

]
√√√√∑

A(u)

n1(u)n2(u)d(u){n(u)− d(u)}
n2(u){n(u)− 1}



2

.

To test

H0 : S1(t) = S2(t)

versus

Ha : S1(t) ̸= S2(t),

an approximate level α rejection region is

RR = {TLR : |TLR| > zα/2} = {TLR : T 2
LR > χ2

1,α},

where χ2
1,α is the upper α quantile of a χ2(1) distribution. Recall that Z ∼ N (0, 1)

implies that Z2 ∼ χ2(1).

ANALYSIS : With the HAART data, we find

T 2
LR = 3.98 (p-value = 0.0461).

At the α = 0.05 level, we have sufficient evidence to reject H0 : S1(t) = S2(t) in favor of

the two-sided alternative Ha : S1(t) ̸= S2(t). That is, there is significant evidence that

the two survivor functions are different.

NOTE : Suppose that, a priori, we had specified a one-sided alternative

Ha : S1(t) ≤ S2(t),

that is, patients on treatment 2 (HAART) had a longer survival time on average. Noting

that the observed number of deaths for treatment 1 (22) is larger than the expected

number of deaths under H0 (15.8), we know that TLR = +
√
3.98 ≈ 1.995 (that is, TLR is

positive; not negative). Thus, at the α = 0.05 level, we would reject H0 : S1(t) = S2(t)

in favor of Ha : S1(t) ≤ S2(t) since TLR = 1.995 ≥ z0.05 = 1.645. �
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Figure 13.9: Kaplan-Meier estimates for AIDS patients in Example 13.8.

13.6 Power and sample size considerations for two-sample tests

IMPORTANT : Thus far, we have only considered the distribution of the logrank test

statistic TLR under the null hypothesis H0 : S1(t) = S2(t). However, we know that

in order to assess statistical sensitivity, we must also consider the power of the test,

or the probability of rejecting H0 under some feasible “clinically important” alternative

hypothesis.

PROPORTIONAL HAZARDS : One popular way of specifying a clinically important

alternative is to make a proportional hazards assumption. Denote the hazard func-

tions for treatments 1 and 2 by λ1(t) and λ2(t), respectively. The proportional hazards

assumption means
λ1(t)

λ2(t)
= exp(η), for all t ≥ 0.

We parameterize through the use of exp(η), since a hazard ratio must be positive and
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Figure 13.10: Two survivor functions plotted on the log{− log} scale. These survivor

functions satisfy the proportional hazards condition.

the η = 0 case would correspond to equal hazards for both treatments, which corresponds

to the null hypothesis H0 : S1(t) = S2(t). Using the above parameterization,

• η > 0 =⇒ individuals on treatment 1 have higher rate of failure (they die faster)

• η = 0 =⇒ null hypothesis H0 : S1(t) = S2(t) is true

• η < 0 =⇒ individuals on treatment 1 have lower rate of failure (they live longer).

REMARK : Under a proportional hazards assumption, it can be shown that

log{− logS1(t)} = log{− log S2(t)}+ η.

This relationship suggests that if we plot two survival curve estimates (e.g., the Kaplan-

Meier estimates) on a log{− log} scale, then we can assess the suitability of a proportional

hazards assumption. If, in fact, proportional hazards was reasonable, we would expect

to see something approximately like that in Figure 13.10.

PAGE 163



CHAPTER 13 STAT 513, J. TEBBS

SPECIAL CASE : When the survival distributions are exponential, so that the hazard

functions are constant, we automatically have proportional hazards since

λ1(t)

λ2(t)
=

λ1

λ2

is free of t. The median survival time of an exponential random variable with hazard

λ is

m = ln(2)/λ.

Therefore, the ratio of the median survival times for two treatments, under the exponen-

tial assumption, is
m1

m2

=
ln(2)/λ1

ln(2)/λ2

=
λ2

λ1

.

That is, the ratio of the medians for two exponentially distributed random variables is

inversely proportional to the ratio of the hazards. This result is very useful when one is

trying to elicit clinically important differences. Investigators (e.g., physicians, etc.) are

readily aware of the meaning of “median survival.” On the other hand, hazard ratios are

somewhat more difficult for them to understand.

LOGRANK LINK : Theoretical arguments show that the logrank test is themost power-

ful test among all nonparametric tests to detect alternatives which follow a proportional-

hazards relationship. Therefore, the proportional hazards assumption not only has a sim-

ple interpretation for describing departures from the null hypothesis H0 : S1(t) = S2(t),

but it also has nice statistical properties associated with the use of the logrank test.

