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ABSTRACT 1 

 2 
This research aims to investigate the application of zero-inflated models for different severity 3 

types in rural two-lane highway crashes. These roadways carry one-third of the total vehicle 4 

miles traveled (VMT) and have experienced a considerably high percentage of fatal crashes 5 

in Louisiana. A careful analysis indicates that a wide variety of factors appear to be 6 

associated with the crash dynamic of rural two-lane highways. The roadway variables 7 

include segment length, pavement width and type, shoulder type, and traffic volume. Crashes 8 

recorded from 2004 to 2011, of which 1,780 were fatal, and 36,569 resulted in injuries, were 9 

analyzed. It is found that there are a large number of highway segments which contain no 10 

crashes under the recorded years. To tackle this issue, zero-inflated models, zero-inflated 11 

Poisson (ZIP) models and zero-inflated negative binomial (ZINB) models, have been 12 

developed for crash frequencies of different severity types. The researchers of this study have 13 

used the qualitative values of the variables to develop the model for convenient 14 

interpretation. The results showed that specific categories of traffic flow, segment length, 15 

pavement type and width, and shoulder type were found to be statistically significant 16 

variables for total, injury, and property damage only (PDO) crashes. Two additional 17 

associations are: 1) wider shoulder and pavement width reduced the likelihood of crash 18 

occurrence, and 2) roadways with gravel-top pavements were inclined towards crash 19 

proneness. The findings of this paper will help highway professionals improve the safety 20 

outcome of rural two-lane roadways.  21 

 22 

 23 

Key words: rural two-lane highways, count data modeling, over dispersion, severity type, 24 

zero-inflated models.      25 



3 

Das and Sun 

INTRODUCTION 1 
 2 

Highway safety is a crucial issue in Louisiana. The State of Louisiana controls 60,937 miles 3 

of public road serving nearly 105,000 vehicle miles a day, and consisting of 46,959 miles of 4 

rural roads and 13,941 miles of urban roads. Nearly 58,000 miles of undivided rural 5 

roadways are two-lane in nature [1]. Each year, approximately 150,000 crashes occur, over 6 

90,000 of which are on the state-maintained highway system. In 2013, 703 people were 7 

killed and 70,658 were injured in highway crashes in Louisiana. Rural two-lane highways in 8 

this state carry one-third of the total vehicle miles traveled (VMT) and have experienced a 9 

considerably high percentage of fatal crashes. In 2012, approximately 35% of fatal crashes 10 

and 36% of fatalities in the entire state occurred on rural two-lane highways [2]. 11 

The conservative method of traffic safety research is to establish relationships 12 

between the roadway characteristics and crash occurrence.  It includes a wide-ranging 13 

exhibition of research areas and the most prominent of them is exploratory analysis of crash 14 

frequency data. In recent years attention has been increased at determining the key 15 

association factors affecting the injury severity outcome in traffic crashes. Count-data 16 

modeling methods are widely used for crash frequency analysis as the number of crashes on 17 

roadway segment per unit of time is a non-negative integer. Traditionally, highway safety 18 

analyses have used Poisson or negative binomial distributions to model crash counts for 19 

different levels of crash severity. Crashes recorded from 2004 to 2011, of which 1780 were 20 

fatal, 36,569 were injury crashes, and 48,996 resulted no injuries, were analyzed in this 21 

study.  A careful observation indicates that there are a large number of highway segments 22 

which contain no crashes under the recorded years. Zero-inflated models, zero-inflated 23 

Poisson (ZIP) and zero-inflated negative binomial (ZINB), have been developed in this study 24 

for crash frequencies of different severity types. These models effectively handle data 25 

characterized by an excessive amount of zeroes. The researchers of this study used the 26 

qualitative values of the variables to develop the model for convenient interpretation.  27 

 28 

LITERATURE REVIEW 29 

 30 
In recent literature, it has been suggested that traffic crashes can effectively be modeled by 31 

assuming a dual-state data-generating procedure which implies that geometric properties 32 

exist in one of two states—perfectly safe and unsafe. As a result, the ZIP and ZINB are two 33 

models that have been applied to account for the excessive zeroes frequently observed in 34 

crash count data. From the start, zero-inflated models have been widely popular among 35 

transportation safety researchers [4-7]. 36 

Zero-inflated models have been used in traffic safety studies to modeling crashes for 37 

different applications: single and multi-vehicle crashes on rural two-lane roads [3, 4, and 8]; 38 

single vehicle crashes in rural roadways [6], and vehicle-pedestrian crashes on urban and 39 

suburban areas [4]. In these studies, usage of the zero-inflated models has been justified by 40 

the test statistic of the Vuong test. The authors usually assumed that crashes must follow a 41 

dual-state process, with the exception of Miaou (1994). Miaou et al. first used ZIP structure 42 

for traffic crash analysis [3].  Shankar et al. presented an empirical review into the 43 

applicability of zero-inflated count data modeling to roadway segment crash frequencies [4]. 44 

