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Preface
	

In recent years, artificial intelligence (AI) has become a driving force in 
many research areas. Both AI and highway safety have gained much attention 
individually. The recent increase of AI applications (in various sectors of 
transportation engineering) has become a new trend in solving complex engineering 
problems due to their advantages of precision and performance efficiency. For 
this reason, the application of AI in highway safety has recently garnered the 
interest of many researchers. This book is a result of my efforts to provide 
information on the latest applications of AI in highway safety-related issues. This 
book not only draws on my own previous and ongoing works on AI in highway 
safety, but also reflects the emerging knowledge and experience in this disruptive 
field. This book is intended as a reference for undergraduate and graduate 
students in transportation engineering and will also be useful for those interested 
in research. 

This book is not intended to be a comprehensive reference for AI algorithms. 
Only highway safety research-related AI basics are provided in this book. For 
more in-depth knowledge of the algorithms, readers can consult an abundance of 
AI books. This book’s purpose is to provide transportation engineering students 
with a basic knowledge of AI concepts and their applications in highway safety 
problems. I hope to get the readers interested in finding state-of-the-art AI 
solutions for solving highway safety engineering problems. This book includes 
basic conceptual information about popular algorithms with the inclusion of case 
studies and example problems with codes. For the convenience of the readers, 
all relevant data and codes are made public by open-sourcing codes and data 
in GitHub (https://github.com/subasish/AI_in_HighwaySafety). The majority 
of the codes used in this book were developed using R (https://www.r-project. 
org/). I published most codes of this book in RPubs (https://rpubs.com/subasish). 
Additional example problems and relevant codes are also included in the GitHub 
repo and RPubs which are not included in the current version of the book. 

I want to thank my wife Anandi and my daughter Suha for their enormous 
support. Without their support, this book would never have been completed. 
Valerie and Magdalena helped me enormously in editing this book. I am indebted 

https://www.rpubs.com
https://www.r-project.org
https://www.github.com
https://www.r-project.org
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to them. I would like to thank Debangana Banerjee for developing an excellent 
book cover for this book. I have delayed the submission deadlines several times. I 
would like to thank my publisher Vijay Primlani for his patience. 

This is my first book. I know that there are many shortcomings 
in it. I will keep improving this book in the upcoming editions. You 
are most welcome to send your comments and feedback to me at 
subasishsn@gmail.com.

 Subasish Das, Ph.D. 
February 12, 2022 

mailto:subasishsn@gmail.com
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chapter 

1 

Introduction 

1.1. Highway Safety 
Highway safety has become an emerging research area due to the rise in disruptive 
technologies such as connected and automated vehicles (CAV). One critical 
marketing aspect of autonomous vehicles (AV) is their capability to remove the 
human error component from the driving paradigm. It is generally said that over 
90% of traffic crashes are due to human errors. 

Highway safety is mainly associated with the reduction of either traffic crashes 
or the severity of crashes. Crash data analysis methodologies have a history of 
over a hundred years (see Figure 1). These methodologies mainly aim to improve 
highway safety by reducing crashes or crash-related injuries. Although many 
highway safety researchers alternatively use the term ‘accident,’ the usage of the 
term ‘crash’ is preferable as crash solely indicates ‘road traffic crashes.’ The term 
‘accident’ can alternatively indicate any kind of accident, such as an industrial 
accident. From 1910, the term ‘crash’ was first introduced as an alternative to 
‘collision.’ The first accident theory evolved during the early 20th century. Five 
major theories have evolved over the years: crashes as random events, crash 
proneness theory, causal crash theory, systems theory, and behavioral theory 
(Elvik et al., 2009). 

Figure 1. Theories on highway safety research. 
Adapted from: Elvik et al., 2009 

Analytical tools and methods for measuring the prospective impacts of crashes 
as a result of decisions made in design, planning, operations, and maintenance are 
provided in the first edition of the Highway Safety Manual (HSM). Agencies are 
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aided by the information within the HSM in their attempts to include safety in 
decision-making procedures. The HSM is specifically written for practitioners at 
the local, metropolitan planning organization (MPO), county, or state level. The 
HSM is not proposed to be nor establishes legal guidelines for professionals or 
users about the information contained within it. The use or nonuse of the HSM 
cannot create or impose any standard of conduct or any duty toward any person 
or the public. Publications such as the Association of American State Highway 
Transportation Officials (AASHTO)’s “Green Book,’’ entitled ‘A Policy on 
Geometric Design of Highways and Streets,’other AASHTO and agency manuals, 
or guidelines, and policies, or the Federal Highway Administration’s (FHWA) 
Manual on Uniform Traffic Control Devices (MUTCD), are not superseded by the 
HSM. Additionally, the first edition of the HSM is limited to roadway geometry 
and a few operational characteristics such as aggregate level traffic volume. 
Many significant operating measures, such as operating speed, have not been 
considered in the HSM models. Countries such as Sweden, Australia, and New 
Zealand adopted safe system approaches (focusing on four pillars: safe roads, 
safe road users, safe speeds, and safe vehicles) decades ago. Adopting safe system 
approaches showed significant safety improvement. In 2022, the United States 
Department of Transportation (USDOT) adopted safe system (by adding a new 
pillar known as ‘post-crash care’) as the key safety strategy. 

There is a need for new methodologies that can provide better safety 
improvements. The current book can be considered as a starting point in exploring 
different AI techniques and how to apply them in highway safety improvements. 
A brief overview of highway safety and its major components is provided in 
Chapter 2. 

1.2.	 Artificial Intelligence 
1.2.1.	 Idea of Artificial Intelligence 
As a result of their intelligence, humans are known as Homo sapiens (man the 
wise). Humans have attempted for thousands of years to better their welfare by 
learning how to think such that they can understand, predict, and influence the 
world. Human-level intelligence is created within the field of artificial intelligence 
(AI), and it can be used in solving many difficult and unsolved problems. 

AI recently became a field of science and engineering (see Figure 2 to 
understand the sub-domains of AI). Soon after World War II, work in this area 
started in earnest, and the name was coined in 1956. There are a large variety 
of subfields contained in AI, including general topics, such as perception and 
learning, and more specific topics, such as proving mathematical theorems, 
playing Go, driving an AV, writing poetry, and diagnosing diseases. AI is truly 
a universal field and is relevant to intellectual tasks. Some major fields of AI 
include: 
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•		Machine learning: Detecting and extrapolating patterns, and adapting to new 
circumstances. 

•		Natural language processing: Enabling automated knowledge extracted from 
unstructured data. 

Figure 2. AI, machine learning, and deep learning. 

•		Knowledge representation: Showing what is heard or known. 
•		Automated reasoning: Answering questions to multi-faceted environments. 

1.2.2. History of AI 
The concept of “the mind” is not very old. It arose during the seventeenth century, 
along with modern science and modern mathematics. These historical roots of 
AI would require a separate book by itself. Many AI books provide different 
perspectives on its history. Some of the key milestones are listed in Table 1, but 
this table is not comprehensive. Readers need to consult other relevant books to 
know all roots associated with the history of AI. Figure 3 illustrates the timeline 
of the major AI algorithms over the years. 

Figure 3. History of key AI algorithms. 

1.2.3.	 Statistical Model vs. AI Algorithm: Two Cultures 
One can think of data as being presented by a vector of input variables x 
(explanatory variables) entering on one side and the target variables y exiting 
on the other (see Figure 4). Essentially, a response variable is a function of 
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Table 1. Some of the key milestones of AI 

Year Milestones 
1931	 Kurt Gödel's first-order predicate logic. 
1937	 The limits of intelligent machines with the halting problem were identified. 
1943	 Neural networks were modeled and the connection to propositional logic was 

made by McCulloch and Pits. 
1950	 Machine intelligence was defined with the Turing test 
1951	 Marvin Minksy’s neural network machine was developed. 
1955	 Arthur Samuel’s learning checkers program, which plays better than its 

developer, was developed. 
1956	 First Artificial Intelligence conference, was organized by McCarthy in 

Dartmouth College. 
1958	 McCarthy’s invention of high-level language LISP. 
1959	 The Geometry Theorem Prover was built by Gelernter (IBM). 
1961	 Human thought was imitated by the General Problem Solver (GPS) by Newell 

and Simon. 
1965 The resolution calculus for predicate logic was invented by Robinson.
 
1966 Eliza carried out dialog with people in a natural language.
 
1969 The perceptron, a very simple neural network, can only represent linear 


functions, was shown in the book Perceptrons by Minsky and Papert. 
1972 The logic programming language PROLOG was invented by Alain 

Colmerauer. 
1976	 MYCIN, an expert system for the diagnosis of infectious diseases, capable of 

dealing with uncertainty, was developed by Shortliffe and Buchanan. 
1981	 The Fifth Generation Project was begun by Japan with the goal of building a 

powerful PROLOG machine. 
1986	 Renaissance of neural networks by Hinton, Rumelhart, and Sejnowski, among 

others. 
1990	 Probability theory was brought into AI with Bayesian networks by Pearl, 

Cheeseman, Whittaker, Spiegalhalter. 
1992		 The power of reinforcement learning was shown by the Tesauros TD-gammon 

program. 
1993	 Proposal made by Worldwide RoboCup to build soccer playing autonomous 

robots. 
1995	 Vapnik developed support vector machines from statistical learning theory, 

which are very important today. 
1997	 Gary Kasparov was defeated by IBM’s chess computer Deep Blue. 
2009		 The first Google self-driving car was driven on the California freeway. 
2011		 Two human champions were beaten by IBM’s “Watson” . 
2014		 Generative adversarial network was introduced by Ian Goodfellow 
2015		 Deep learning enabled quality image classification. Google self-driving cars 

were driven over one million miles and operated within cities. 
2016		 The Go program AlphaGo by Google DeepMind beat one of the world’s best 

Go players, Korean Lee Sedol 
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Figure 4. Statistical model vs. AI algorithm. 

parameters, independent variables, and random noise. The parameter values can 
be estimated from the data and then a model with a structured equation can be 
used for prediction. So, the real word problem of the unknown environment can 
be depicted by the structural form of a statistical model. On the other hand, AI 
employs a different method to find the solution. It aims to find a function in the 
form of an algorithm that operates on x to predict the response y. These algorithms 
do not produce a structured equation, but rather they provide emphasis. Thus, AI 
models are sometimes known as ‘black box’ models. 

The most common method for performing highway safety research is 
historical crash data analytics or predictive analysis. Historical traffic crash data, 
along with related contributing factors like roadways, traffic, and surrounding 
variables, are employed to develop crash prediction models. A basic interpretation 
of complicated crash data is provided by the crash prediction model. Two basic 
categories are the basis of the overall crash data analysis: classification analysis 
(crash injury types) and frequency analysis (crash counts). A visual of the trade-
offs associated with these methods (the traditional statistical model in black 
triangles, triangles 1, 2 and 3, the data-driven or machine learning or AI model in 
the purple triangle ∆m1m2m3, the endogeneity/heterogeneity model in the dotted 
red triangle ∆e1e2e3, the causal inference model in the green triangle ∆c1c2c3, 
and the explainable AI model in the deep blue dotted triangle ∆x1x2x3) regarding 
three performance measures (causal inference capability, predictive accuracy, and 
big data applicability), shown at each node of the largest grey triangle, ∆ABC, 
is shown in Figure 5. If the node of any methodology-based triangle is close to 
any of the performance measure nodes (e.g., A, B, or C), it indicates that the 
methodology is good at that specific performance measure. For example, a 
data-driven or machine learning model in the purple triangle ∆d1d2d3 has two 
nodes d1 and d2 which are closer to predictive capability (node A) and big data 
suitability (node B), respectively. However, the third node m3 is far away from 
causality/inference capability (node C). The explainable AI model’s inference 
capability is higher than that of other AI models (see the location of x3) shown 
in the figure. The overall interpretation is that data-driven methods (AI and 
explainable AI) are good at prediction and big data analysis; however, this method 
falls short in interpretation (Mannering et al., 2020). With the rise of interpretable 
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or explainable AI, data-driven methods can also mitigate the gap in inference 
capability (see ∆x1x2x3). 

Figure 5. Tradeoffs between key modeling techniques. 

1.3.	 Application of Artificial Intelligence in 
Highway Safety 

With the massive amount of highway safety-related data, easily accessible 
computational power, and numerous AI algorithms, highway safety research 
has evolved from traditional statistical analysis to combine the power of AI and 
statistical learning. More and more data-driven studies on highway safety topics 
have been published recently. Many insights and patterns have been revealed that 
were not found with traditional data collection techniques, such as surveys and 
conventional statistical analysis methods. However, with a plethora of literature 
available now on the topic, there is a need for conducting a thorough literature 
review on AI applications in the highway safety field. Readers can consult a study 
(Das et al., 2020), which provides a comprehensive review on applications of AI 
algorithms in highway safety. 

1.4.	 Book Organization 

This book is organized into eleven chapters, each covering aspects of artificial 
intelligence in highway safety. Each chapter contains relevant case studies, 
example problems, or both. It is followed by appendices that further offer 
explanations over topics and practice over areas such as identifying datasets, 
performing data fusion, developing interactive maps, and applying different 
AI techniques. 



 

	

7 Introduction 

Chapter Conclusion 

This chapter offers a brief introduction to highway safety and AI, including 
AI history, algorithms, and applications within highway safety. The enormous 
growth of AI applicability in highway safety indicates that many current research 
problems associated with highway safety can be resolved by AI in the future. 
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chapter 

2 

Highway Safety Basics 

2.1. Introduction 
Highway safety research encompasses the study of traffic crashes and their 
effects on transportation systems. The emphasis is mostly on crash outcomes 
(i.e., fatalities and serious injuries) rather than citation data and driver’s safety 
understanding. 

The term “accident” indicates that the outcome is unexpected or unintended. 
Motor vehicle accidents are also called “crashes,” which indicates that they can 
be avoided. Regardless of which term is used, “crash” and “accident” both refer 
to collisions involving motor vehicles, drivers and passengers, motorcyclists, 
bicyclists, pedestrians, and other roadway users. Safety experts conduct research 
on these crashes to learn about effective prevention measures. 

Science-oriented road safety is the empirical study of roadway crashes or 
accidents. Highway safety includes the number of crashes or crash effects, by 
type and injury pattern, that are expected to take place on the entity during a 
specific period. 

As one can see in this definition, the focus is placed on event outcomes, 
such as injuries and property damage. If possible, these metrics should be used to 
measure safety. Other measures, such as violations, incidents, or near misses, may 
indicate safety problems, but they are categorized as measures to characterize the 
outcome of an event. An entity can refer to highway facilities such as an interstate 
on-ramp, a signalized intersection, or a rural highway segment; it can also refer 
to driver or vehicle groups. The observed safety may not be consistent with the 
expected safety at a certain entity. The expected safety typically represents the 
true safety level of an entity, while the observed safety is subject to spontaneous 
variations in crashes. In the U.S. in 2019, 36,560 people died in roadway crashes. 
The projected number of roadway fatalities was 36,120 for 2020. Figure 6 shows 
the fatal crash frequencies by key facility types (rural vs. urban). 