POWER: In order to compute the power and the necessary sample sizes for a survival

study, we need to know the distribution of the logrank test statistic TLR under a specific

alternative hypothesis Ha. For a proportional hazards alternative

Ha :
λ1(t)

λ2(t)
= exp(ηA),

for t > 0, the logrank test statistic

TLR ∼ AN{[dθ(1− θ)]1/2ηA, 1},
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where d is the total number of deaths from both treatments and θ is the proportion of

individuals randomized to treatment 1. Unless otherwise stated, we will assume that

θ = 0.5. Theoretical arguments show that for a level α (two-sided) test to have power

1− β in detecting the alternative ηA, we must have

ηAd
1/2

2
set
= zα/2 + zβ.

Solving for d, we get

d =
4(zα/2 + zβ)

2

η2A
.

For example, if α = 0.05 and 1− β = 0.90, then

d =
4(1.96 + 1.28)2

η2A
.

Consider the following table of hazard ratios exp(ηA):

Hazard ratio, exp(ηA) No. of deaths, d

2.00 88

1.50 256

1.25 844

1.10 4,623

NOTE : As exp(ηA) becomes closer to one, we are trying to detect smaller differences

between the hazard functions λ1(t) and λ2(t); thus, we will (intuitively) need a larger

sample size to detect these smaller departures from H0.

SAMPLE SIZE CALCULATIONS : During the design stage, we must ensure that a

sufficient number of individuals are entered into a study and are followed long enough so

that the requisite numbers of deaths are attained. One straightforward approach is to

just continue the study until we obtain the required number of deaths.

Example 13.9. Suppose that patients with advanced lung cancer historically have a

median survival of 6 months. We have a new treatment (treatment 2) which, if it increases

median survival to 9 months, would be considered clinically important. We would like to
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detect such a difference with 90 percent power using a level α = 0.05 two sided test. If

both survival distributions are approximately exponential, then the clinically important

hazard ratio is
λ1

λ2

=
m2

m1

=
9

6
.

Thus, ηA = ln(9/6) = 0.4055. With these criteria, we would need to observe

d =
4(1.96 + 1.28)2

(0.4055)2
≈ 256 deaths.

Therefore, to attain the desired goals, we could, for example, enter 500 patients, ran-

domize 250 to each treatment group, and follow these patients until we have a total of

256 deaths. Note that I have chosen “500” arbitrarily here. �

REMARK : In most survival applications involving time to death endpoints, arbitrarily

picking a number of individuals and waiting for d deaths will not be adequate for the

proper planning of the study. Instead, one usually needs to specify (to the investigators)

the following:

• the number of patients

• the accrual period

• the length of follow-up time.

We have shown that to obtain reasonable approximations for the power, we need the

expected number of events (deaths), computed under the alternative hypothesis, to be

d =
4(zα/2 + zβ)

2

η2A
;

i.e., we must compute the expected number of deaths separately for each treatment group,

under the assumption that the alternative is true. The sum of these expected values,

from both treatments, should be equal to d.

NOTE : To compute the expected number of deaths, we will assume that censoring is due

to lack of follow-up resulting from staggered entry. If we, additionally, have other forms

of censoring (e.g., competing risks, loss to follow-up, etc.), then the computations which

follow would have to be modified.
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NOTATION : In order to more thoroughly plan a study with a survival endpoint, we

define the following notation:

• A is the accrual period; that is, the calendar period of time that patients are

entering the study (e.g., January 1, 2011 through December 31, 2013)

• F is the follow-up period; that is, the calendar period of time after accrual has

ended (before the final analysis is conducted)

• L = A + F denotes the total calendar time of the study from the time the study

opens until the final analysis

• a(u) is the accrual rate at calendar time u; more precisely,

a(u) = lim
h→0

{
expected number of patients entering between [u, u+ h)

h

}
• The total expected number of patients in the study is then given by∫ A

0

a(u)du.

If we have a constant accrual rate (this is a common assumption made in the

design stage), then a(u) = a and the total expected number of patients is aA.

DESIGN : Suppose we have a “clean” investigation where there is no loss to follow-up

and no competing risks. If a(u) is the accrual rate onto a study, randomized equally to

two treatments, then the expected number of deaths for treatment 1 is

d1 =

∫ A

0

a(u)

2
F1(L− u)du,

where F1(·) is the cumulative distribution function for the survival time for treatment 1.

To see why this makes sense, note that

• we would expect a(u)
2
du patients to enter in the interval of time from u to u+ du.

• Of these patients, the proportion F1(L − u) are expected to die by the end of the

study (i.e., at time L).
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• This number summed (i.e., integrated) over u, for values u ∈ [0, A], yields the

expected number of deaths on treatment 1.