The findings show that the ZIP structure models are sufficient enough to justify the model. A 45 

study by Lee et al. used zero-inflated count models and nested logit models for developing 46 
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crash frequency models and severity models. The findings also showed significant potential 1 

in applying these two techniques to single vehicle crash analysis [5]. In their study, Shankar 2 

et al. employed an empirical inquiry into the predictive modeling of crashes involving 3 

pedestrians and motorized traffic on roadways. Empirical models based on ZIP were 4 

presented and discussed in terms of their applicability to pedestrian crash phenomena [7]. 5 

The results showed that ZIP is effective enough to provide explanatory insights into the 6 

causality behind pedestrian-traffic crashes. In their paper, Lord et al. attempted to provide 7 

defensible guidance on how to appropriate model crash data. They used ZIP and ZINB to 8 

account for the dominance of excessive zeroes observed in crash count data [8].   9 

However, comparison of the traditional Poisson and negative binomial models with 10 

the ZIP and ZINB models for the frequency of different severity types has yet to be applied 11 

in traffic crash analysis research. In this study, we have applied ZINB and ZIP distributions 12 

to the eight years (2004-2011) of count dataset from Louisiana rural two-lane highways. In 13 

place of using continuous variables, this study uses the categorical recoding of the continuous 14 

variables. This study has applied the technique to total, injury and PDO crashes to evaluate 15 

the significance of the roadway categorical variables. These results provide robust support 16 

for the notion that the usage of the qualitative roadway factors in negative binomial modeling 17 

is adequate for developing the predictive model for rural two-lane highways. 18 

 19 

BACKGROUND 20 

 21 

Count Data Models 22 
To deal with the data and methodological issues associated with crash-frequency data, a wide 23 

variety of methods have been applied over the years. As crash-frequency data are non-24 

negative integers, the application of the standard ordinary least-squares regression (which 25 

assumes a continuous dependent variable) is not appropriate. Given that the dependent 26 

variable is a non-negative integer, most of the recent thinking in the field has used the 27 

Poisson regression model as a starting point. If the discrete random variable X is Poisson 28 

distributed with intensity or rate parameter , where   > 0, then X has probability mass 29 

function (pmf) 30 

...3,2,1,0;
!

)( 


k
k

e
kXP

k 
                                                                                     (1) 31 

This pmf is widely used to model many naturally occurring events where X represents 32 

the “number of events per unit of time or space”. It’s important to note that X takes only 33 

nonnegative integer values [9]. 34 

 35 

Zero-inflated Models 36 
Although the Poisson model has served as a starting point for crash-frequency analysis for 37 

several decades, researchers have often found that crash data exhibit characteristics that make 38 

the application of the simple Poisson regression (as well as some extensions of the Poisson 39 

model) problematic. In such a case, a modified version of a regular Poi( ) distribution, 40 

known as the ZIP distribution, becomes useful.  41 

Let Xi be the number of crashes on roadway section i in some specified time period 42 

and let i  be the probability that roadway section i will exist in the zero-crash state. Thus 1 -43 
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i  is the probability that a zero-crash observation actually follows a true Poisson 1 

distribution. 2 

The ZIP distribution with parameters i and i  has the following probability mass 3 

function: 4 

 5 
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                                                                                     (2) 6 

Here, 0 ≤ i ≤ 1 and i  ≥ 0. Henceforth, the probability mass function in (2) will be 7 

referred to as the ZIP( , ) distribution. The parameter i  gives the extra probability thrust 8 

at the value 0. Note that when i  = 0, then ZIP( i , i ) reduces to Poi( i ).  The probability   9 

may be set as a constant or may depend on regressors via a binary outcome model such as 10 

logit or probit.  11 

The equation (2) can be viewed as a finite mixture model with two components. The 12 

mixture weights for the two components are i  and 1 − i .  The mean and variance of ZIP( i ,13 

i ) are given as follows: 14 

 15 

 16 

                                                                                (3) 17 

 18 

The ZINB regression model follows a similar formulation with events, X= (X1, X2, …, 19 