Understanding both substantive and nominal safety is necessary for the 
context of design decision-making and design exceptions (see Figure 7). Nominal 
safety refers to the importance of a roadway design element or alternative meeting 
the minimum design criteria. A highway or proposed design has nominal safety 
if the minimum ranges or values are attained by its design features (like shoulder 
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Figure 6. Traffic crashes by rural and urban facilities (2009-2018). 

Figure 7. Nominal safety vs. substantive safety. 

width, lane width, sight distance, and alignment). The nominal safety measurement 
is just a comparison of the criteria of design element dimensions to the adopted 
design. For example, the criterion for Interstate lane width is 12 feet; 12-feet lane 
widths proposed by a design alternative is considered a nominally safe design, 
while 11-feet lane widths are not considered nominally safe. 

The level of nominal safety does not always directly correspond to a roadway’s 
long-term or substantive safety performance, due to the fact that a roadway can 
be nominally safe (i.e., the design criteria is met by all design elements) yet also 
be substantively unsafe (i.e., relative to expectations, it reflects or demonstrates 
a high crash issue). In the same way, a roadway can be nominally unsafe (the 
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design criteria are not met by one or more design elements) but still have high 
substantive safety. Many explanations account for this, but the main reason is that 
many factors are the basis for the criteria (only one being safety) and are obtained 
from streamlining models and assumptions that are broadly applied. 

2.2.  Influential Factors in Highway Safety 
Safety is often defined as a function of significant variables such as environment, 
roadway, and driver factors (see Figure 8). The modules within the Highway 
Safety Manual (HSM) are focused on the type of facility where the crashes occur; 
it is expected that crash occurrence will vary based on road type. 

Figure 8. Key factors associated with traffic crash occurrences. 

Highway safety can also be viewed from the perspective of a driver. Unlike 
road safety models that analyze safety based on the transportation network, other 
models analyze safety from the perspective of the road user; these models consider 
driver actions and the environment. The relationships between drivers and 
factors that affect their safety are also explored with statistical models. Although 
conventional safety analysis considers human error as the key factor, approaches 
such as safe system consider error to be associated with system’s failure (see 
Figure 9). Certain classes of road users are subject to substantial research as they 
need special attention; these include: 

• Young and inexperienced drivers. 
• Older drivers. 
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• Heavy vehicle operators. 
• Rural vs. urban drivers. 
• Aggressive drivers and speeders. 
• Motorcyclists. 
• Pedestrians. 
• Bicyclists. 

Figure 9. Crash contributing factors. 

2.3. 4E Approach 
There are many different approaches to address roadway safety; however, no 
single method can solve all issues within roadway safety entirely. There are four 
key areas for addressing road safety acknowledged by road safety professionals: 
engineering, education, enforcement, and emergency responses. These can also 
be called the 4 Es of road safety. The 4 Es are typically used to measure and 
correct existing road safety issues or to create crash prevention strategies. 

2.3.1. Engineering 
Engineers investigate road safety issues that are connected to the roadway, 
roadside, and vehicle. The engineer’s role is to guarantee that all transportation 
systems and modes are built to cover the needs and mitigation of transportation 
user limitations. 

2.3.2. Education 
The purpose of highway safety education is to alter the actions of road users (i.e., 
limit unsafe behaviors and promote safe behaviors). Education is a critical tool 
for improving road safety. In more than 60 percent of crashes, the human element 
is cited as the main cause, and in more than 90 percent of crashes, it is identified 
as a contributing factor. Educational campaigns can be used either as a singular 
countermeasure or in conjunction with engineering and enforcement measures. 



12 Artificial Intelligence in Highway Safety  

 

 

 

 

 

 

 

Education can be used as a single measure to enhance road rules knowledge and 
driving skills, and to raise road safety awareness in general. 

2.3.3. Enforcement 
Unfortunately, education and engineering cannot solve road safety issues 
completely. For instance, an educational campaign can explain the dangers of 
excessive speed, and an engineer can design a roadway with a specific speed 
limit, but some drivers may still choose to exceed the posted speed limit, despite 
engineering and education efforts. Therefore, enforcement is necessary to change 
road user behaviors. A relatively large proportion of crash-related injuries and 
deaths are associated with speeding, driving under the influence (DUI), and 
incorrect seat belt use. In other countries, such as Australia, the enforcement of 
driver behaviors has achieved a high rate of success in minimizing crash-related 
injuries and fatalities. Safety belt use in the U.S. has been steadily improving 
because of enforcement and educational campaigns. The use of automated 
enforcement techniques (e.g., red light running and speed detection cameras) in 
the U.S. has been met with resistance. Furthermore, the strength of DUI campaigns 
in the U.S. does not meet the standards set by other developed countries. 

2.3.4. Emergency 
After a crash occurs, it is the responsibility of emergency responders to rescue 
victims from the crash, provide medical care, and protect other road users 
from harm. Emergency responders usually handle post-crash problems, but it 
is important for these workers to possess a well-conceived crisis-response plan 
before the crash occurs as well. Emergency responders include traffic engineers, 
emergency medical services, law enforcement, and fire and rescue services, each 
with a specific purpose. Law enforcement officers, along with traffic engineers, 
are generally responsible for investigating crashes and controlling traffic. Fire and 
rescue workers remove crash victims from their vehicles, if necessary, and often 
provide medical care. Depending on the jurisdiction, emergency medical services 
may act under a separate public agency or a privately contracted company. 
Emergency responders also rely on support from others, such as towing and 
recovery services, transportation agencies, traffic reporting media, and hazardous 
materials contractors. Emergency responders can all work in collaboration 
through effective incident management to minimize the consequences of crashes. 

Need to know 
The 4E approach is comparable with the safe system approach which can 
provide a meaningful improvement in highway safety in the U.S. The safe 
system approach focuses on five key objectives: safer people (education), safer 
roads (engineering), safer vehicles (engineering), safer speeds (enforcement), 
and post-crash care (emergency). To learn more about the safe system approach, 
interested readers can consult the Safe System GitHub page developed by the 
author (https://github.com/subasish/safesystems). 

https://www.github.com
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2.4.  Intervention Tools 
Intervention methods include statistical models that can identify “sites with 
promise,” or sites where safety performance needs improvement, and tools that 
can be used to identify effective countermeasures and interventions, such as the 
Haddon Matrix and road safety audits. The Haddon Matrix is a method used to 
mitigate sites with many safety problems, while a road safety audit is a more 
proactive method intended to recognize and address safety issues before problems 
occur at a site (see Table 2). Five major intervention tools are: 
• Statistical models 
• The Haddon Matrix 
• Road safety audits 
• Countermeasure effectiveness 
• Multidisciplinary case studies 

Table 2. Haddon matrix for an urban area (HSIP Manual) 

Period Human Vehicle/ 
Equipment 

Physical 
Environment 

Socio 
Economic 

Pre-
Crash 

Speed, 
impairment, 

improper 
passing, 

distraction. 

Brake failure, 
issues with 

headlight, tyre 
problems. 

Insufficient traffic 
control devices, 

absence of 
shoulder. 

Cultural norms 
in preventing 
speeding and 
drunk driving. 

Crash No seabelt. Malfunctioning 
safety belts, 

poorly engineered 
airbags. 

Low design 
standards of safety 
countermeasures. 

Low vehicle 
inspection 
standards. 

Post-
Crash 

High 
susceptibility, 

alcohol. 

Poorly designed 
fuel tanks. 

Poor emergency 
communication 

systems. 

Insufficient 
trauma support 

systems. 

The first nine cells of the Haddon Matrix display the time phases of a crash 
in correlation to human, vehicle, and physical environment factors. It is common 
to add a fourth column of factors that can include socio-economic factors, 
environmental conditions (e.g., weather), or other categories. The Haddon Matrix 
is filled out by evaluating the details associated with the crash site. When the 
matrix is completed, it offers insight into potential safety issues and concerns as 
well as potential countermeasures. 

2.5. Data Sources 
Transportation and safety practitioners and decision-makers use state and local 
road safety data that include information on: 
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• Crashes. 
• Injury surveillance and EMS information. 
• Roadway information. 
• Driver characteristics. 
• Vehicle-related information. 
• Enforcement-related information such as prior convictions and citations. 
• Other types of data which will be described in this module. 

2.6.  Crash Frequency Models 
Crash frequency analysis is one of the most common safety analysis procedures. 
The problem can be considered as a discrete count data (regression) problem. 
Conventionally, Poisson and negative binomial (NB) models are the most 
common models for performing count data models. Many variants of Poisson and 
NB models have been introduced by researchers. 

2.7.  Crash Severity Models 
Crash severity analysis can be considered to be a classification problem analysis. 
The severity of crashes is generally divided into four main groups: fatal (K), 
incapacitating injury (A), non-incapacitating injury (B), minor injury (C), and 
no injury or property damage only or PDO (O). These five severity types are 
considered as KABCO scales. Many advanced statistical and AI models have 
been applied in crash severity analysis by researchers. 

Lord and Mannering (2010) created a comprehensive review of crash count 
data analysis methods in their study. For a comprehensive review of crash severity 
modeling, readers can consult Savolainen et al. (2011). Mannering and Bhat 
(2014) provided an update to the Lord and Mannering (2010) and Savolainen 
et al. (2011) studies by exploring crash severity models and count data models. 
Das (2016) developed a hyperlinked web page for a one-stop place for further 
information, listing 592 papers. 

2.8.  Effectiveness of Countermeasures 
The safety effectiveness evaluation can be divided into three different groups: 
• Observational B/A studies. 
• Observational cross-sectional studies. 
• Experimental B/A studies. 

2.8.1. Observational B/A Studies 
The most commonly utilized method in highway safety analysis out of these three 
are observational B/A studies. In this method, data is collected and evaluated for 
the before and after periods of a project operation. There are numerous methods 
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in B/A studies for evaluating individual countermeasures and projects, which are 
presented in the remaining subsections. 

Naïve B/A Studies 
In the simple or naïve B/Astudies, the before period crash frequency is compared to 
the after-period crash frequency. These methods don’t need a tremendous amount 
of data and are easy to conduct and easily interpretable. However, these methods 
don’t consider traffic volumes, regression to the mean (RTM) bias, or temporal 
effects, or trends like other local factors, crash reporting, and alterations in driver 
behavior. These methods aren’t suggested when utilized in countermeasure 
evaluations for developing quality CMFs due to these shortcomings. 

Naïve B/A Studies with Linear Traffic Volume Correction 
A B/A study that has a linear traffic volume correction and that accounts for 
temporal changes in traffic volumes is a naïve B/A study deviation in which the 
crash rates (rather than crash counts) for the periods before and after a treatment 
are executed and compared. This makes it more of a reliable method than naïve 
B/A studies. The following is used to calculate crash rates: 

CObserved i ,Crash Rate = (1)i AADT i 

Where:
	
The crash rate at site i in a defined time (an example being three to five years) is 

Crash Ratei.
	
The average crash count at site i in a defined time is CObserved,i.
	
The annual average daily traffic at site i in a defined time is AADTi.
	

Both project and countermeasure evaluations can be conducted with this 
method, but the effects of RTM and variations in other factors over time are not 
considered. If RTM has no or limited potential and there aren’t any changes during 
the before and after periods in crash reporting or driver behavior, this method 
could be appropriate for CMF development. 

EB Method 
The anticipated crash frequency with no treatment is estimated and compared 
to the actual number of crashes during the after period in the Empirical Bayes 
(EB) method. It is an incredibly reliable method for CMF development because 
alterations in traffic volumes, RTM bias, and temporal effects are accounted for. 
A weighted average principle is the basis of the EB method; a weight factor, w, is 
utilized to calculate the expected crash frequency, CExpected, by adding observed 
(CObserved) and predicted (CPredicted) crash frequencies:

 CExpected = w ∙ CPredicted + (1 – w) ∙ CObserved (2) 
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Where,
	
w represents a weight factor. It differs based on the overdispersion parameter that 

is acquired from the SPF.
	
CExpected stands for the expected crash count.
	
CPredicted stands for the predicted crash count, typically computed by utilizing the 

CMFs and SPF. 

CObserved stands for the observed crash count.
	

Both predicted and observed crash frequencies are accounted for in the EB 
method to overcome potential bias due to RTM, but it is possible that if a high 
overdispersion parameter is gathered from the SPF, there will be high uncertainty 
in the number of predicted crashes. To mitigate this issue, a weight factor is applied. 
The measure of the weighted adjustment factor decreases as the overdispersion 
parameter increases, so the observed is given greater emphasis in comparison 
to the predicted crash frequency. Typically, if the information utilized to form 
a model is significantly dispersed, the dependability is lower than the resulting 
predicted crash frequency. It is reasonable in this instance to put a greater amount 
of weight on the observed crash frequency and less on the predicted. However, if 
the information utilized to form a model has low overdispersion, the consistency 
of the resultant SPF is typically higher. It is reasonable in this instance to put 
less weight on the observed crash frequency and more on the predicted (Tsapakis 
et al., 2019). 

Full Bayesian 
Full Bayesian (FB) is an important method that any study design is able to 
use, including cross-sectional study designs and observational B/A, and it is 
appropriate for countermeasure evaluations. Full Bayesian can be used for 
smaller data samples (unlike the EB method), making it more suitable in situations 
where the amount of after-period data is small. The differences between EB and 
FB approaches have been examined in many research studies, which have found 
that the FB method is able to perform as well as the EB method, even with large 
sample sizes. 

A previous distribution of the FB model and data is used to simulate the 
posterior distribution of expected/predicted crashes. Through the posterior 
distribution of the predicted crashes for the control and treatment groups in the 
after and before periods, the CMFs can be estimated in order to assess the efficacy 
of the safety treatment. The FB approach estimates the anticipated crash counts 
for the after and before periods to compensate for the RTM effects, without direct 
use in the comparison of the observed crash frequency (Tsapakis et al., 2019). 

Difference in Differences 
Evaluating the differences in a treatment’s effect on a group of sites which 
were the treated versus the untreated sites in a control group through the use of 
observational data is mirrored in the difference in differences (DID) method, which 
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a variety of fields have used. Conventional B/A observational studies examine 
the same locations in the before and after periods to figure out the impact on the 
safety of a treatment, but, during that time frame, other variables may change if the 
impact of a countermeasure takes a considerable amount of time to be noticeable. 
Therefore, it is possible that the treatment is not the only effect on the change in the 
crash count. 

The performance measures are compared in the treatment group before and 
after execution in other B/A evaluation methods, but the DID is founded on the 
discrepancy across the treatment and control groups of the two B/A differences. 
Potential biases within the treatment group that might be due to external factors 
that are unrelated to the treatment and within the after-period between the control 
and treatment groups that might be a result of permanent differences between the 
groups are removed by this double differencing (Tsapakis et al., 2019). 

2.9.  Benefit Cost Analysis 
In B/C analysis, the monetary value of the anticipated crash count difference is 
calculated, added, and then compared to the cost of the countermeasure. In B/C 
analysis, crash frequency is not simply evaluated in terms of monetary cost, but 
instead is compared to the total construction cost (i.e., cost-effectiveness is given 
as the annual cost per crash reduced). 