Similarly, the expected number of deaths for treatment 2 is

d2 =

∫ A

0

a(u)

2
F2(L− u)du,

where F2(·) is the cumulative distribution function for the survival time for treatment 2.

The sum of these expected values, from both treatments, should equal d1 + d2; thus, we

are to set

d1 + d2 =
4(zα/2 + zβ)

2

η2A
.

Note that the number of deaths can be affected by the accrual rate, the accrual period

(sample size), the follow-up period, and the failure rate (survival distribution). Some

(or all) of these factors can be controlled by the investigator and have to be considered

during the design stage.

Example 13.10. Suppose that the accrual rate is constant at a patients per year, and

that we randomize equally to two treatments (θ = 0.5), so that the accrual rate is a/2

patients per year for each treatment. Also, suppose that the survival distribution for

treatment j is exponential with hazard ratio λj; j = 1, 2. We have

dj =

∫ A

0

a

2

[
1− e−λj(L−u)

]
du

=
a

2

[
A− e−λjL

λj

(
eλjA − 1

)]
,

for j = 1, 2. Suppose that during the design stage, we expect a = 100 patients per year

to be recruited into the study. Suppose that the median survival for treatment 1 is 4

years; thus,

4 = ln(2)/λ1 =⇒ λ1 ≈ 0.173.

We desire the new treatment 2 to increase median survival to 6 years (so that λ2 ≈ 0.116).

If this happens, we want to have 90 percent power to detect it using a logrank test at

the α = 0.05 (two-sided) level of significance. With these medians, the hazard ratio is

λ2

λ1

=
6

4
=⇒ ηA = ln(6/4).
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Therefore, the total number of deaths must be

d =
4(zα/2 + zβ)

2

η2A
=

4(1.96 + 1.28)2

{ln(6/4)}2
≈ 256

so that

d1(A,L) + d2(A,L) = 256.

I have emphasized that d1 and d2 depend on our choice of the accrual period A and the

length of the study L. According to our calculations, we need A and L to satisfy

100

2

[
A− e−0.173L

0.173

(
e0.173A − 1

)]
+

100

2

[
A− e−0.116L

0.116

(
e0.116A − 1

)]
= 256.

NOTE : There are many (A,L) combinations that satisfy this equation. To find a par-

ticular solution, one possibility is to take the accrual period and the length of follow-up

to be equal; i.e., take A = L. This will minimize the total length of the study. When

A = L, the equation above has one solution; it is

A = L ≈ 6.98 years.

If the accrual rate is a = 100 patients/year, this would require 698 patients. �

13.7 More than two treatment groups

SETTING : We now extend our previous survival discussion to the case where our investi-

gation involves k > 2 treatments. The data from such an investigation can be represented

as a sample of triplets; namely,

{(Xi,∆i, Zi); i = 1, 2, ..., n},

where Xi = min{Ti, Ci}, the failure indicator

∆i =

 1, if Ti ≤ Ci

0, if Ti > Ci,

and Zi = j, for j ∈ {1, 2, ..., k}, corresponding to the treatment group to which the ith

individual was assigned.
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LOGRANK TEST : Let Sj(t) = P (T ≥ t|Z = j) denote the survival distribution for the

jth treatment. We would now like to test

H0 : S1(t) = S2(t) = · · · = Sk(t)

versus

Ha : H0 not true.

The k-sample test we now describe is a direct generalization of the logrank test in the

two sample problem (i.e., when k = 2). At any time u where d(u) ≥ 1, we can envisage

our data as a 2 × k contingency table (like the one below), where, recall, nj(u) and

dj(u) denote the number of individuals at risk and the number of deaths at time u from

treatment group j, respectively:

Treatment 1 Treatment 2 · · · Treatment k Total

Number of deaths d1(u) d2(u) · · · dk(u) d(u)

Number alive n1(u)− d1(u) n2(u)− d2(u) · · · nk(u)− dk(u) n(u)− d(u)

Total n1(u) n2(u) · · · nk(u) n(u)

GENERALIZATION : We now consider a vector of observed number of deaths minus the

expected number of deaths under H0 for each treatment group j, i.e.,

d(u) =


d1(u)− n1(u)

n(u)
d(u)

d2(u)− n2(u)
n(u)

d(u)
...

dk(u)− nk(u)
n(u)

d(u)


k×1

.