Xn), being independent 20 
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where, 23 




1
  [  is the dispersion parameter] 24 

i

i






  25 

It’s important to note that the dispersion parameter, , relaxes the Poisson assumption 26 

that requires the mean to be equal to the variance by letting Var(Xi)= E(Xi)[l + E(Xi)]. 27 

The ZIP and ZINB regressions directly model the zeroes in the structural portion of 28 

the model. ZIP and ZINB models are generally considered as mixture models in which the 29 

complete distribution of the outcome is approximated by mixing two component 30 

distributions. The basic idea is to assume a logistic regression model for the ‘zero, and not 31 

zero’ aspect of the consequence and either a Poisson or negative binomial distribution for the 32 

count portion in the model. ZIP and ZINB are well suited for the models in which there are 33 

two procedures and where the factors of the two procedures vary [9]. 34 
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METHODOLOGY 1 

 2 

Data Preparation 3 
The source of traffic crash data was the Louisiana Department of Transportation and 4 

Development (LADOTD) crash database. The data was obtained in computer-ready form, 5 

which included coded information on reported crashes that occurred on the state highways in 6 

Louisiana. The coded information for each crash contains important attributes describing the 7 

conditions that contributed to the collision and the outcome. The final count dataset was 8 

prepared from the DOTD section data. The important roadway factors considered in the 9 

study include segment length, pavement type and width, shoulder type and width, and annual 10 

average daily traffic (AADT). These were categorized into subclasses from the original 11 

records as shown in Table 1.  12 

 13 

 14 
 15 

FIGURE 1 Crash frequencies of different severity types. 16 

 17 

 18 
There are a total of 7,779 rural two-lane roadway segments in each year’s crash 19 

dataset. The key variables available in the current dataset, related to roadway geometrics, 20 

were considered here. LADOTD maintained crash data doesn’t have details on other 21 

roadway geometrics like vertical and horizontal curve degree, deflection angle, and 22 

percentage of gradient. The segment length varies from 0.01 to 27.5 miles, with an average  23 

 24 
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TABLE 1 Percentage of Crash Frequencies by Key Variables 1 

          

Category Total Fatal Injury PDO 

SECTION_LENGTH     

0.00-0.50 5.31% 2.87% 4.78% 5.79% 

0.51-1.00 6.91% 5.00% 6.67% 7.16% 

1.01-2.00 11.96% 10.45% 11.61% 12.28% 

2.01-3.00 13.76% 13.43% 13.86% 13.69% 

3.01-4.00 12.96% 13.03% 13.34% 12.68% 

4.00 above 49.10% 55.22% 49.74% 48.40% 

ADT     

0-2000 32.49% 36.12% 33.61% 31.52% 

2001-6000 45.94% 46.07% 45.91% 45.96% 

6001-10000 14.95% 12.42% 14.61% 15.29% 

10001-20000 6.56% 5.34% 5.82% 7.16% 

20000 above 0.06% 0.06% 0.05% 0.06% 

SHOULDER_TYPE     

Shoulder < 6 ft. 59.11% 58.43% 59.69% 58.70% 

Shoulder > 6 ft. 40.02% 41.01% 39.57% 40.32% 

Curb and Gutter 0.82% 0.51% 0.69% 0.93% 

No Info. 0.05% 0.06% 0.05% 0.05% 

PAVEMENT_TYPE     

Bituminous Concrete  92.67% 93.93% 92.44% 92.80% 

Bituminous 6.43% 5.76% 6.73% 6.20% 

PCC Concrete 0.73% 0.20% 0.65% 0.77% 

Gravel 0.07% 0.00% 0.06% 0.13% 

No Info. 0.10% 0.11% 0.11% 0.09% 

PAVEMENT_WIDTH     

Wide 54.64% 51.80% 53.97% 55.25% 

Narrow 44.63% 47.58% 45.29% 44.03% 

Very Wide 0.73% 0.62% 0.74% 0.72% 

     

of 2.26 miles. The pavement width varies from 18 to 38 ft, with an average of 22 ft. The 2 

shoulder width varies from 0 to 21 ft, with an average of 4.2 ft. The AADT value varies from 3 

0 to 24100, with an average of 2,447. The originally defined crash types (fatal, severe, 4 

moderate, complaint and PDO) have been re-categorized into the four groups (total, fatal, 5 

injury and PDO). The percentages of the crash frequencies by key variables are listed in 6 