Societal comprehensive crash costs are used to convert the predicted 
reduction in crash severity and frequency into monetary values. Table 3 presents 
the national comprehensive crash unit costs used in Texas as part of the 2018 
HSIP and those published by FHWA; all crash injury severity levels are coupled 
with a certain amount of dollars. 

Table 3. National comprehensive crash unit costs and TxDOT’s HSIP crash costs 

Crash Severity FHWA Comprehensive TxDOT’s Crash 
Crash Unit Cost Cost (2018 HSIP) 

Fatal (K) $11,295,400 $3,500,000 

Incapacitating Injury (A) $655,000 $3,500,000 

Non-incapacitating Injury (B) $198,500 $500,000 

Possible Injury (C) $125,600 Not Applicable in HSIP 

Property Damage Only (O) $11,900 Not Applicable in HSIP 

The project costs include right-of-way procurement, construction, operation, 
and maintenance. The cost-effectiveness assessment includes determining the 
ratio of the total cost of the project to the difference before and after execution in 
the crash count. 
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2.10.  Transportation Safety Planning 

A comprehensive, multimodal, systemwide, proactive process that combines 
safety into effective transportation decision-making is offered in Transportation 
Safety Planning (TSP). Ensuring that safety is integrated into surface transportation 
planning and decision-making relies on the work of transportation planners. 
Transportation planners can, with their safety specialist partners, support the 
mission of TSP and enhance communication, collaboration, and synchronization 
for the reduction of serious severity outcomes and fatalities. This can be done 
through their understanding and knowledge of safety and safety planning. Below 
is a brief description of the key elements of TSP: 

FAST Act Implementation Highlights 
PM and HSIP Rule – FHWA issued two final rules related to safety–they first 
updated the rule for the Highway Safety Improvement Program (HSIP) and then 
established the Performance Measures (PM) for the program. Both rulemakings 
were initiated to implement MAP-21 requirements, but requirements from FAST 
were incorporated to expedite implementation. The new performance measures 
in this rule will help State DOTs and metropolitan planning organizations 
make investment decisions that will result in the greatest possible reduction in 
fatalities and serious injuries. 

• Highway Safety Improvement Program (HSIP):		HSIP is a Federal-aid 
program that reduces injuries and the number of crashes for highway safety 
improvement projects. It must depict the headway in executing highway 
safety improvement projects, assess their usefulness, and depict the degree 
to which they have aided in the reduction of serious injuries and fatalities on 
public roads. 
• Strategic Highway Safety Plan (SHSP): An SHSP is a data-driven, statewide 

safety plan that is a major component of the HSIP and is typically considered 
as the “umbrella” safety plan for all state plans at the local, regional, and 
state levels. It gives a comprehensive framework for the reduction of serious 
injuries and fatalities on all public roads and highways and directs investment 
decisions towards countermeasures and strategies that have the most potential 
for preventing them. Federal law requires state and metropolitan transportation 
planning to have a Highway Safety Plan (HSP): A HSP is administered by the 
National Highway Traffic Safety Administration (NHTSA) and is an annual 
work program that outlines programs and projects that primarily address 
behavioral safety issues, like impaired and distracted driving, speeding, 
motorcyclist safety, pedestrian and bicycle safety, and failure to use required 
safety equipment. 
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• Commercial Vehicles Safety Plan (CVSP): The Federal Motor Carrier Safety 
Administration (FMCSA) requires states to create a CVSP as an annual work 
program. The performance-based CVSP identifies a State’s commercial motor 
vehicle safety objectives, activities, strategies, and performance measures. 
• Public Transportation Agency Safety Plan (PTASP): The Federal Transit 

Administration (FTA) necessitates public transportation system operators to 
implement a PTASP founded on the safety management system approach. 
• Regional and Local Safety Plans: The SHSP is thought of as the main safety 

plan for any state, but Metropolitan Planning Organizations (MPOs), Tribes, 
and local jurisdictions are allowed specific planning areas to make a decision 
to develop their own safety document to prioritize safety needs, projects, and 
programs. These plans ought to be consistent with the State SHSP’s goals 
and objectives; for example, the outcomes of the plans’ crash analyses can be 
utilized to prioritize and inform the highway safety projects. 

2.11.  Workforce Development and Core 
Competencies 

Roadway safety is a major focus of the FHWA’s Fixing America’s Surface 
Transportation Act (FAST Act). Highway safety professionals must have ‘critical 
knowledge in the form of core competencies’ to perform their work efficiently. The 
current workforce faces two critical issues: 1) the rise of emerging technologies 
requires new skill sets and knowledge, and 2) the loss of a workforce with a 
wealth of knowledge and experience. 

This section contains a brief summary of the occupational descriptors of 
transportation-related jobs. It also includes the prototype framework and a tool 
to help highway agencies identify effective and efficient training and educational 
opportunities. 

2.11.1.  Occupational Descriptors 
To understand the transportation engineering-related job descriptions, this study 
examined job specifications and job postings within the transportation workforce 
at various levels through a well-validated dictionary of occupational descriptors 
(see Table 4). After an extensive search of transportation engineering jobs, four 
relevant titles and associated job descriptions were found. Table 4 lists these titles 
and their associated tasks. The task indicators explain the common job duties 
at various levels, and safety engineering is one of the critical components of 
these tasks. 
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Table 4. Transportation engineering job descriptions 

Traffic Technicians 
•		 Communicate with the public to respond to complaints or requests, answer questions 

about traffic, and discuss traffic control plans, policies, ordinances, and procedures. 
•		 Create charts, graphs, diagrams, and other visual aids to show conclusions and 

observations. 
•		 Assess data related to crash rates, traffic flow, or potential developments to find the 

best methods for expediting traffic flow. 
•		 Create work orders for necessary repairs, maintenance, or traffic system changes. 
•		 Organize, design, and upgrade traffic control systems to adjust to current or future 

traffic and promote usability and efficiency. 
•		 Explore factors impacting traffic conditions, such as lighting conditions and visibility, 

and to examine their effectiveness. 
•		 Collect, organize and code data from machine count tapes, hand count sheets, and 

radar speed checks for computer input. 
•		 Measure and document traffic speed with electrical timing devices or radar equipment. 
•		 Place the pavement markings for striping crews to follow. 
•		 Conduct technical supervision of traffic technicians or laborers for traffic control 

devices. 
•		 Use counters and document data to analyze the vehicle type, traffic volume, and 

movement of vehicular or pedestrian traffic at particular times. 
•		 Install automatic counters securely using power tools and collect them at the end of 

the counting periods. 
•		 Keep up with and make minor field repairs or adjustments to survey equipment, 

including replacing parts of traffic data gathering devices. 
•		 Go to development or work sites to determine the impact of the projects on traffic, 

assess the adequacy of traffic control and safety plans, and recommend traffic control 
measures if necessary. 

•		 Create street closure procedures for construction projects. 
•		 Communicate traffic information to the public (e.g., road conditions). 
•		 Observe street or utility projects to ensure compliance with traffic control permit 

conditions. 
•		 Design plans or long-term strategies for creating adequate parking space. 
•		 Survey motorists about particular intersections or highways to collect road-condition 

information. 

Transportation Engineers 
•		 Examine construction plans, design calculations, and cost estimations to guarantee 

accuracy, completeness, and alignment with engineering standards or practices. 
•		 Create or design plans for new transportation systems, such as commuter trains, 

airports, drainage structures, streets, highways, bridges, and roadway lighting. 
•		 Collaborate with utility companies, contractors, and government agencies about 

plans, details, and work schedules. 
•		 Plan or engineer erosion, drainage, or sedimentation control systems for transportation 

projects. 
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•		 Create budgets, schedules, and detailed plans for project labor and materials. 
•		 Design changes for existing transportation structures to promote safety or functioning. 
•		 Study traffic problems and implement changes to improve traffic flow or safety. 
•		 Create a budget for transportation projects. 
•		 Provide statistics, maps, or other information at public hearings and meetings related 

to construction. 
•		 Conduct technical, administrative, or statistical reports on traffic-operation issues, 

including safety measures, traffic crashes, and pedestrian volume and behaviors. 
•		 Assess transportation systems, traffic control devices, and lighting systems to evaluate 

the need for changes or expansion. 
•		 Inspect development plans to estimate potential traffic implications. 
•		 Examine finished transportation projects to evaluate safety or adherence to applicable 

standards or regulations. 
•		 Supervise the surveying, staking, and layout of construction projects. 
•		 Assist with contract bidding, negotiation, and administration. 
•		 Create transportation scenarios to assess the effects of various activities, like new 

constructions, or to determine potential transportation solutions. 
•		 Research and test certain building materials to ensure that they meet requirements and 

standards. 
•		 Oversee the upkeep or repairs of transportation systems and their components. 
•		 Examine finished construction projects for adherence to environmental guidelines. 
•		 Examine building materials with respect to environmental standards. 
•		 Create plans to destroy damaged or unused roadways or other transportation 

structures in an environmentally sound manner and prepare the land for sustainable 
development. 

•		 Examine the environmental impact of transportation projects. 
•		 Create sustainable transportation systems or structures, by employing proper materials 

or products. 

•		 Help in the development of computer software and processes for transportation. 

Transportation Managers 
•		 Organize and supervise subordinate staff to guarantee that their work is conducted in 

accordance with organizational requirements. 
•		 Oversee activities such as routing, dispatching, and tracking transportation vehicles. 
•		 Direct operations so that workers follow administrative policies and procedures, 

environmental policies, union contracts, government regulations, and safety rules. 
•		 Act as the point of contact for all employees within assigned territories. 
•		 Execute schedule or policy changes for transportation services. 
•		 Track spending to keep expenses consistent with authorized budgets. 
•		 Conduct safety audits, hold company safety meetings, and meet with individual 

employees to promote safe work practices. 
•		 Make recommendations to management, such as scheduling changes or increasing 

fees and tariffs. 
•		 Conduct investigations to verify and address customer or shipper concerns. 

(Contd.) 
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•		 Lead operations to acquire equipment, facilities, and human resources. 
•		 Examine spending and other financial data to create strategies, policies, or budgets to 

boost profits and improve services. 
•		 Work with other managers or employees to develop and execute policies, processes, 

and goals. 
•		 Plan or execute changes to save energy, such as shortening routes, optimizing capacity, 

using alternative modes of transportation, or eliminating idling. 
•		 Oversee repairing personnel and maintaining vehicles, equipment, or facilities. 
•		 Hold employee orientations and training sessions about subjects such as handling 

hazardous materials, quality improvement, and computer usage. 
•		 Recommend or approve capital spending to acquire new equipment or property to 

improve the efficiency and services of operations. 
•		 Collaborate with government agencies to investigate the causes of transportation 

crashes, coordinate cleanup efforts, and enhance safety practices. 
•		 Establish operation standards and policies, including safety procedures for handling 

hazardous materials. 
•		 Create criteria, procedural manuals, application instructions, and contracts for federal 

or state public transportation programs. 
•		 Create or execute plans to increase the control of transportation services from the 

regional to the national or global level. 
•		 Oversee central load control centers to improve transportation efficiency and 

effectiveness. 
•		 Manage clerks that classify tariffs and prepare billing. 
•		 Work with equipment and material suppliers to negotiate, authorize, and oversee the 

fulfillment of their contracts. 
•		 Assess transportation vehicles and auxiliary equipment to be purchased with respect 

to factors such as fuel economy and aerodynamics. 
•		 Choose technologies for transportation and communications systems to minimize the 

costs and environmental impact. 
•		 Assist those receiving transportation grants with administrative or technical issues. 
•		 Lead procurement procedures such as vendor contracts, equipment research and 

testing, or approval of requisitions. 
•		 Take part in contract negotiations or grievance settlements with unions. 

Transportation Planners 
•		 Recommend upgrades of projects for transportation systems based on population, 

economic factors, land-use, and traffic projections. 
•		 Identify issues and priorities for regional or local transportation planning. 
•		 Attend public meetings or hearings to explain construction proposals, receive 

feedback from stakeholders, and reach agreements on project designs. 
•		 Conduct transportation surveys to determine public concerns. 
•		 Analyze and interpret data from traffic modeling software, GIS systems, and related 

databases. 
•		 Prepare transportation planning reports and provide suggestions. 
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•		 Create new or upgraded transportation infrastructure, like renovated roads, pedestrian 

projects, bus stops, or parking lots.
	

•		 Examine transportation information, such as land use policies, the environmental 

impacts of construction, and long-term planning requirements.
	

•		 Work with engineers to investigate, evaluate, and resolve complicated transportation 

design challenges.
	

•		 Assess the needs and costs of transportation projects. 
•		 Work with other professionals to create long-term transportation strategies for local, 


regional, and national levels.
	
•		 Gather the necessary documentation to secure project approvals and permits. 
•		 Create computer models to help with transportation planning. 
•		 Create or test new methods and models for transportation analysis. 
•		 Conduct or review engineering studies and specifications. 
•		 Examine development plans and assess their impact on transportation systems, 


infrastructure requirements, and adherence to applicable transportation requirements.
	
•		 Assess the impact of federal or state legislative proposals on transportation. 
•		 Create environmental documents, including environmental assessments or impact 


statements.
	
•		 Represent jurisdictions in the approval of land development projects at the 


administrative or legislative level.
	
•		 Publish and update data such as urban borders or roadway classification. 

Source: Occupational Information Network (https://www.onetonline.org/). 

2.11.2. Core Competencies 
The term “core competencies” refers to ‘critical capabilities or resources’ needed 
for success in a particular area. As applied to highway safety, “core competencies” 
include a knowledge base, a basic skill set, and an analytical capability to make 
key highway safety decisions. This study focused on safety-related content in the 
civil engineering departments’ transportation courses and public health programs’ 
injury prevention courses. The findings of this study showed an evolving need for 
core competencies to be addressed in highway safety courses that are offered in 
the U.S. (Dixon et al., 2021). 

The core competencies do not represent all the knowledge and skills 
necessary for a safety professional to be successful. Instead, they represent the 
core components that one must know in the overall field of highway safety. Other 
relevant knowledge and skills needed include an understanding of statistics 
and evaluation processes, public affairs, engineering judgments, effective 
communications, and social marketing. Upon examination of a typical course 
syllabus, core competencies are similar to the identified key learning modules as 
presented by other disciplines in similar fields. Different sectors of highway safety 
such as engineering, public policy, road user behavior, and injury prevention 
require a core understanding of key knowledge and skill sets. The top core 
competencies are: 

https://www.onetonline.org
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• Multidisciplinary nature of road safety. 
• Agency-related setups for safety management. 
• Crash data sources, characteristics, and usage. 
• Key contributing factors, safety countermeasures, and evaluation. 
• Have a highway safety management program developed, implemented, and 

administered. 

Table 5 shows an outline of key topics in a conventional highway safety 
course. 

Table 5. Outline of key topics

 Topic Objectives Content 
Introduction to Road Safety 
Traffic Crash—a global Be familiar with the 
underemphasized gravity of the problem. 
problem. 