Note that the sum of the elements in this vector is zero. If we condition on the marginal

counts in the 2× k table, then the k × 1 vector

(d1(u), d2(u), ..., dk(u))
′

follows a multivariate hypergeometric distribution. Of particular interest for us is that,

conditional on the marginal counts, for j = 1, 2, ..., k,

EC{dj(u)} =
nj(u)

n(u)
d(u),

PAGE 170



CHAPTER 13 STAT 513, J. TEBBS

where I have used the notation EC(·) to denote conditional expectation, and

VC{dj(u)} =
d(u){n(u)− d(u)}nj(u){n(u)− nj(u)}

n2(u){n(u)− 1}
.

Also, for j ̸= j′,

CovC{dj(u), dj′(u)} = −d(u){n(u)− d(u)}nj(u)nj′(u)

n2(u){n(u)− 1}
.

Now, consider the (k − 1)× 1 vector S, defined by

S =



∑
A(u)

{
d1(u)− n1(u)

n(u)
d(u)

}
∑

A(u)

{
d2(u)− n2(u)

n(u)
d(u)

}
...∑

A(u)

{
dk−1(u)− nk−1(u)

n(u)
d(u)

}


(k−1)×1

,

where A(u) is the set of death times u for all treatments. Note that we need only consider

this (k−1)-dimensional vector, since the sum of all k elements of d(u) is zero, and, hence,

one of the elements is extraneous. The corresponding (k− 1)× (k− 1) covariance matrix

of S is given by V = (vjj′), for j, j
′ = 1, 2, ..., k − 1, where

vjj =
∑
A(u)

d(u){n(u)− d(u)}nj(u){n(u)− nj(u)}
n2(u){n(u)− 1}

,

for j = 1, 2, ..., k − 1 (these are the diagonal elements of V ), and

vjj′ = −
∑
A(u)

d(u){n(u)− d(u)}nj(u)nj′(u)

n2(u){n(u)− 1}
,

for j ̸= j′ (these are covariance terms).

LOGRANK TEST : The k-sample logrank test statistic is the quadratic form

TLR = S′V −1S.

Under H0 : S1(t) = S2(t) = · · · = Sk(t), the logrank statistic TLR has an approximate

χ2 distribution with k− 1 degrees of freedom. If H0 was true, then we would expect the

elements in the vector S to be near zero; in this case, the quadratic form TLR would also

be near zero (so that, under H0, TLR would be small). If, however, H0 was not true, then

we would expect some of the elements of S to (perhaps greatly) deviate from zero; in

this case, TLR would be large. Therefore, to test

PAGE 171



CHAPTER 13 STAT 513, J. TEBBS

H0 : S1(t) = S2(t) = · · · = Sk(t)

versus

Ha : H0 not true,

we use the approximate level α rejection region RR = {TLR : TLR > χ2
k−1,α}, where

χ2
k−1,α is the upper α quantile of the χ2(k − 1) distribution.

Table 13.4: Time to death in patients with stage II breast cancer. Measured in days.

Starred subjects represent censored observations.

Intensive CAF Low dose CAF Standard CAF

501 4610 1959 357 4067 974

1721 665 354 1666 3494 4205

4280 3660 1157 1464 1323 2734

3350 2067 95 3146 1992 3634

3142 3260 2729 76 1482 3302

4167 653 2385 1199 1305 3436

3266 3684* 625 3750 3230 4372

894 4197* 1716 1206 71 1853*

4454 2320* 2574 391* 4117 989*

2360 3905* 1169 1847* 4002 1712*

Example 13.11. A clinical trial (CALGB 8541) includes female patients with positive

stage II breast cancer. The endpoint of interest is time to death and there are k = 3

chemotherapy treatments:

• Intensive CAF

• Low dose CAF

• Standard dose CAF,

where CAF stands for cylclophosphamide, adriamycin, and 5-fluorouracil. Data from the

trial are given in Table 13.4.
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Figure 13.11: Kaplan-Meier estimates for breast cancer patients in Example 13.11.

ANALYSIS : Here is the output from the analysis of these data in R:

Call: survdiff(formula = Surv(survtime, delta) ~ treat)

N Observed Expected (O-E)^2/E (O-E)^2/V

treat=1 20 16 24.21 2.784 5.784

treat=2 20 18 7.93 12.805 16.812

treat=3 20 17 18.86 0.184 0.303

Chisq = 17.7 on 2 degrees of freedom, p = 0.000141

The logrank test statistic is TLR = 17.7 (p-value = 0.000141). Therefore, we have strong

evidence against H0 : S1(t) = S2(t) = S3(t), that is, there is strong evidence that the

three chemotherapy treatments affect the survival rates differently.

REMARK : Note that rejection of H0 does not tell us which survivor function estimates

are statistically different. To see where the differences are explicitly, we could perform

pairwise tests with H0 : S1(t) = S2(t), H0 : S1(t) = S3(t), and H0 : S2(t) = S3(t). �
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