Table 1. 7 

The frequency of crash severity from 2004 to 2011 is illustrated in Figure 1. The 8 

highest number of crashes happened in 2007. PDO and Injury crashes are more frequent than 9 

severe or fatal crashes with a sudden decline visible in 2008. 10 
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 1 
FIGURE 2 Crash frequency of different count of crashes per segment. 2 

 3 
In the DOTD control section databases, there are 7,779 control sections in rural two-4 

lane highways in each year’s dataset. There are a significant number of highway segments 5 

where no crashes occurred in the eight years of period (2004-2011). Figure 2 illustrates the 6 

crash frequencies of the segments for different types of crash severities.  7 

 8 

Modeling Results 9 
The main objective of modeling with several variables simultaneously was to permit greater 10 

insight into the relative effects of the different roadway geometric variables on crashes. It is 11 

also important to know that there are a large number of variables (some of them are 12 

redundant in model development) apart from traffic flow and length that might contribute to 13 

crashes. The variable selection is based on extensive literature review and principle 14 

component analysis of the preliminary dataset. Modeling was undertaken for three stages of 15 

traffic severities—total, injury and PDO crashes. We have used Poisson, negative binomial, 16 

ZIP and ZINB models for all  three different datasets. The model development in this paper 17 

was performed by using open source statistical “R Version 3.02” software [10].  18 

The coefficients for both the non-zero-crash state and the zero-crash state were found 19 

to be statistically significant and of plausible sign. The results of the ZIP and ZINB models 20 

are shown in Table 2 and Table 3.  21 



 

TABLE 2 Zero-Inflated Poisson (ZIP) Coefficients 1 

 2 

  Total Crashes Injury Crashes PDO Crashes 

 Estimate Std. Error z value Pr(>|z|) Estimate Std. Error z value Pr(>|z|) Estimate Std. Error z value Pr(>|z|) 

Count model coefficients (Poisson with log link)       

(Intercept) -0.996 0.123 -8.079 0.000 -1.981 0.282 -7.028 0.000 -1.270 0.176 -7.225 0.000 

SECTION_LENGTH0.51-1.00 0.422 0.063 6.676 0.000 0.442 0.156 2.829 0.005 0.389 0.095 4.107 0.000 

SECTION_LENGTH1.01-2.00 0.868 0.056 15.474 < 2e-16 0.889 0.139 6.388 0.000 0.857 0.084 10.238 < 2e-16 

SECTION_LENGTH2.01-3.00 1.280 0.055 23.209 < 2e-16 1.350 0.135 9.989 < 2e-16 1.163 0.083 14.066 < 2e-16 

SECTION_LENGTH3.01-4.00 1.556 0.056 28.008 < 2e-16 1.662 0.136 12.260 < 2e-16 1.435 0.083 17.255 < 2e-16 

SECTION_LENGTH4.00 above 2.066 0.052 39.753 < 2e-16 2.167 0.131 16.550 < 2e-16 1.988 0.078 25.522 < 2e-16 

ADT2001-6000 0.927 0.021 43.285 < 2e-16 0.920 0.039 23.854 < 2e-16 0.907 0.031 29.047 < 2e-16 

ADT6001-10000 1.537 0.028 54.429 < 2e-16 1.554 0.049 31.928 < 2e-16 1.539 0.040 38.455 < 2e-16 

ADT10001-20000 1.870 0.038 49.247 < 2e-16 1.819 0.066 27.528 < 2e-16 1.860 0.052 35.596 < 2e-16 

ADT20000 above 2.843 0.175 16.293 < 2e-16 2.653 0.294 9.020 < 2e-16 2.922 0.223 13.094 < 2e-16 

PAVEMENT_WIDTHVery Wide -0.367 0.123 -2.978 0.003 -0.142 0.208 -0.681 0.496 -0.533 0.180 -2.952 0.003 

PAVEMENT_WIDTHWide 0.083 0.020 4.236 0.000 0.065 0.034 1.938 0.053 0.062 0.027 2.252 0.024 

SHOULDER_TYPENo Info. -0.552 0.288 -1.920 0.055 -0.300 0.534 -0.561 0.575 -0.454 0.473 -0.961 0.337 

SHOULDER_TYPEShoulder < 6 ft. 0.236 0.121 1.958 0.050 0.272 0.285 0.956 0.339 0.090 0.172 0.525 0.600 