Impact of crashes on a Recognize the 
society. multidimensional 

aspects of safety.. 

Dissecting a crash.		 Identify influential and 
contributing factors to a 
crash and its severity. 

Introduction to the 4E Understand the 
approach. significance of the 

4E approach. 

Basic Safety Concepts 
Defining Safety.		 Understand the 

scientific definition 
of safety. 

Safety Data 
Safety Related Data.		 Understand how the 

crash data can be used 
to measure safety and 
the issues related to 
crash counts. 

1. Crash statistics (global, U.S. and 
state). 

2. Comparing traffic crashes with 
other types of fatalities. 

1. Public health problem. 
2. Economic problem. 
3. Liability problem/Social 

problem. 

1. Basic crash mechanism. 
2. Haddon matrix. 
3. How roadway, vehicle, and 

environmental conditions 
contribute to a crash occurrence 
and its severity. 

1. Roadway users’ characteristics. 
2. Vehicle characteristics. 
3. Roadway characteristics. 
4. Environment. 
5. Emergency service. 

1. How do customers define safety. 
2. Objective and subjective safety. 
3. Safety definition. 

1. Regression to the mean. 
2. Issues with the data quality. 
3. Direct measurement. 
4. Surrogate measurement. 
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Fundamental Statistics 
Fundamental Refresh fundamental 
Statistics. statistics related to 

safety analysis. 

Development of Safety Models 

Introduction		 Understand the 
purpose, development 
history and issues in 
safety models. 

Development of 	 Understanding the 
Safety Models.		 basic steps in the safety 

modeling process and 
having the ability to 
develop models with 
local crash data. 

Safety Predictive Models from HSM 

1. Mean and variance estimation. 
2. Accuracy and standard error. 
3. Related probability distribution 

faction. 
4. Introduction to the Empirical 

Bayes method. 

1. The need for safety predictive 
models in the project decision 
making process. 

2. Introduction to parametric 
and non-parametric modeling 
techniques. 

3. Conceptual safety predictive 
model. 

1. Data cleaning process. 
2. Exploratory data analysis. 
3. Formulating model structure. 
4. Parameter estimation. 
5. Model fitness evaluation. 

Safety Predictive Be familiar with the safety models for three types of highways 
Models from HSM. for potential safety management applications. 
Safety Evaluations 

Introduction to safety Understand the purpose 
evaluation. and requirements for 

safety evaluation. 
Methodology		 Understand the correct 

way to evaluate 
safety and apply the 
fundamental concept 
to roadway safety 
to estimate project 
safety or crash 
countermeasures. 

Case studies		 Be able to perform 
safety evaluation 
analysis. 

Safety evaluation objectives and 
definitions. 

1. The logical basis for safety 
evaluation. 

2. General evaluation types. 
3. Observational nature of roadway 

safety evaluation. 
4. Before-and-after study. 
5. Cross-sectional study. 

1. Atchafalaya I-10 Speed study. 
2. Lane conversion (4U to 5T) 

study. 

Source: Sun, X., 2015. Development of a Highway Safety Fundamental Course. Report 
No. FHWA/LA.14/524 
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Resources 
The author of this book is the co-principal investigator of NCHRP 20(07)-384 
Core Competency (CC). Please see the link below for more comprehensive 
information on university courses on highway safety: 
https://github.com/subasish/NCHRP-20-07-384-CC-Courses 

Example Problem 1 
Do bicycle-related injuries vary by gender and age? Answer the research question 
by using a nationally representative data source. 
Solution: To answer this question, a dataset from the National Electronic Injury 
Surveillance System (NEISS) has been used. The following code chunks show the 
coding to answer the question. The code results are not shown (few major plots 
are shown to explain the results). 

Example Problem 1 (Code Chunk 1) 
## Please check my RPUBS for additional codes: https://rpubs.com/subasish
	
## Codes are also published here: https://rpubs.com/subasish/331572
	

## import libraries
	
library(neiss)
	
data(injuries)
	
data(products)
	

## import supporting libraries
	
library(ggplot2)
	
library(dplyr)
	
library(reshape2)
	

## identify bicycle injuries
	
prod_bike <- subset(products, code==5040|code==5033|code==1202)
	
prod_bike
	

injuries_bike <- subset(injuries, prod1==1202| prod1==5040| prod1==5033)
	
dim(injuries_bike)
	

library(ggplot2)
	
injuries_bike$location <- as.factor(injuries_bike$location)
	
whereinjury <- injuries_bike %>% group_by(location) %>% summarise(total = 

sum(weight))
	
ggplot(data = whereinjury, 


aes(x = location, y = total)) +

 geom_bar(stat = „identity“, fill = „red“, alpha = 0.8)+theme_bw()+

 theme(legend.position=“none“, axis.title.x = element_blank(),


 axis.text.x= element_text(angle=45, hjust = 1)) +

 ylab("Estimated number of Bicycle injuries") +

 ggtitle("Location of Bicycle Injuries")
	

https://www.rpubs.com
https://www.rpubs.com
https://www.github.com
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Figure 10 shows the locations of bicycle-related injuries. The most common 
location is the street or highways, and the least common location is a farm or 
industrial place. 

Figure 10. Location of bicycle injuries. 

Example Problem 1 (Code Chunk 2) 
injuries_bike$sex <- as.factor(injuries_bike$sex) 
whereinjury <- injuries_bike %>% group_by(location, sex) %>% summarise (total 
sum(weight)) %>% 

arrange(desc(total)) 
ggplot(data = whereinjury[whereinjury$sex != "None listed",], 

aes(x = location, y = total, fill = sex)) +
 geom_bar(alpha = 0.8, stat = "identity", position = "dodge") + theme_bw()+
 scale_fill_manual(values = c("blue", "red")) + 
theme(axis.title.x = element_blank(), legend.title=element_blank(),

 axis.text.x= element_text(angle = 45, hjust = 1)) +
 ylab("Estimated number of injuries") +
 ggtitle("Location of Injuries") 

injuries_bike <- subset(injuries, prod1==1202| prod1==5040| prod1==5033) 
dim(injuries_bike) 

library(ggplot2) 
injuries_bike$location <- as.factor(injuries_bike$location) 
whereinjury <- injuries_bike %>% group_by(location) %>% summarise(total 
sum(weight)) 
ggplot(data = whereinjury, 

aes(x = location, y = total)) +
 geom_bar(stat = "identity", fill = "red", alpha = 0.8) + theme_bw() +
 theme(legend.position = "none", axis.title.x = element_blank(),

 axis.text.x = element_text(angle = 45, hjust = 1)) +
 ylab("Estimated number of Bicycle injuries") +
 ggtitle("Location of Bicycle Injuries") 

= 

= 
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Figure 11 shows the location of injuries by gender. The most common 
location for both a male or a female to be injured is a street or highway. The 
general findings show that males are more commonly injured than females. 

Figure 11. Location of injuries by gender. 

Example Problem 1 (Code Chunk 3) 
sexageinjury <- injuries_bike %>% 


group_by(sex, age = as.numeric(cut(age, breaks = (seq(0,100, by = 1))))-1) %>%

 summarise(total = sum(weight))
	

sexageinjury
	
medianpop <- population %>% filter(year >= 2009) %>% group_by(age, sex) %>% 


summarise(n = median(n))
	
totalinjuries <- left_join(medianpop, sexageinjury, by = c("age" = "age"))
	
totalinjuries <- totalinjuries %>% filter(sex.x == tolower(sex.y)) %>% 


select(age, sex = sex.x, population = n, injuries = total) 

totalinjuries
	
toiletinjury <- injuries_bike %>% 


group_by(sex, age = as.numeric(cut(age, breaks = (seq(0,100, by = 1))))-1) %>%
 summarise(total = sum(weight)) 

totalinjuries <- left_join(medianpop, toiletinjury, by = c("age" = "age")) 
totalinjuries <- totalinjuries %>% filter(sex.x == tolower(sex.y)) %>% 

select(age, sex = sex.x, population = n, injuries = total) %>%

 mutate(rate = injuries/population*1e5) %>%


       melt(id = c("age", "sex"), measure = c("injuries", "rate"))
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levels(totalinjuries$variable) <- c("Estimated Number of Injuries", "Injury Rate per 

100,000 Population")
	
ggplot(data = totalinjuries, 


aes(x = age, y = value, color = sex)) +

 facet_wrap(~variable, ncol = 1, scales = "free_y") + 

geom_line(size = 1.2, alpha = 0.9) + theme_bw() +


 scale_color_manual(values = c("blue", "red")) + 

theme(legend.title=element_blank(), legend.justification=c(0,0.38), 


legend.position=c(0,0.38)) +

 ylab("Number") + xlab("Age") + 


        ggtitle("Bicycle Related Injuries by Age and Sex")
	

Figure 12 shows the estimated number of bicycle-related injuries by age and 
gender. Males face a higher estimated number of injuries than females. Injuries 
are most common for both sexes in the age group of 10-15 years. 

Figure 12. Number of injuries and injury rates by gender. 

Example Problem 2 
How does the traffic fatality rate change over the years? Show the results 
graphically.
	
Solution: To answer this question, Fatality Analysis Reporting System (FARS) 

data has been used. The following code chunks show the coding to answer the 

question. The code results are not shown (few major plots are shown to explain 

the results).
	

http://www.legend.position=c(0,0.38
http://www.legend.justification=c(0,0.38
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Example Problem 2 (Code Chunk 1) 
## Collect traffic fatality rate data from FARS 

## For this example, FARS data is collected from 1994 to 2013.
	

## Please check my RPUBS for additional codes: https://rpubs.com/subasish
	
## Codes are also published here: https://rpubs.com/subasish/156137 


library(dplyr)
	
library(tidyr)
	
library(grid)
	
library(scales)
	
library(ggplot2)
	
us <- data %>%

 filter(State == "USA") %>%


  gather(Year, Fatality, X1994:X2013) %>%

  separate(Year, c("left","Year"), sep="X") %>%

 select(-left)%>%


  arrange(Year)
	
head(us) 

us_base <- us[us$Year==1994,3] 
us$us_baseline <- us_base 

us <- us %>% mutate(us_change = (Fatality-us_baseline)/us_baseline) 
head(us) 

states <- data %>%
 filter(State != "USA") %>%

  gather(Year, Fatality, X1994:X2013) %>%
  separate(Year, c("left","Year"), sep="X") %>%
 select(-left) %>%

  arrange(Year) %>%
 filter(Fatality != "NA") 

state_base <- states %>%
  filter(Year == 1994) %>%
 select(State, State_Baseline = Fatality) 

states <- states %>%
 left_join(state_base) %>%
 arrange(State) %>%
 mutate(state_change = (Fatality-State_Baseline)/State_Baseline) 

states$Year <- as.numeric(states$Year) 
us$Year <- as.numeric(us$Year) 

https://www.rpubs.com
https://www.rpubs.com
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rank <- states %>% 
  filter(Year == 2013) %>%
 arrange(desc(state_change)) %>%

  mutate(rank = seq(1,length(State), by=1)) %>%
 filter(rank < 6 | rank > 46 ) 

p <- ggplot(states, aes(Year, state_change, group=State)) +
 theme_bw() +
 theme(plot.background = element_blank(),

 panel.grid.minor = element_blank(),

        panel.grid.major.x = element_blank(),

        panel.grid.major.y = element_line(linetype = 3, color = "grey50"),


 panel.border = element_blank(),

 panel.background = element_blank(),

 text=element_text(size=20),

 axis.ticks = element_blank(), 

axis.title = element_blank()) +


 geom_line(color="grey90", alpha=.9)+

  labs(title="Changes in Traffic Fatality Rates [1994-2013]")+

 scale_x_continuous(breaks = c(1995, 2000, 2005, 2010))
	

p <- p +
  geom_line(data=us, aes(Year, us_change, group=1), linetype=5, size = 1.2) 

p <- p +
 geom_line(data=filter(states, State==44), 

            aes(Year, state_change, group=State), color="#D8B70A", size = 1.5) 
p <- p +
 geom_line(data=filter(states, State==9), 

            aes(Year, state_change, group=State), color="#046C9A", size=1.2) +
 geom_line(data=filter(states, State==35), 

            aes(Year, state_change, group=State), color="#C27D38", size=1.2) 

p1 <- p + annotate("text", x = 2014.2, y = 0.07, label = "N. Dakota (5%)", 

color="#C27D38", size=5)
	
p2 <- p1 + annotate("text", x = 2014, y = -0.21, label = "Texas (-22%)", color="#D8B70A", 

size=5)
	
p3 <- p2 + annotate("text", x = 2014, y = -0.37, label = "USA (-37%)", color="black", 

size=5)
	
p4 <- p3 + annotate("text", x = 2014, y = -0.71, label = "D.C. (-72%)", color="#046C9A", 

size=5)
	
p4
	

Figure 13 shows the traffic fatality changes over the years from 1994 to 2013. 
Texas, the USA, and D.C. all have downward trends, whereas North Dakota is 
increasing slightly. North Dakota had the highest positive change in fatality rate 
in 2013, whereas D.C. had the lowest. 
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Figure 13. Comparison of traffic fatality rates. 

Coding help 1 
Develop a searchable ‘CMF Clearinghouse’ webtool. 

Solution: CMF Clearinghouse is an excellent tool for identifying suitable 
countermeasures. However, the website is not flexible and easily searchable. 
DataTables (https://datatables.net/) is an excellent tool to use to resolve 
this problem. The following code can help in generating a searchable CMF 
clearinghouse (see Table 6). 

Coding Help 1 (Code Chunk 1) 
### Data Source: http://www.cmfclearinghouse.org/
	

## Please check my RPUBS for additional codes: https://rpubs.com/subasish
	
## Codes are also published here: https://rpubs.com/subasish/506776 


library(DT)
	
library(readxl)
	
setwd("~folder location")
	
cmf <- read_excel("CMFClearinghouse.xlsx", sheet="V0")
	
cmf$CMF <- as.numeric(cmf$CMF)
	
cmf$CMF <- round(cmf$CMF, 3)
	
datatable(cmf, extensions = 'Responsive', options(digits = 3))
	

Coding help 2 
Draw speed crash schematics using R.
	