SHOULDER_TYPEShoulder > 6 ft. 0.040 0.120 0.331 0.741 0.086 0.285 0.301 0.764 -0.105 0.172 -0.610 0.542 

Zero-inflation model coefficients (binomial with logit link)       

(Intercept) 1.917 0.291 6.576 0.000 2.450 0.539 4.547 0.000 2.131 0.353 6.033 0.000 

SECTION_LENGTH0.51-1.00 -1.075 0.142 -7.598 0.000 -1.226 0.313 -3.914 0.000 -1.032 0.188 -5.496 0.000 

SECTION_LENGTH1.01-2.00 -1.421 0.127 -11.223 < 2e-16 -1.688 0.270 -6.249 0.000 -1.233 0.160 -7.722 0.000 

SECTION_LENGTH2.01-3.00 -1.707 0.132 -12.945 < 2e-16 -2.084 0.263 -7.932 0.000 -1.781 0.171 -10.411 < 2e-16 

SECTION_LENGTH3.01-4.00 -1.738 0.138 -12.632 < 2e-16 -2.045 0.258 -7.937 0.000 -1.791 0.173 -10.330 < 2e-16 

SECTION_LENGTH4.00 above -2.164 0.119 -18.129 < 2e-16 -2.376 0.230 -10.339 < 2e-16 -2.006 0.148 -13.588 < 2e-16 

ADT2001-6000 -0.562 0.084 -6.715 0.000 -0.522 0.127 -4.101 0.000 -0.614 0.095 -6.457 0.000 

ADT6001-10000 -0.656 0.138 -4.757 0.000 -0.579 0.190 -3.047 0.002 -0.577 0.146 -3.942 0.000 

ADT10001-20000 -0.767 0.220 -3.481 0.000 -0.850 0.304 -2.801 0.005 -0.982 0.239 -4.107 0.000 

ADT20000 above -12.709 1.2E+03 -0.011 0.991 -13.504 1.8E+03 -0.007 0.994 -13.288 1.4E+03 -0.009 0.993 

PAVEMENT_WIDTHVery Wide -0.499 4.2E-01 -1.202 0.230 0.344 5.0E-01 0.692 0.489 -0.685 5.2E-01 -1.322 0.186 

PAVEMENT_WIDTHWide -0.385 0.087 -4.437 0.000 -0.453 0.131 -3.465 0.001 -0.421 0.097 -4.357 0.000 

SHOULDER_TYPENo Info. -0.283 7.5E-01 -0.378 0.705 0.464 1.0E+00 0.446 0.656 -0.193 0.941 -0.205 0.837 

SHOULDER_TYPEShoulder < 6ft. -0.384 0.280 -1.375 0.169 -0.544 0.553 -0.983 0.325 -0.282 0.343 -0.821 0.411 

SHOULDER_TYPEShoulder > 6ft. -0.651 2.8E-01 -2.328 0.020 -0.778 5.5E-01 -1.404 0.160 -0.537 0.342 -1.568 0.117 

PAVEMENT_TYPEBituminousConcrete -0.549 0.096 -5.745 0.000 -0.668 0.133 -5.016 0.000 -0.638 0.107 -5.982 0.000 

PAVEMENT_TYPEGravel 0.470 0.359 1.309 0.190 1.393 0.512 2.721 0.007 0.328 0.416 0.789 0.430 

PAVEMENT_TYPENo Info. 14.038 3.2E+02 0.044 0.965 13.139 3.7E+02 0.035 0.972 13.705 3.4E+02 0.040 0.968 

PAVEMENT_TYPEPCC Concrete -0.902 3.2E-01 -2.788 0.005 -0.882 4.5E-01 -1.971 0.049 -0.349 3.3E-01 -1.058 0.290 

 3 
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TABLE 3 Zero-Inflated Negative Binomial (ZINB) Coefficients 1 

 2 

  Total Crashes Injury Crashes PDO Crashes 

 Estimate Std. Error z value Pr(>|z|) Estimate Std. Error z value Pr(>|z|) Estimate Std. Error z value Pr(>|z|) 

Count model coefficients (negbin with log link)       

(Intercept) -1.693 0.189 -8.965 < 2e-16 -2.764 0.264 -10.480 < 2e-16 -2.218 0.324 -6.840 0.000 