Solution: Data for this reproducible example (see Figure 14 for the output) 

was collected from the National Performance Management Research Data Set 

(NPMRDS).
	

https://www.rpubs.com
https://www.rpubs.com
http://www.cmfclearinghouse.org
https://www.datatables.net
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Table 6. Partial display of the searchable CMF clearinghouse 

Coding Help 2 (Code Chunk 1) 
etwd("~Folder Name”)
	
tmc <- read.csv("TMC2.csv") # check https://github.com/subasish/AI_in_
	
HighwaySafety for data
	

## Please check my RPUBS for additional codes: https://rpubs.com/subasish
	
## Codes are also published here: https://rpubs.com/subasish/190283 


library(ggplot2)
	
library(ggrepel)
	
## Warning: package 'ggrepel' was built under R version 3.2.5
	
cbPalette <- c("#046C9A", "#46ACC8", "#E1AF00", "#DC863B")
	
ggplot(tmc) + geom_segment(aes(color=Direction, x=miles, 

xend=miles1, y=Direction, yend=Direction), size=1.5,
	
arrow=arrow(length=unit(0.4,"cm"))) +theme_bw()+

 geom_point(aes(x=miles1,y=Direction, color=Direction), size=2)+

 geom_point(aes(x=2,y=1),size=7, color="green")+

 geom_point(aes(x=2,y=3),size=7, color="grey")+

 geom_label_repel(aes(x=miles1,y= Direction, label=speed1, color = Direction),


 fontface = 'bold', force=60,

 box.padding = unit(0.25, "lines"),

 point.padding = unit(0.5, "lines"))+


 scale_color_manual(values=cbPalette)+

 geom_vline(xintercept = 2, color="red", linetype = "longdash", size=1.5)+
	
annotate("text", label = "Crash time: 08:11:45 AM", x = 2.05, y=3.1, size = 5, color = 


"red", angle=90)+
	

(Contd.) 

http://www.unit(0.25
https://www.rpubs.com
https://www.rpubs.com
https://www.github.com
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 geom_segment(aes(x=1.6,y= 0.8, xend = 2, yend = 1), 
color='red', size=0.5, arrow = arrow(length = unit(0.5, "cm")))+

 annotate("text", x=1.5,y= 0.75, label = "Crash on Northbound", 
size=4, color='red') +

 geom_segment(aes(x=1.6,y= 2.8, xend = 2, yend = 3), 
color='red', size=0.5,arrow = arrow(length = unit(0.5, "cm")))+

 annotate("text", x=1.5,y= 2.75, label = "Crash on Opposite Bound", 
size=4, color='red') +labs(x="Distance (in miles)") 

Figure 14. Speed crash schematics. 

Coding help 3 
Show an example of manipulation of Tables and Maps interactively. 

Solution: 
It is very interesting to make a table and map talk to each other. The following 
scripts can make this task easy. The end result can be seen in Figure 15. The web 
version is here: https://rpubs.com/subasish/519027. 

Coding Help 3 (Code Chunk 1) 
SharedData1 <- read.csv("file:///~folder_location/FARS_2014_2016_PBType_ 
withPersonVehicleAccident.csv") # check ### https://github.com/subasish/AI_in_ 
HighwaySafety for data 

## Please check my RPUBS for additional codes: https://rpubs.com/subasish 
## Codes are also published here: https://rpubs.com/subasish/519027 

sd1 <- SharedData1[,c(1, 218, 219, 34, 8, 9)]
 
colnames(sd1)[2] <- "lat"
 
colnames(sd1)[3] <- "long"
 

library(crosstalk)
 
library(leaflet) 
library(DT) 

https://www.rpubs.com
https://www.rpubs.com
https://www.github.com
https://www.rpubs.com
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sd <- SharedData$new(sd1[sample(nrow(sd1), 150),])
	

# Create a filter input
	
##filter_slider("HOUR", "Hour", sd, column=~HOUR, step=0.1, width=250)
	

# Use SharedData like a dataframe with Crosstalk-enabled widgets 
bscols(
  leaflet(sd) %>% addTiles() %>% addCircleMarkers(), 

datatable(sd, extensions="Scroller", style="bootstrap", class="compact", 
width="100%",

 options=list(deferRender=TRUE, scrollY=300, scroller=TRUE))) 

Figure 15. Speed crash schematics. 

Chapter Conclusion 

This chapter provides a brief introduction of highway safety concepts. It starts 
with some key core concepts of highway safety education. It also provides an 
overview of the 4E approach, along with different intervention tools, data sources, 
and models within highway safety. Observational B/A studies are also looked at. 
This chapter concludes with information on core competencies and resources of 
highway safety courses offered by different universities. In the end, a couple of 
example problems are provided, and some coding help is offered. 

Further Reading 

AASHTO, 2010. Highway Safety Manual, 2010.  AASHTO, Washington DC.
	
Das, S., 2021. Data Dive into Transportation Research Record Articles: Authors, 


Coauthorships, and Research Trends. TR News, pp. 25-31. 



36 Artificial Intelligence in Highway Safety  

 

 

 

 

 
 

Das, S., 2021. Traffic volume prediction on low-volume roadways: A Cubist approach. 
Transportation Planning and Technology 44, pp. 93-110. 

Dixon, K., Das, S. and Potts, I., 2021. NCHRP 20-07 (384) Report: Core Competencies for 
Key Safety Analysis. National Academies. 

Elvik, R., Vaa, T., Hoye, A. and Sorensen, M., 2009. The Handbook of Road Safety 
Measures: Second Edition. Emerald Group Publishing. 

Fitzpatrick, K., McCourt, R. and Das, S., 2019. Current Attitudes among Transportation 
Professionals with Respect to the Setting of Posted Speed Limits. Transportation 
Research Record. Journal of the Transportation Research Board 2673, pp. 778-788. 

Hauer, E., 1997. Observational Before-after Studies in Road Safety: Estimating the Effect 
of Highway and Traffic Engineering Measures on Road Safety. Elsevier Science 
Incorporated, Tarrytown, N.Y. 

Hauer, E., 2014. The Art of Regression Modeling in Road Safety. Springer. 
Kong, X., Das, S., Zhou, H. and Zhang, Y., 2021. Characterizing phone usage while 

driving: Safety impact from road and operational perspectives using factor analysis. 
Accident Analysis & Prevention 152. 

Lord, D., Qin, X. and Geedipally, S.R., 2021. Highway Safety Analytics and Modeling. 
Elsevier. 

Mannering, F. and Bhat, C., 2014. Analytic methods in accident research: Methodological 
frontier and future directions. Analytic Methods in Accident Research, Vol. 1, pp. 
1-22. 

McCourt, R., Fitzpatrick, K., Koonce, P. and Das, S., 2019. Speed limits: Leading to 
change. ITE Journal 89, pp. 38-43. 

Park, E.S., Fitzpatrick, K., Das, S. and Avelar, R., 2021. Exploration of the relationship 
among roadway characteristics, operating speed, and crashes for city streets using 
path analysis. Accident Analysis & Prevention 150. 

Sun, X. and Das, S., 2014. AComprehensive Study on Pavement Edge Line Implementation. 
LTRC Project. 

Sun, X. and Das, S., 2015. Developing a Method for Estimating AADT on all Louisiana 
Roads. LTRC Project. 

Tarko, A., 2019. Measuring Road Safety with Surrogate Events. Elsevier. 
Washington, S., Karlaftis, M.G., Mannering, F. and Anastasopoulos, P., 2020. Statistical 

and Econometric Methods for Transportation Data Analysis. CRC Press. 
Zubaidi, H.A., Obaid, I.A., Alnedawi, A. and Das, S., 2021. Motor vehicle driver injury 

severity analysis utilizing a random parameter binary probit model considering 
different types of driving licenses in 4-legs roundabouts in South Australia. Safety 
Science 134. 

References 
Das, S., 2016. Statistical and Algorithmic Models on Crash Analysis: Research Papers and 

Abstracts. Accessed May 2021. http://subasish.github.io/pages/TRB2016/crash.html 
Lord, D., and Mannering, F., 2010. The statistical analysis of crash-frequency data: A 

review and assessment of methodological alternatives. Transportation Research Part 
A: Policy and Practice, 44, (5), pp. 291-305. 

http://www.subasish.github.io


 

 

37 Highway Safety Basics 

Tsapakis, I., S. Sharma, B. Dadashova, S. Geedipally, A. Sanchez et al., 2019. Evaluation 
of Highway Safety Improvement Projects and Countermeasures. TxDOT Report. 

Savolainen, P., Mannering, F., Lord, D., and Quddus, M., 2011. The statistical analysis 
of highway crash-injury severities: A review and assessment of methodological 
alternatives. Accident Analysis & Prevention, 43, (5), pp. 1666-1676. 



 

 

 

chapter 

3 
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3.1. Introduction 
With the massive amount of highway safety-related data, easily accessible 
computational power, and numerous machine learning algorithms, highway 
safety research has evolved from traditional statistical analysis to combining the 
power of machine learning into statistical learning. More and more data-driven 
studies on highway safety topics have been published recently. Many insights and 
patterns have been revealed that were not found with traditional data collection 
techniques, such as surveys and conventional analysis methods. However, with 
a plethora of literature available now on the topic, there is a need for conducting 
a comprehensive literature review on AI applications within the highway 
safety field. 

This chapter offers a brief summary of the basics of AI concepts. Figure 16 
shows the main branches of AI. 

Figure 16. Main branches of AI. 
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3.2. Machine Learning 
A major branch of the AI domain is machine learning, which is able to be divided 
into five major sub-domains: supervised learning, unsupervised learning, semi-
supervised learning, reinforcement learning, and deep learning. Some major 
applied domains of machine learning are natural language processing (NLP), 
robotics, computer vision, expert systems, and planning. 

3.2.1. Supervised Learning 
The response variable is defined in supervised learning (SL), and the learning 
algorithm uses a large dataset along with the corresponding response variable and 
dependent variables. The algorithm is then taught the key characteristics of each 
data point to determine the response. The mechanism is inclined to estimate the 
outcome or correct answer for any given data point based on key features. 

For example, a list of 20,000 freeway roadway segments is considered 
for analysis. The researcher started to collect as many geometric variables as 
possible. By exploring the historical crash counts, the individual impact of each 
variable is compared with the number of crashes. If the data has been trained 
based on different features and the associated number of crashes over time, the 
algorithm is able to correctly estimate the number of crashes. Here is another 
example of computer vision. Thousands of bridge condition pictures are given 
to a program, and the computer vision algorithm is given the correct label of 
the bridge condition. From this, the algorithm is able to learn the characteristics 
within the images that distinguish the conditions of different bridges. 

In another example of SL, a machine is given a dataset relating to the stock 
market, and it is given a corresponding label for each data point that tells it about 
the stock’s activity on a certain day. The machine is able to learn the final index or 
stock price for each data point. Now, the machine can identify the stock investment 
choice of a new data point, based on the previous data it was given. 

3.2.2. Unsupervised Learning 
No response variable is provided in unsupervised learning. The algorithm in 
unsupervised learning is designed to identify trends in a large amount of data to 
find similarities. It is then able to produce an algorithm that can identify clusters 
of similar data points and categorizes a new item within an existing cluster. 

Here is an unsupervised learning example. A crash dataset of alcohol-impaired 
driving is provided. The dataset has different variables at the driver level such as 
driver age, driver gender, driver license type, driver condition, driver severity 
type, and first harmful event. Without defining a response variable, the dataset has 
been used to identify clusters or groups of different variable attributes. Different 
clusters can provide information about different scenarios. Agencies can consider 
these findings while developing policies and guidelines. 
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3.2.3. Semi-supervised Learning 
Semi-supervised learning is a blend of unsupervised and supervised learning. In 
semi-supervised learning, a machine uses a large dataset, and only some of the 
data points are labeled. The machine uses clustering methods, like in unsupervised 
learning, to create groups based on the data, and it uses the labels it was given to 
assign labels to the rest of the data. 

Semi-supervised learning can be beneficial in saving a lot of time and 
effort. For example, a list of 10,000 crash narrative reports is taken to identify 
marijuana-impaired crashes. For supervised learning, the crash reports need to 
be tagged as marijuana-impaired and non-marijuana-impaired crashes, which is 
a significant effort. For semi-supervised learning, there is a need for a subset of 
crash narrative reports to be tagged properly. Among the reports, the algorithm 
will find similarities with the narrative reports and assign labels to the groups 
of similar crash reports based on the few defined crash narratives. Therefore, 
each crash narrative will be given a label that can be used to help the algorithm 
continue learning. Semi-supervised learning is clearly very effective in handling 
a large number of unlabeled data points. 

3.2.4. Reinforcement Learning 
In recent years, the most promising field of machine learning has been 
reinforcement learning. This method can be useful in continuously changing 
situations, such as real-life traffic conditions. In this situation, the machine must 
adjust its response to a continuously changing external situation. Reinforced 
learning enables the machine to sense the external environment as well as its own 
state to choose an action that will optimize a certain predefined goal. 

3.2.5. Deep Learning 
A very promising field of machine learning is deep learning. Chapter 7 provides 
more information on deep learning. 

3.3. Regression and Classification 
3.3.1. Regression 
No model can be expected to make perfect predictions in the real world. 
Furthermore, as the same value of the explanatory x can lead to different target 
y’s, y may not be a complete function of x. This could occur when there is some 
randomness in y. 

Assuming that calculating a linear function of the independent variables 
(in example x) is how to obtain the dependent variable (i.e., y), followed by the 
addition of a zero-mean normal random variable, results in a simple model which 
in written form is, 
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y = xTß + ξ, (1) 

where random effects are modeled by ξ. ξ is always assumed to contain a zero 
mean. ß is a vector of weights, which would be predicted or estimated. When for 
a certain set of independent variables x* a value of y is predicted with this model, 
then the value that takes ξ cannot be predicted. The mean value (zero) is the best 
prediction. The model predicts y = 0 if x = 0. 

Definition: Linear Regression 

A linear regression model contains the exploratory vector x and predicts xTß for 
some vector of coefficients ß. Using the data, the coefficients are determined to 
develop the best predictions. 

Choosing ß: ß can be determined by two methods- a probabilistic way and a non-
probabilistic way. Although these two methods differ in core principles, many 
researchers consider them as interchangeable. 
Probabilistic Approach: By assuming that ξ is a zero-mean normal random 
variable that has an unknown variance, one can consider P(y|x, ß) as normal with 
a mean measure of xT ß with some likelihood functions. Here, σ2 is the variance 
of ξ. The likelihood function is: 

log log L ( )β = ∑ log log ( ,P xi β ) 
i 1

= −  2 ∑ i 
( y1 − xi

T β )2 + term β . (2)
2σ 

Maximization of the log-likelihood is parallel to the minimization of the 
negative log-likelihood. Also, the location of the minimum is not changed by 
the term 1 , so β is associated with the minimization of ∑ ( y − xT β )2 . Thei i i

σ 22
minimization can be expressed as: 

1 T 2( )(∑ (y − x β ) ) (3)i i iN 

Non-probabilistic Approach: For the estimated values of ß, there remains an 
estimation of the values of the unmodelled effects ξi, by assuming ξ = y − xT β .i i i 
It is evident that the unmodeled effects should be minimized. The mean of the 
squared values is a good measure of size, which can be minimized as: 

1 T 2( )(∑i (y − xi β ) ) (4)iN 

Using the expressions of vectors and matrices, it can be described as: 
⎛ 1 ⎞ T
⎜ ⎟ ( y − χβ ) ( y − χβ ) (5)
⎝ N ⎠

which indicates: 
T Tχ χβ  χ  − y = 0 (6) 
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Residuals and R-squared 
For a reasonable feature choice, it is expected that χTχ the vector, residual, can be 
written as: 

e y  (7)= − χβ

This shows the discrepancy between the true value at each point and the 
model’s predicted value. Due to the fact that the mean-squared error value relies 
on the measurement units of the dependent variable, it is not a suitable measure 
of the goodness of the regression. The mean-squared error can be expressed as: 

Te e  (8)m = 
N 

There is a significant quantitative measure that doesn’t depend on the units 
of how accurate a regression is. If the dependent variable is not a constant, it 
has some variance. This model ought to describe some characteristics of the 
dependent variable’s value, meaning the dependent variable’s variance ought to 
be larger than the residual variance. If perfect predictions were made by the model 
then the residual variance should be zero. 