SECTION_LENGTH0.51-1.00 0.549 0.096 5.687 0.000 0.389 0.162 2.404 0.016 0.612 0.132 4.627 0.000 

SECTION_LENGTH1.01-2.00 1.087 0.091 12.010 < 2e-16 0.989 0.158 6.278 0.000 1.140 0.127 8.975 < 2e-16 

SECTION_LENGTH2.01-3.00 1.529 0.091 16.870 < 2e-16 1.518 0.160 9.517 < 2e-16 1.508 0.128 11.758 < 2e-16 

SECTION_LENGTH3.01-4.00 1.815 0.094 19.210 < 2e-16 1.826 0.160 11.395 < 2e-16 1.720 0.130 13.263 < 2e-16 

SECTION_LENGTH4.00 above 2.416 0.086 28.106 < 2e-16 2.419 0.155 15.640 < 2e-16 2.406 0.120 20.006 < 2e-16 

ADT2001-6000 0.970 0.041 23.778 < 2e-16 0.992 0.044 22.540 < 2e-16 0.966 0.048 20.185 < 2e-16 

ADT6001-10000 1.600 0.062 25.672 < 2e-16 1.626 0.066 24.713 < 2e-16 1.603 0.072 22.171 < 2e-16 

ADT10001-20000 2.040 0.101 20.221 < 2e-16 1.912 0.101 18.922 < 2e-16 2.002 0.108 18.551 < 2e-16 

ADT20000 above 2.966 0.868 3.416 0.001 2.815 0.798 3.529 0.000 3.183 0.890 3.575 0.000 

PAVEMENT_WIDTHVery Wide -0.190 0.208 -0.913 0.361 0.091 0.272 0.335 0.737 -0.446 0.234 -1.903 0.057 

PAVEMENT_WIDTHWide 0.170 0.039 4.398 0.000 0.172 0.043 4.039 0.000 0.161 0.045 3.554 0.000 

SHOULDER_TYPENo Info. -0.318 0.456 -0.696 0.486 -0.089 0.606 -0.147 0.883 -0.427 0.455 -0.939 0.348 

SHOULDER_TYPEShoulder < 6 ft. 0.367 0.182 2.017 0.044 0.525 0.245 2.139 0.032 0.339 0.311 1.092 0.275 

SHOULDER_TYPEShoulder > 6 ft. 0.269 0.182 1.474 0.140 0.436 0.245 1.781 0.075 0.199 0.317 0.628 0.530 

Log(theta) 0.327 0.054 6.082 0.000 0.601 0.059 10.133 < 2e-16 0.301 0.059 5.075 0.000 

Zero-inflation model coefficients (binomial with logit link)       

(Intercept) 1.290 0.668 1.933 0.053 2.979 0.952 3.127 0.002 1.074 2.648 0.406 0.685 

SECTION_LENGTH0.51-1.00 -1.895 0.500 -3.790 0.000 -5.798 3.069 -1.889 0.059 -1.679 0.540 -3.108 0.002 

SECTION_LENGTH1.01-2.00 -1.981 0.358 -5.530 0.000 -4.100 0.809 -5.065 0.000 -1.739 0.438 -3.975 0.000 

SECTION_LENGTH2.01-3.00 -2.373 0.403 -5.896 0.000 -4.551 0.932 -4.881 0.000 -2.756 0.484 -5.699 0.000 

SECTION_LENGTH3.01-4.00 -2.190 0.410 -5.343 0.000 -3.985 0.732 -5.447 0.000 -3.887 1.160 -3.351 0.001 

SECTION_LENGTH4.00 above -2.401 0.308 -7.786 0.000 -4.167 0.533 -7.821 0.000 -2.751 0.393 -7.003 0.000 

ADT2001-6000 -0.645 0.255 -2.528 0.011 -0.815 0.365 -2.234 0.025 -1.245 0.367 -3.389 0.001 

ADT6001-10000 -0.443 0.367 -1.205 0.228 -1.062 0.513 -2.071 0.038 -0.853 0.600 -1.421 0.155 

ADT10001-20000 -0.505 0.559 -0.903 0.367 -3.272 1.587 -2.062 0.039 -3.080 3.352 -0.919 0.358 

ADT20000 above -12.709 2.6E+03 -0.005 0.996 -13.504 5.0E+03 -0.003 0.998 -13.288 8.5E+03 -0.002 0.999 

PAVEMENT_WIDTHVery Wide -0.178 7.4E-01 -0.240 0.810 2.387 9.0E-01 2.663 0.008 -2.280 6.0E+00 -0.379 0.705 

PAVEMENT_WIDTHWide -0.540 0.257 -2.097 0.036 -0.275 0.376 -0.732 0.464 -0.793 0.412 -1.924 0.054 

SHOULDER_TYPENo Info. 0.241 1.8E+00 0.136 0.892 2.348 1.9E+00 1.220 0.222 -7.379 31.222 -0.236 0.813 

SHOULDER_TYPEShoulder < 6ft. -0.191 0.642 -0.297 0.767 -0.193 0.851 -0.227 0.821 0.775 2.714 0.285 0.775 

SHOULDER_TYPEShoulder > 6ft. -0.460 6.6E-01 -0.699 0.485 0.168 8.2E-01 0.206 0.837 0.058 2.830 0.020 0.984 

PAVEMENT_TYPEBituminousConcrete -1.081 0.219 -4.945 0.000 -2.400 0.496 -4.841 0.000 -1.268 0.258 -4.914 0.000 

PAVEMENT_TYPEGravel 0.658 0.528 1.247 0.212 2.266 0.710 3.190 0.001 0.572 0.591 0.968 0.333 

PAVEMENT_TYPENo Info. 14.038 2.9E+02 0.049 0.961 13.140 4.9E+02 0.027 0.979 17.709 4.1E+01 0.433 0.665 

PAVEMENT_TYPEPCC Concrete -2.218 1.4E+00 -1.626 0.104 -2.514 1.1E+00 -2.302 0.021 -0.562 1.1E+00 -0.530 0.596 

3 



 

The idea of zero-inflated model is simple: it assumes that the outcomes originate from 1 

two processes. One process models zero inflation, the second models the non-zero counts 2 

using ZIP or ZINB. By observing the values from Tables 2 and 3, we find that the all types of 3 

segment length, all ADT values, and wide pavement were significant for the count model 4 

part of both models because the associated p value of these factors is less than 5%. We 5 

remark that the categories of variables, i.e. all types of segment length, low volume ADTs, 6 

wide pavement, specific shoulder types and bituminous pavements were statistically 7 

significant for the zero-inflated part.   8 

An increasing unit value of these categories was found to reduce the likelihood of 9 

rural two-lane highway crash occurrence. For example, the variable ADT2001-6000 in the 10 

ZIP model has a coefficient of -0.562 for the model developed for total crashes; this category 11 

is statistically significant. In ADT categories, when the ADT values were over 20,000, the 12 

category was less significant in the ZIP model for total, injury and PDO crashes. But in ZINB 13 

model, ADT values were significant for only the 2001-6000 level for total and PDO crashes. 14 

Wide pavement is consistent in significance for total, injury and PDO crashes in ZIP models 15 

while wide pavement is only significant for total crashes in ZINB model. Shoulder type 16 

seems insignificant for both models. An exception is found for one specific shoulder type 17 

(shoulder width > 6ft.) which is significant only for total crashes in ZIP model.  When the 18 

pavement type is bituminous, it is statistically significant in crash reduction for all types of 19 

crashes in both models. For the PCC concrete pavements, the significance is not sufficient for 20 

fatal and PDO crashes. Pavement with gravel top generally increases the crashes for all types 21 

of crashes, especially more significant for injury crashes in both models. The ZIP and ZINB 22 

models fail to clearly explain the data of fatal crashes because of excessive amount of zero 23 

values; that is why the results for fatal crashes are excluded in the tables.  24 

The Pearson residual values and other statistical output comparison for both models 25 

are listed in Table 4.  26 

 27 

TABLE 4 Model Comparison 28 
                

    ZIP Model ZINB Model 

    
Total  

Crashes 

Injury  

Crashes 

PDO  

Crashes 

Total  

Crashes 

Injury  

Crashes 

PDO  

Crashes 

Pearson Residuals Min -2.832 -2.278 -2.411 -1.114 -1.227 -1.104 

 Median -0.358 -0.338 -0.337 -0.319 -0.363 -0.311 

 Max 31.833 23.370 26.111 29.370 26.505 24.689 

Iteration (BFGS)  38 40 38 42 64 97 

logL  -1.03E+04 -8.32E+03 -1.03E+04 -1.23E+04 -7.95E+03 -9.45E+03 

DOF  34 34 34 35 35 35 

Theta         1.38 1.82 1.35 

        

From the investigation of the model output, it can be said that wider shoulder and 29 

pavement were found to reduce the likelihood of crash occurrence in rural two-lane 30 

highways. Gravel-top pavements are inclined to crash proneness according to both of the 31 

models. Lower values of AADT is significant for reducing the likelihood of crashes.  32 