Regression Basics 

Consider y = χβ + e , where e is the residual. Consider χ has a column of ones, 
and β is considered to minimize eTe. The properties are: 
1. eTχ = 0, i.e., e is orthogonal to any column of χ. 
2. eT1 = 0. 
3. 1T ( y − χβ) = 0. 

4. eT χβ = 0. 

One can calculate mean({y}) and var[y] now that y is a one-dimensional 
dataset assembled into a vector. Similarly, the implication of mean and variance 
for χβ  and e is known as they are one-dimensional datasets arranged into a 
vector. This gives an important result: 

var  y = var ⎡⎣χβ⎤ var [ ]e (9)[ ] ⎦ + 

This allows for considering a regression describing the variance in y; when 
the ability to explain y gets better, var [e] goes down. On the contrary, a normal 
measure of a regression’s goodness is the percentage of the variance of y it can 
explain, which is also called R2 or the R-squared value. It can be written as: 

var ⎡χβ⎤2 ⎣ ⎦R = (10) 
var y[ ]  

which shows how effectively the regression explains the training data. A perfect 
model will have R2 = 1 (which is rare), and good predictions give high values of 
R2. Two estimates for the value of R2 are acquired in ways that attempt to consider 
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the quantity of data and the number of variables within the regression that can be 
determined from looking at the summary given for linear regression by R. The 
disparities aren’t significant between these numbers and R2. 

Bias and Variance 
It is a good approach to look at an abstract way in the process of finding a model. 
Doing so shows three distinctive effects that trigger erroneous predictions from 
models. One of these is an irreducible error. Even a perfect model choice is able 
to have misconstrued predictions due to the fact that more than one prediction 
could be correct for the same data. This could also be thought of as the possibility 
for multiple future data points to all have the same x but a different y. In this 
case, making wrong predictions is unavoidable. Bias is the second effect; some 
collections of models must be utilized by users, however, the collection’s best 
model may be unable to predict the data effects. Errors due to the inability of the 
best model to accurately predict data are attributed to bias. 
Variance is considered as the third effect; the user has to choose a model 

from the collection, and it is not likely to be the best model in many cases. The 
reason is that the estimates of the parameters are not exact due to a limited amount 
of data. Errors due to a chosen model that isn’t the family’s best are attributed to 
variance. Figure 17 shows a diagram of model complexity, demonstrating the 
relationship of error and model complexity with total error, variance, and bias 
(Washington et al., 2020). 

Need to know 

The trade-off between bias and variance is important. In general, one expects 
that the best model in the family can provide a precise estimation with a low 
variance. However, when a model is small or simple it may face difficulty 
reproducing the data (by generating a large bias). Likewise, a large or complex 
model typically has high variance, but low bias. All modeling requires handling 
this trade-off between variance and bias, so it is difficult to be precise about a 
model’s complexity. One reasonable proxy is the number of parameters needed 
to be estimated to determine the model. 

The influential error source is biased when low degree monomials are used, 
and when high degree monomials are used it causes variance. Feeling that the 
primary difficulty is bias is a common mistake, and, subsequently, people tend to 
use incredibly complex models. This typically results in huge errors in variance 
due to poor estimates of model parameters. People with modeling experience fear 
variance over bias. 

This discussion of variance and bias suggests that simply using all the 
explanatory variables that can be thought of or obtained is not a good idea, as it 
could result in a model with more variance issues. Rather, a model which utilizes 
a big enough subset of the explanatory variables such that the bias is not a problem 
and small enough to control the variance must be chosen. Choosing explanatory 
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Figure 17. Model complexity. 

variables requires some strategy; the simplest (but not best) approach is searching 
for a good set among sets of explanatory variables. However, it can be difficult to 
know when one has been found (Washington et al., 2020). 

Model Selection based on AIC and BIC 
In a regression analysis, it is common to have multiple explanatory variables. An 
assortment of non-linear functions could be computed with only one measurement. 
The fitting cost will be reduced by inserting variables into a model, but that does 
not mean that there will be better predictions. Which explanatory variables will be 
used needs to be chosen. Poor predictions might be made by a linear model that 
has fewer explanatory variables due to the fact that it is incompetent at precisely 
representing the independent variable, and poor predictions also might be made by 
one that has more explanatory variables due to the fact that the coefficients cannot 
be estimated as well. These effects need to be balanced to choose the explanatory 
variables that will be used (and thus the model that will be used). 

As more complex models are associated with lower training errors, the most 
complex model is typically the model that has the lowest training error. Training 
error is not the best method for error testing due to the fact that lower bias on the 
model’s part is indicated by lower training error; greater variance, however, is 
expected with lower bias, which the training error does not consider. Penalizing 
the model for its complex nature is one strategy, wherein some penalty that 
reflects the model’s complexity is added to the training error, so as the model 
becomes more complex, the training error goes down and the penalty increases. 
Subsequently, it is expected to observe a point wherein the sum is at a minimum. 
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Constructing penalties has many methods, such as Akaike Information 
Criterion (AIC), which is a method originally due to H that, instead of utilizing 
the training error, utilizes the log-likelihood of the model’s maximum value. For 
this value L is used, and k is used for the number of parameters that are predicted 
to fit the model. Thus, the AIC can be written as: 

2k – 2l (11) 

Note that a better model is linked to a larger log-likelihood. Subsequently, 
a lower AIC value is typically associated with a better model. If one assumes 
the noise to be a zero-mean normal random variable, then for regression models 
estimating the AIC is direct. The noise variance, and thus the model’s log-
likelihood, is given by estimation of the mean-squared error. Two points are 
important to watch; first, k, the total number of parameters that are predicted to fit 
the model (e.g., in a linear regression model, wherein one models y as xT β ξ+  to 
estimate β  and the variance of ξ (in order to get the log-likelihood), d parameters 
need to be estimated; k = d + 1 in this situation). Second, typically log-likelihood 
is known only up to a constant, thus, various constants are frequently used by 
different software, which can be tremendously confusing. Bayes’ information 
criterion (BIC) is an alternate measure, which can be written as: 

2klogN – 2L (12) 

where N is the size of the training dataset. This is frequently narrated as 2L – 
2klogN, but the form above was given so one desires the smaller value each 
time, like with AIC. A lot of literature compares BIC and AIC. AIC is typically 
considered to have firmer theoretical foundations, but is somewhat known for 
overestimating the required number of parameters (Washington et al., 2020). 

3.3.2. Classification 
During hard classification, the probabilities are either converted using thresholds 
or returned by the algorithm, and, for each observation, there are four potential 
cases (see Table 7): 

• True Negative (TN): the algorithm predicts it to be negative, and the response 
is truly negative. 

• False Positive (FP): the algorithm predicts it to be positive, but the response is 
truly negative. 

• True Positive (TP): the algorithm predicts it to be positive, and the response is 
truly positive. 

• False Negative (FN): the algorithm predicts it to be negative, but the response 
is truly positive. 

Every observation can be categorized into one of these four cases. The 
possibilities form a confusion matrix, as shown below in Table 7. 
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Table 7. Four Potential Cases 

Actual/Predicted Predicted Negative (0) Predicted Positive (1) 

Actual Negative (0) True Negative (TN) False Positive (FP)
 

Actual Positive (1) False Negative (FN) True Positive (TP)
 

Below are several common performance metrics, in which cases are hard 
classified: 
•		Misclassification: To calculate a binary classifier, the misclassification rate, 

also called the error rate, is the most often used metric. This rate represents the 
probability of an incorrect classification prediction. It can be expressed as: 

FN + FP
Misclassification rate  = Pr(Y ≠ Y ) =	 (13)

TN + FN + TP + FP 
•		Accuracy: The accuracy calculates the rate of correct classifications. 

Accuracy = Y Y  ) = − Misclassification rate (14)Pr( ≠ 1 

•		Sensitivity: The sensitivity (which can be defined as the true positive rate) 
measures the percentage of positive responses correctly classified and can 
be determined from the confusion matrix. 

( 1) TP (15)
TP + FN

Senstivity = Pr Y =1| Y = =  

True positive rate (TPR) and recall are other terms that represent sensitivity. 
The measure of sensitivity is popular in medical tests. For machine learning and 
natural language processing, the term recall is often used. 
•		Specificity: The specificity (also referred to as the true negative rate or TNR) 

measures the percentage of the negative responses accurately classified and 
can be determined from the entries of the confusion matrix. 

TNSpecificity = Pr Y = 0 | Y = 0) =	 (16)( 
TN + FP 

•		Positive predictive value (PPV): The PPV is the likelihood of the correct 
classification of a positively classified observation. It can be determined from 
the entries of the confusion matrix: 

PPV = Y =1| Y = =  
TP	 (17)Pr( 1) 

TP + FP 

•		Negative predictive value (NPV): The NPV is the likelihood of the correct 
classification of a negatively classified observation. It can be determined from 
the entries of the confusion matrix. 

NPV  = Pr(Y = 0 | Y = 0) = 
TN	 (18)

TN + FN 
•		Diagnostic likelihood ratio (DLR): The DLR is a measure of accuracy for a 

binary classifier. In the context of statistics, this ratio is simply a likelihood 
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ratio, but as an accuracy measure, it is known as a diagnostic likelihood ratio 
(DLR). Both positive and negative DLR metrics are defined: 

TPR Positive DLR =	 (19)
FPR 

Negative DLR = 
TNR	 (20)
FNR 

•		F-Score: The F-Score (also referred to as the F1-Score or F-measure) can 
be defined as the harmonic mean of precision (PPV) and recall (TPR), and 
is a tool utilized to evaluate the performance of the binary classifier. It is 
commonly utilized in information theory to assess the performance of the 
search, document classification, and query classification functions. 

2 PPV ×TPR F Score = 2−	 = ×  (21)1 1 PPV + TPR +
PPV TPR 

3.4. Sampling 
All components in any field of analysis consist of a ‘population.’ Sampling 
includes selecting some part of a population that can provide a representative 
estimate of something about the whole population. A sample requires being 
representative of the population to obtain statistical reliability. Sampling design 
has two broad categories: probability sampling and non-probability sampling. In 
scientific research, probability sampling is mostly used. Unrestricted sampling 
infers sampling methods that consider taking a random sample at large from a 
population. The other sampling methods consider some local or global restrictions 
to make sampling more robust. These methods are known as restricted sampling. 
Figure 18 shows different kinds of sampling methods, including probability and 
non-probability sampling. 

Figure 18. Types of sampling design. 
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3.4.1. Probability Sampling 
Probability sampling indicates a sampling design wherein each unit of the 
population has an equal likelihood of being drawn in a sample. This method is 
delimited by statistical regularity (a sample would represent the main traits of the 
population). 

Simple Random Sampling: Simple random sampling ensures a sampling 
technique wherein each unit of the population has an equal likelihood of being 
picked. This method has two categories: with and without replacement. Simple 
random sampling with substitution allows the return of the element drawn from 
the population before the next draw. Repeat selection is not allowed by the 
technique without replacement. Unbiased estimates of the population mean with 
an unbiased estimate of variability, used to evaluate the result’s reliability, are 
offered by simple random sampling. n distinct units are chosen from the N units 
in the population so that each possible arrangement of n units is equally likely to 
be the sample chosen in simple random sampling without replacement. Figure 19 
illustrates a sampling technique used in simple random sampling. It shows that 
from a population of 25 units, 8 random units are picked. 

It is common to use the selection of a spatially random sample by dividing the 
local roads into particular length segments, but local road geographic information 
systems (GIS) databases are less developed in comparison to those for more major 
roadways. This makes the application of simple random sampling difficult. 

Cluster Sampling: In this sampling, a central unit consists of a cluster of 
secondary units, typically in close vicinity of each other. Clustered primary units 
contain spatial arrangements, i.e., square or long collections of adjacent plots 
in spatial settings. All secondary units of the primary unit would be considered in 
the sample if cluster sampling considers any secondary unit of a primary sample. 
Obtaining estimators of low variance is the principle of clustering; the population 
should be divided into clusters so that one cluster is similar to another in this 

Figure 19. Simple random sampling. 
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method. The concepts of cluster sampling are illustrated by an example in Figure 
20. The population has 25 units and comprises five clusters, and the target is to 
select a sample of 10 units. Two clusters (in this case, cluster 2 and cluster 5) are 
randomly selected. 

Systematic Sampling: A systematic sampling design selects a single starting 
unit at random and determines a fixed interval for all other units in the population. 
This method is also called quasi-random sampling, as random sampling is usually 
conducted as the first choice. For example, if a population has N = 2,000 units and 
n is taken as 200 units, then the sampling fraction would be 10. A random sample 
would be selected between 1 and 10, and it would be systemically continued 200 
times. Figure 21 illustrates systematic sampling by proving an example. The 
population has 25 units. To get a sample of eight units, the first unit is randomly 
selected between 1 and 3. This is systematically continued eight times to complete 
the sample. 

Figure 20. Cluster sampling. 

Figure 21. Systematic sampling. 
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Stratified Sampling: In this sampling method, the population is divided into 
regions or various strata, and units are selected from each stratum. The assumption 
of stratification is to divide the population so that the units within a stratum are as 
similar to each other as possible since this method contemplates within-stratum 
variances of estimators for the entire population. The sampling design in each 
stratum being simple random sampling is ensured by stratified random sampling. 
The concept of stratified sampling is illustrated by providing an example in Figure 
22. From a population with 25 units and 3 strata, a sample of 10 units is selected. 

Figure 22. Stratified sampling. 

3.4.2. Non-probability Sampling 
Non-probability sampling is not popular for scientific research. This method does 
not consider any basis of probability and statistical regularity. 