 33 

 34 

 35 



 12 

Model Validation 1 
Vuong has introduced a test that is a well-suited approach to compare zero-inflated models to 2 

the conventional models for counts data [11].  It is based on a comparison of the predicted 3 

probabilities of two models that do not nest (e.g., ZIP versus ordinary Poisson, or ZINB 4 

versus ordinary negative binomial). A large, positive test statistic provides evidence of the 5 

superiority of model 1 over model 2, while a large, negative test statistic is evidence of the 6 

superiority of model 2 over model 1. Under the null that the models are indistinguishable, the 7 

test statistic is asymptotically distributed standard normal. The Vuong statistics is 8 

S

N
V


                                                                                                                             (5) 9 

where, 10 











(.)

(.)
ln

2

1

pdf

pdf
  [where,  is the ratio of pdf1(.) is the ZNB/ZIP pdf and pdf2(.) is the pdf of 11 

NB/Poisson] 12 

S= Standard deviation 13 

N= Sample size 14 

 15 

TABLE 5 Vuong Test Statistic 16 

 17 

Severity Types 

ZINB  

versus  

negative binomial 

Vuong  

Test-Statistic 
p-value 

ZIP  

versus  

Poisson 

Vuong  

Test-Statistic 
p-value 

Total Crashes ZINB > NB 2.6410 0.0041 ZIP > Poisson 15.164 0.0000 

Injury Crashes ZINB > NB 2.1639 0.0152 ZIP > Poisson 8.1841 0.0000 

PDO Crashes ZINB > NB 3.4129 0.0003 ZIP > Poisson 12.7071 0.0000 

 18 

When the test statistic value > 1.96 (the 95% confidence level for the t-test), the 19 

ZINB or ZIP model is more significant than traditional negative binomial or Poisson model. 20 

From Table 5, we find that the ZIP and ZINB models are showing better performance than 21 

conventional Poisson or negative binomial model for total, injury and PDO crashes.  22 

 23 

Limitations 24 
The intent of this research is to examine ZIP and ZINB models that could potentially explain 25 

crash frequencies on rural two-lane roadway segments for different severity types. Vuong 26 

test results indicate that ZIP and ZINB models give better prediction than conventional 27 

Poisson and negative binomial models. Lord explained that although zero-inflated models 28 

offer improved statistical fit to crash data in many cases, it is argued that the inherent 29 

assumption of a dual state process underlying the development of these models is 30 

inconsistent with crash data [8]. He also explained in his paper that if the only goal consists 31 

of finding the best statistical fit then the zero-inflated models may be appropriate, since they 32 

offer improved statistical fit compared to Poisson or negative binomial models. This research 33 

aims to utilize ZIP and ZINB models to investigate the significance of the recoded 34 

categorical values of the geometric factors for traffic crashes of different severities which has 35 

not been done extensively in crash data analysis before. The comparison of the model output 36 

clearly distinguishes the influence of the key factors on different severity types. The recoding 37 

of the continuous variables to the categorical values was performed for easier interpretation. 38 



 13 

One future scope of this research is to introduce non-parametric statistical methods to the 1 

extended dataset to compare the statistical significance. 2 

 3 

CONCLUSIONS 4 

 5 

In this paper, ZIP and ZINB models were estimated to identify the impact of key geometric 6 

factors contributing to crashes of different severities. Specifically, our aim was to determine 7 

whether the factors contributing to one particular severity were different for other types of 8 

severities. The models were developed for all types of crash severity counts occurring on the 9 

rural two-lane highway segments of Louisiana for eight years (2004–2011). Based on the test 10 

statistic, ZIP and ZINB models provided a better fit than conventional Poisson or negative 11 

binomial model for total, injury and PDO crashes. From the modeling results, several 12 

categories of segment length, pavement type and width, traffic volume and shoulder type 13 

were found to be significant in predicting total, injury and PDO crashes. The findings also 14 

confirmed that wider shoulder and pavement were found to be associated with the reduction 15 

of the likelihood of crash occurrence on rural two-lane highways. Although only 0.07% of 16 

the pavements are gravel-top pavements, but these pavements were found to be associated 17 

with crash proneness according to both of the models. Lower values of AADT was 18 

significantly associated in reducing the likelihood of crashes. The findings of this study are 19 

suggestive but limited as these models were based only on rural two-lane highways in 20 

Louisiana.  21 

 22 
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