3.4.3. Population Parameters and Sampling Statistics 
Assume that a population has N units and a simple random sample of n units 
is taken from it. A measurement that describes the entire population is known 
as a population parameter. Population mean and population variance are two 
common population parameters. The y-values’ average in the entire population is 
the population mean μ: 

1 1 Nµ = ( y + y + .... + y ) = ∑ y (22)1 2 N i = 1 iN N 
The population variance is defined as 

2 1 N 2σ = ∑ ( y − µ) (23)i = 1 iN − 1 
A measurement that describes the sample is called a sample statistic. Two 

common sample statistics are sample mean and sample variance. The sample 
mean y is the mean of the y-values in the entire sample:

1 1 ny = ( y +  + +  y (24)y ... ) = ∑ y1 2 n i = 1 i n n 
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The sample variance is 
2 1 n 2s = ∑ ( y − y) (25)i = 1 in − 1 

The interval is known as a 100 (1 – α)% confidence interval, and the quantity 
(1 – α) can be described as the confidence coefficient. The general selections for 
the value of α are 0.01, 0.05, and 0.1. With α = 0.01, for example, the confidence 
coefficient is 0.99. In simple random sampling, a 99% confidence interval 
procedure means there is a 99% likelihood of the interval including the true value 
of the population mean μ. For the population mean μ, an approximate 100 (1 – 
α)% confidence interval is 

N n−⎛
⎝
⎜

2⎞
⎟
⎠
 
s
 (26)
y t  

3.4.4. Sample Size 
The sample mean y  is an unbiased estimator of the population mean μ with 

−

+

2N n  σ( )
sample variance var ( )y =  in simple random sampling. Sample size 

Nncan be estimated as: 

= d (27) 

Solving for n results in the necessary sample size for the population mean: 
1 1 n = = (28)

d 2 1 1 1 
+ + 

z2α 2 N n0 N 
Where: 
n = Sample size 
Z = Value of the standard normal statistic for an alpha confidence level (two 

sided) 
α = Allowable probability of error 
d = Maximum allowable difference between the estimate and the true value 
N = Population size 

z2α 2 n0 = 2 (29)
d 

N
 n
 

z N n  

N n 
( )− σ 2 

Resources 
Readers can consult the following link for a curated list of AI concepts, tools, 
and algorithms: 
https://github.com/owainlewis/awesome-artificial-intelligence 
The following link shows the applicability of different ML algorithms: 
https://rpubs.com/subasish/170751 

Example Problem 1 
Show a reproducible example of crash count data modeling. 

https://www.rpubs.com
https://www.github.com
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Solution 
To solve this problem, crash data from Louisiana has been used. The following 
code chunks show the coding to answer the question. The code results are not 
shown (few major plots are shown to explain the results). 

Example Problem 1 (Code Chunk 1) 
## Please check my RPUBS for additional codes: https://rpubs.com/subasish 

setwd("~folder location") 
dat= read.csv("TAHIR_rwd1.csv") 
table(dat$HwyClass) 
head(dat) 

dat1= subset(dat, HwyClass=="Rural Two-Lane") 
dim(dat1) 
dat1= dat1[, c(4, 5, 7:11)] 

# Set the graphical design 
ggplot2::theme_set(ggplot2::theme_light()) 

# Set global knitr chunk options 
knitr::opts_chunk$set(
 fig.align = "center",
 fig.height = 3.5 
) 

# Required packages 
library(dplyr) 
library(ggplot2) 
library(caret) 
library(vip) 
library(rsample) 

# stratified sampling with the rsample package
	
split <- initial_split(dat1, prop = 0.7, strata = "Total_Crash")
	
ames_train <- training(split) 
ames_test <- testing(split) 

model1 <- lm(Total_Crash ~ AADT, data = ames_train) 

# Fitted regression line (full training data) 
p1 <- model1 %>%
 broom::augment() %>%
 ggplot(aes(Total_Crash, AADT)) + 
geom_point(size = 1, alpha = 0.3) +

 geom_smooth(se = FALSE, method = "lm") +
 ggtitle("Fitted regression line") 

https://www.rpubs.com
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# Fitted regression line (restricted range) 
p2 <- model1 %>%
 broom::augment() %>%
 ggplot(aes(Total_Crash, AADT)) + 
 geom_segment(aes(x = AADT, y =Total_Crash,
 xend = AADT, yend = .fitted), 
alpha = 0.3) +


 geom_point(size = 1, alpha = 0.3) +

 geom_smooth(se = FALSE, method = "lm") +

 ggtitle("Fitted regression line (with residuals)")
 

# Side-by-side plots
 
grid.arrange(p1, p2, nrow = 1)
 
summary(model1) 

(model2 <- lm(Total_Crash ~ Length+ AADT+LaneWidth+ShWidth+Curve+MinPSL, 
data = ames_train)) 

# Fitted models 
fit1 <- lm(Total_Crash ~ Length+ AADT, 
data = ames_train) 

fit2 <- lm(Total_Crash ~ Length*AADT, data = ames_train) 

# Regression plane data 
plot_grid <- expand.grid(
 Length = seq(from = min(ames_train$Length), 
to = max(ames_train$Length), 
length = 100), 
AADT = seq(from = min(ames_train$AADT), 
to = max(ames_train$AADT), 
length = 100) 

) 
plot_grid$y1 <- predict(fit1, newdata = plot_grid) 
plot_grid$y2 <- predict(fit2, newdata = plot_grid) 

# Level plots
 
p1 <- ggplot(plot_grid, aes(x = Length, y =AADT, 

z = y1, fill = y1)) +

 geom_tile() +
 geom_contour(color = „white“) +
 viridis::scale_fill_viridis(name = "Predicted\nvalue", option = "inferno") +
 theme_bw() +

 ggtitle("Main effects only")
 
p2 <- ggplot(plot_grid, aes(x = Length, y = AADT, 

z = y2, fill = y1)) +

 geom_tile() +
 geom_contour(color = "white") + 

(Contd.) 
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 viridis::scale_fill_viridis(name = "Predicted\nvalue", option = "inferno") +
 theme_bw() +

 ggtitle("Main effects with two-way interaction")
 

gridExtra::grid.arrange(p1, p2, nrow = 1) 

model3 <- lm(Total_Crash ~ ., data = ames_train) 

# print estimated coefficients in a tidy data frame 
broom::tidy(model3) 

set.seed(123) # for reproducibility 
(cv_model1 <- train(
 form = Total_Crash ~ AADT, 
data = ames_train, 
method = "lm",

 trControl = trainControl(method = "cv", number = 10) 
)) 

# model 2 CV 
set.seed(123) 
cv_model2 <- train( 
Total_Crash ~ AADT+ Length, 
data = ames_train, 
method = "lm",

 trControl = trainControl(method = "cv", number = 10) 
) 

# model 3 CV 
set.seed(123) 
cv_model3 <- train( 
Total_Crash ~ ., 
data = ames_train, 
method = "lm",

 trControl = trainControl(method = "cv", number = 10) 
) 

# Extract out of sample performance measures 
summary(resamples(list(
 model1 = cv_model1, 
model2 = cv_model2, 
model3 = cv_model3 

))) 

Figure 23 shows the comparison between main effects and main effects with 
interaction. The trends show that interaction makes association non-linear. 
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Figure 23. Comparison between main effects and main effects with interaction. 

Example Problem 2 

Develop an AI model based on Chicago Crash data 

Solution 
For this example, data was collected from Chicago. The following code chunks 
show the coding to answer the question. The code results are not shown (few 
major plots are shown to explain the results below). 

Example Problem 2 (Code Chunk 1) 
### Made some changes in variable selection. Otherwise, complete replicate of 
### https://juliasilge.com/blog/chicago-traffic-model/ 

## Please check my RPUBS for additional codes: https://rpubs.com/subasish 

## Code is uploaded here: https://rpubs.com/subasish/770232
 

library(tidyverse)
 
library(lubridate)
 
library(RSocrata)
 
library(data.table)
 
library(themis)
 
library(baguette)
 
### install.packages(„baguette“)
 
library(lubridate)
 
library(ggplot2)
 
theme_set(theme_bw(base_size = 16))
 

(Contd.) 

https://www.rpubs.com
https://www.rpubs.com
https://www.juliasilge.com


56 Artificial Intelligence in Highway Safety  

### the following codes are from Julia Silge’s blog. However, variable selection and 

some steps are ### different. 

years_ago <- today() - years(4)
 
crash_url <- glue::glue("https://data.cityofchicago.org/Transportation/Traffic-Crashes-
Crashes/85ca-t3if?$where=CRASH_DATE > '{years_ago}'") 
crash_raw <- as_tibble(read.socrata(crash_url)) 
names(crash_raw) 

crash <- crash_raw %>%
 arrange(desc(crash_date)) %>%
 transmute(
 injuries = if_else(injuries_total > 0, "injuries", "none"),
 crash_date,

 crash_hour,

 report_type = if_else(report_type == "", "UNKNOWN", report_type),

 num_units,

 posted_speed_limit,

 weather_condition,

 lighting_condition,

 roadway_surface_cond,

 lighting_condition,

 alignment,

 crash_type,

 first_crash_type,
 trafficway_type,
 prim_contributory_cause,
 latitude, longitude
 ) %>%
 na.omit() 

dim(crash) 
head(crash) 

crash$year= year(crash$crash_date) 
table(crash$year) 

crash= subset(crash, year==2018| year==2019| year==2020) 
dim(crash) 

theme_set(theme_bw(base_size = 18)) 
crash %>%
 mutate(crash_date = floor_date(crash_date, unit = "week")) %>%
 count(crash_date, injuries) %>%
 filter(
 crash_date != last(crash_date),
 crash_date != first(crash_date)
 ) %>% 
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ggplot(aes(crash_date, n, color = injuries)) +
 geom_line(size = 1.5, alpha = 0.7) +
 scale_y_continuous(limits = (c(0, NA))) +
 labs(
 x = NULL, y = "Number of traffic crashes per week",
 color = "Injuries?"
 ) 

Figure 24 shows the amount of traffic crashes from 2018-2021. The top line 
represents crashes with injuries, and the bottom line represents crashes without 
injuries. 

Figure 24. Injury and no injury crashes during 2018-2021. 

Example Problem 2 (Code Chunk 2)
 crash %>%
 filter(latitude > 0) %>%
 ggplot(aes(longitude, latitude, color = injuries)) +
 geom_point(size = 0.5, alpha = 0.4) +
 labs(color = NULL) +
 scale_color_manual(values = c("deeppink4", "gray80")) +
 coord_fixed() 

Figure 25 shows a map of Chicago traffic crashes, including injury and non-
injury crashes. 
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Figure 25. Map showing injury and no injury crashes. 

Example Problem 2 (Code Chunk 3) 
names(crash) 

crash= crash[, -c(2, 3, 4, 15:17)] 
names(crash)
 
library(tidymodels)
 

set.seed(2021)
 
crash_split <- initial_split(crash, strata = injuries)
 
crash_train <- training(crash_split)
 
crash_test <- testing(crash_split)
 

set.seed(2020)
 
crash_folds <- vfold_cv(crash_train, strata = injuries)
 
crash_folds
 

crash_rec <- recipe(injuries ~ ., data = crash_train) %>%
 step_other(weather_condition, first_crash_type,
 trafficway_type, prim_contributory_cause,
 other = "OTHER"
 ) %>% 

step_downsample(injuries) 
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bag_spec <- bag_tree(min_n = 10) %>%
 set_engine("rpart", times = 25) %>%
 set_mode("classification") 

crash_wf <- workflow() %>%
 add_recipe(crash_rec) %>%
 add_model(bag_spec) 

#doParallel::registerDoParallel() 
#crash_res <- fit_resamples(
 #crash_wf,

 #crash_folds,

 # control = control_resamples(save_pred = TRUE)
 
#)
 

crash_fit <- last_fit(crash_wf, crash_split)
	
collect_metrics(crash_fit)
	
crash_imp <- crash_fit$.workflow[[1]] %>%

 pull_workflow_fit()
	

crash_imp$fit$imp %>%

 slice_max(value, n = 10) %>%

 ggplot(aes(value, fct_reorder(term, value))) +
 geom_col(alpha = 0.8, fill = "midnightblue") +
 labs(x = "Variable importance score", y = NULL) 

Figure 26 shows a variable importance plot. The crash type has the highest 
variable importance, and alignment has the lowest variable importance. 

Example Problem 2 (Code Chunk 4) 
collect_predictions(crash_fit) %>%
 roc_curve(injuries, .pred_injuries) %>%
 ggplot(aes(x = 1 - specificity, y = sensitivity)) +
 geom_line(size = 1.5, color = „midnightblue“) +
 geom_abline(
 lty = 2, alpha = 0.5,
 color = "gray50",
 size = 1.2
 ) +
 coord_equal() 

Figure 27 shows an ROC curve over a graph of 1-specificity vs. sensitivity. It 
peaks and flattens out around a sensitivity of 1.00. 
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Figure 26. Variable importance plot. 

Figure 27. ROC curve. 

Chapter Conclusion 
This chapter introduces the key branches of AI, including sections on 
machine learning (covering supervised learning, unsupervised learning, semi-
supervised learning, reinforcement learning, and deep learning), regression and 
classification, and sampling (covering probability sampling, non-probability 
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sampling, population parameters, sampling statistics, and sample size). Concepts 
of regression and classification are introduced with the inclusion of the concept of 
sampling. More details on the relevant algorithms are described in the following 
chapters. Some example problems are included to aid in understanding the AI 
tools in highway safety engineering. 
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chapter 

4 

Matrix Algebra and Probability 

4.1. Introduction 
To understand AI algorithms, it is important to have adequate knowledge of 
matrix algebra and probability. Undergraduate or graduate level coursework on 
matrix algebra and probability can be beneficial for the readers to understand the 
critical concepts. 

As in multivariate statistical methods, matrix algebra is a very important 
tool. This section covers a review of matrix algebra. Additionally, key statistical 
concepts are also briefly described in this chapter. It is easier to do computations 
with matrix algebra than it is with simple algebra. Summation operators are offered 
before the introduction of standard matrix notation. Some common summation 
operators are 

N 

∑ Xi = X1 + X 2 + + XN... 
i =1 

N 

=∑
=
C N

i 1 
C
 

N n n 

∑ (Xi + Yi ) = ∑ Xi + ∑ Yi 
i =1 i = 1 i =1 

N n 
(X C + K ) = C X + NK∑ i ∑ i 

i =1 i =1 

An n × p matrix is be written as 

⎡⎣x11 � x1p �� �  xn1 � xnp ⎤⎦ (1) 

in which j = the column index and i = the row index of matrix X. Matrix X’s 
columns relate to independent variables that are taken from each observation and 
matrix X‘s rows correspond to observations in the data set in multiple statistical 
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modeling applications. Thus, a matrix Xn × p has observations on n individuals, 
with each having p observed or measured attributes. 

A matrix with the same count of rows and columns, or when n = p, is known 
as a square matrix. A column vector (or simply a vector) is a matrix containing 
only one column, and a matrix with only one row is a row vector. If two matrices 
have equal dimensions, and all of the corresponding elements are equal in the 
matrices, then the matrices are equal. 

Transposing the rows and columns in matrix A gives the transpose, represented 
as A' or AT, such that 

AT a33]T= [a11 a12 a13 a21 a22 a23 a31 a32 

= [a11 a21 a31 a12 a22 a32 a13 a23 a33] (2) 

Matrices must have the same dimension if they are being subtracted or added. 
The corresponding difference or sum of the two matrices’ individual components 
gives the difference or sum of the two matrices, such that 

A + B = a . a1p :. :  . a np ⎤⎦ + ⎡⎣b . 1p : b bnp ⎤⎦⎡⎣ 11 n1 a 11 b .:  .n1 

= ⎡⎣a11 + b11 a1p + b1p    an1 + bn1  anp + bnp ⎤⎦ (3) 

4.2. Matrix Algebra 

4.2.1. Matrix Multiplication 
There are two ways to perform matrix multiplication: a matrix can be multiplied 
with another matrix or a scalar. The scalar–matrix product is produced by 
multiplying each element in the matrix by the scalar. One can find the product of 
two matrices by calculating and then adding across the cross-products of the rows 
of matrix A with the columns of matrix B. In the multiplication of matrices, the 
order matters; subsequently, a matrix is pre- or post- multiplied by another matrix. 
Matrix dimensions are critical in computing products of matrices. To produce the 
product AB, the number of columns of matrix A must be equal to the number of 
rows of matrix B. When matrix A is post-multiplied by B, it will result in matrix 
C, the size of which will have columns equal to the number of columns in matrix 
B and rows equal to the number of rows in matrix A. 

4.2.2. Linear Dependence and Rank of a Matrix 
If one vector can be expressed as a linear combination of the other, then the column 
vectors are linearly dependent. Otherwise, the vectors are linearly independent. 

Scalar multiples of the columns of matrix An × m can be looked at as the sum 
of the linear combination of column and scalar vectors λ1 C1 + λ2 C2 + ... + λm Cm 
= 0. A minimum of two rows are linearly dependent if a scalar combination λ1, 
λ2, … , λm is located so that the sum of the linear combination equals zero. The 
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matrix is considered linearly independent if the set of all 0 is the only set of scalars 
that this holds. Data analysis difficulties can result from the linear or near-linear 
dependencies showing up in statistical modeling. Two columns containing equal 
information, that differ by a constant only, is suggested by two columns having a 
linear dependency. 

Need to know 
The matrix’s rank is described by the maximum number of linearly independent 
columns that are in the matrix (the matrix’s rank is 3 in the last example), 
and if there are no column vectors that are linearly dependent then a matrix is 
considered to be full rank. A full rank matrix of independent variables implies 
that a different dimension in the data or different information in statistical 
modeling applications is measured by each variable. 

4.2.3. Matrix Inversion (Division) 
Division in algebra is parallel to matrix inversion. A number that is multiplied 
by its reciprocal or inverse always results in 1 in non-matrix algebra, such that 
(10)*(1/10) = 1. A matrix denoted by A–1 is the inverse of a matrix A in matrix 
algebra. Due to the inverse property, A–1 A = AA–1 = I, in which I is the identity 
matrix (a diagonal matrix with components along the main diagonal and zeros 
making up all other components): 

[1 0 � ]� ��� 0 1 (4) 

Matrix inverses are defined only for square matrices. If a matrix has an inverse 
(not all do), the inverse is unique. For a square r × r matrix, the inverse only exists 
if the matrix has a full rank (which is considered to be nonsingular). A r × r matrix 
with a rank that is less than r does not have an inverse and is said to be singular. 

The matrix operations below are then performed to compute the unknown 
quantities in vector B 

AB = C 

A–1 AB = A–1C (premultiply both sides by A–1). 
IB = A–1 C (a matrix multiplied by its inverse is I). 
B = A–1 C (a matrix multiplied by I is itself). (5) 

For the solutions of the unknown in matrix B, one only needs to find the 
inverse of matrix A. 

It is a formidable computation to compute matrix inversions for matrices 
bigger than 3 × 3, and these problems subsequently justify using computers 
extensively. For these operations, statistical analysis software is utilized in 
statistical modeling applications. For calculating the individual ijth elements of 
the inverse of matrix A (matrix A–1), the general formula is 
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C 
ai j  = i j  

(6)A 

where |A| is the determinant of A and Cij is the jith cofactor of A. Cofactors, 
determinants, and matrix inversion computations can be compared with greater 
detail by reviewing references on matrix algebra. 

4.2.4. Eigenvalues and Eigenvectors 
Eigenvectors are the characteristic vectors whereas eigenvalues are the matrix’s 
characteristic roots. There are many applications of eigenvalues of a matrix. The 
solutions to the sets of equations below give results that are helpful for evaluating 
a square matrix A: 

AE = λE (7) 

where λ is a vector of eigenvalues, A is a square matrix, and E contains the 
matrix eigenvectors. Matrix manipulations can be used to obtain the eigenvalues 
that solve Equation 7, restricting the solutions so that ETE = 1 (to get rid of the 
indeterminacy), and then solving 

|A – λI | = 0 (8) 

The solutions of these equations are nonzero only if the matrix |A – λI | 
contains a zero determinant or is singular. The symmetric matrix’s eigenvalues 
will always be real, and luckily the majority of matrices solved for eigenvectors 
and eigenvalues in statistical modeling endeavors are symmetric. 

The original formulation that is shown in Equation 8 can be utilized to locate 
eigenvectors now that the eigenvalues vector has been determined. Equation 8 can 
be altered to get 

(A – λI) E = 0 (9) 
The eigenvectors of matrix A can be found using Equation 9. Remember that 

the constraint ETE = 1 has to be imposed to get a unique solution. 

4.2.5. Useful Matrices and Properties of Matrices 
Statistical modeling has many important matrices. A matrix is symmetrical if 
A = AT; subsequently, a symmetrical matrix has to be square. A square matrix with 
off-diagonal elements that are all zeros is a diagonal matrix, of which there are two 
kinds: the scalar matrix and the identity matrix. The identity matrix is a diagonal 
matrix with elements on the main diagonal that are all ones, as shown denoted by 
I in Equation 9. Pre- or post-multiplying any r × r matrix A by an r × r identity 
matrix I gives A, so that AI = IA = A. The scalar matrix, a diagonal matrix, can 
be represented as an r × r matrix A by the r × r scalar matrix λI which is parallel 
to multiplying A by the scalar λ. I denotes a column vector with all components 
equal to 1, and J denotes a square matrix with all components equal to 1. 
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4.2.6. Matrix Algebra and Random Variables 
Matrix algebra is very effective for working with random vectors, variables, 
and matrices, and it is very helpful for manipulating matrices that are utilized 
for developing statistical methods and models. Some simple matrices utilized 
in the statistical modeling of random phenomena, along with other matrices as 
necessary, are introduced in the section below. A matrix of random variables of 
size n × p is a typical starting point in many statistical modeling applications 

X × x11  x    x 1 x ⎤⎦n p  = ⎡⎣ 1p n np (10) 

in which the p columns in matrix X signify variables (e.g. segment width, 
presence of intersection, driver age.), and the n rows in matrix X embody 
observations throughout sampling units (e.g. autos, road sections, individuals.). 
A mean matrix X (representing the averages across individuals) can be shown as: 

E X  = X = E X  . E ⎡x1 :": E [ ]  1 .E ⎡ ⎤[ ] ⎡⎣ [ 11 ⎤⎦ ⎣ p ⎤⎦ xn ⎣xnp ⎤⎦⎦ (11) 

in which the averages of the components from the mean matrix X are 
computed as follows, 

n x∑ i i j=1E x  ; j = 1, 2, ..., p. (12)⎡⎣ i j ⎤⎦ = 
n 

Subtracting matrix E[X] from X gives a deviations matrix. Building on the 
fact that VAR[Xi] = E[Xi – E[Xi]], in matrix form (with the sizes of the matrices 
displayed) the variance–covariance matrix of matrix X is gathered as follows, 

T
VAR[ ] = {⎡ n p − E[ ] × ⎤ ⎡ X n p − E X × ⎤E X X × [ ]n p  } (13)X p p× ⎣ × n p ⎦ p n ⎣ ×× ⎦ p n  

Calculating the variance-covariance matrix using standardized variables 
gives a correlation matrix, where, 

x − xij jz = ; i = 1 2, ..., , p.ij σ j 

replaces the original xij terms. 

4.3. Probability 
4.3.1. Probability, Conditional Probability, and Statistical 

Independence 
The probability of the occurrence of an event (for example, a crash or near-crash 
event) is the ratio of times that it occurs in a long-run sequence to the total number 
of examinations. Probability is denoted in notation as 
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count A( )P A  = ; trials( )  → ∞ (14)
trials 

where count (A) is the number of times that the incident A occurs, and trials 
(n) is the number of experiment repetitions or the number of recorded observations 
where event A could have occurred. As the number of trials tends to infinity, P(A) 
converges in probability, so one views back the idea that before getting a reliable 
estimate of probability, multiple trials are needed to be observed. A Bayesian 
statistician, however, is able to use subjective information to produce estimates 
of probability. 

Conditional probability can be defined as the probability of an event, such as 
event A, if event B has occurred already, and it is given in notation as 

P A( B)P B( ) = (15)P B( )  

where the joint probability of events A and B happening together is P(AB). 
Statistical modeling relies on conditional probability, as many statistical models 
predict or explain, given the independent variables X, the probability of an 
outcome, Y, such that the model provides P(Y|X). 

Conditional probabilities make up statistical hypothesis tests. The general 
form of a classical or frequentist statistical hypothesis test is given as 

P data p  true null hypothesis ) ( )P true null hypotheis ) ( 
(16)( = 

P true nul ll hypothesis)( 

It is common that on the right side of Equation 16, the denominator is the 
unknown and desired value. Subsequently, the classical hypothesis test doesn’t 
offer the null hypothesis’probability of being true, but rather the data’s conditional 
probability (given a true null hypothesis) of being observed. However, objective 
evidence is given by the conditional probability regarding the plausibility of the 
null hypothesis. 

Conditional probability is also based on Bayes’ theorem (utilized to bypass 
the classical hypothesis test results philosophical and practical problems), which 
is derived as follows: 

P A( B)P B  =( )  
P B( )  

P A( B)P A =( )  
P A( )  

P A  P A  ( )  ( )  P B  = (Bayes Thoerem )( )  ' 
P B( )  (17) 

The development of some statistical methods has been helped by the use of 
statistical independence (the condition in which the probability of the occurrence 
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of another event B does not affect the probability of the occurrence of event A). If 
events A and B are independent 

P(AB) = P(A)P(B) (18) 

The conditional probability formula in Equation 18 can be used to show that 
for statistically independent events, 

P A( B) P A  P B  ( )  ( )  P B  = = = P A  (19)( )  ( )
P B( )  P B( )  

The above equation shows that the probability that event A occurs if event 
B has already occurred is the probability of event A occurring if events A and B 
are statistically independent; this makes sense because event A is not impacted by 
event B. 

4.3.2. Estimating Parameters in Statistical Models 
Parameters are necessary and important parts of statistical models. A model often 
begins with a theory that is known to generate data, suggesting that it could require 
any number of variables and could take the general form, 

Y = f (θ; X) + ε (20) 

where θ is a vector of estimated model parameters, X is a matrix of variables 
across n observations to effect Y, ε is a vector of disturbances, and Y is a vector 
of outcomes. There are different techniques for coordinating functions ƒ that 
relate θ and the matrix X to the outcome vector Y, i.e., the ordinary least squares 
regression model links the X terms to Y through the expression Y = βX + ε where 
θ is the vector of estimated parameters or the β. Observational data is generally 
used in this approach to estimate the parameters. 

There are many different methods for estimating parameters in statistical 
models, such as maximum likelihood, weighted least squares, ordinary or 
unweighted least squares, and method of moments. Maximum likelihood and 
ordinary least squares (two parameter estimation methods that are often used) are 
briefly presented to give the reader a basic understanding of these concepts. 

Minimizing the squared differences between predicted and observed 
observations makes up the concept of ordinary least squares estimation, such that 

2Q = MIN Y Y( − i ) (21)i 

wherein Yi is the value of Y that the statistical model predicts for the ith trial or 
observation. A function of the X terms and the collection of estimated parameters 
θ is the predicted value of Y. In least squares estimation, solving Equation 21 
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gives the parameter estimates. To use least squares estimation to get parameter 
estimates requires no assumptions about statistical distributions. 

Maximum likelihood methods are fundamentally different but still provide 
estimates of parameters in statistical models. Maximum likelihood depends on 
the idea that different samples are created by different populations, and so some 
populations compared to others are more likely to give a particular sample; e.g., if a 
random sample of y1, y2,…, yn was drawn then some parameter θ (which functions 
as the sample mean) is the most likely to create that sample. Figure 28 shows two 
distinctive statistical distributions A and B, which denote two distinctive assumed 
sample means. In the figure, the sample mean θB for distribution B is less likely to 
create the sample of y than the sample mean θA, which distribution A is associated 
with. The parameters most probable to have created the observed data (y) among 
all possible θ is sought by maximum likelihood estimation. 

Figure 28. Illustration of maximum likelihood estimation. 

4.3.3. Useful Probability Distributions 
Econometric and statistical analysis relies on probability distributions. A simplistic 
way of answering probability-related questions (like an event’s occurrence 
probability) is to identify the characteristics behind underlying data-generating 
processes. A large number of commonly studied phenomena are approximated 
by well-understood probability distributions. Normal distributions approximate 
many samples, like vehicle speeds on a segment of a freeway, quite well. 

Considered here are four common statistical distributions: the standard 
normal Z distribution, the t distribution, the χ2 distribution, and the F distribution. 
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Need to know 
The two primary types of probability distributions are discrete and continuous. 
Discrete distributions come from ordinal data or count data (strictly continuous 
data that can only take on integer values). Variables that are able to, within a 
range of values, take any value that is measured on the interval or ratio scale 
are capable of generating continuous distributions. Two properties related to 
probability distributions are that the sum of all probabilities over all possible 
outcomes is 1 and that the probability of any outcome lies between 0 and 1. 

The Z Distribution: The central limit theorem is where the derivation of 
the Z distribution comes from. If the average X is computed on a sample of n 
observations gathered from a distribution with a known finite variance σ2 and 
mean μ, then, irrespective of the characteristics of the population distribution, the 
sampling distribution is approximately standard normally distributed for the test 
statistic Z*. As an example, the population can be normal, binomial, Poisson, or 
beta distributed. A bell-shaped curve, with a mean equal to zero and a variance 
equal to one, brands the standard normal distribution. A random variable Z* is 
calculated as follows: 

* X � µZ = = Za (22)σ 

n 

In which α represents a confidence level, and Z* is a random variable whose 
distribution, as n tends to infinity, approaches a standard normal distribution. This 
result is very useful, as it says that a test statistic calculated using Equation 22 
will, as the sample grows larger, near the standard normal distribution no matter 
what the population distribution that the samples are drawn from is. Subsequently, 
in practice, an effectively normally distributed sampling distribution of the mean 
results from sample sizes of 20 or more. 

Studying normal distributions with any variance and mean is aided by the Z 
distribution. By employing the standard normal transformation, 

Xi − µZ = (23)i σ 

original variables that are gathered from any normal distribution Xi can be 
standardized to new variables Zi which are standard normally distributed. 

The t Distribution: Many statistical tests discussed here use the t distribution. 
The basis for hypothesis testing and confidence interval estimation when σ2 is 
known is formed using the Z* statistic, but it is normal to exchange it with its 
unbiased estimator s2 when σ2 is not known, resulting in a test statistic t* 
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X − µ*t = = t v n− 1)( = a (24)s 
n 

wherein t* is approximately t distributed with n – 1 degrees of freedom. 
The standard normal and t distributions are similar. The degree to which the 

t distribution is more spread out than the normal distribution is determined by 
the distribution’s degrees of freedom. As the sample size grows, the t distribution 
nears the standard normal Z distribution. The population the samples are drawn 
from must be normal for the t distribution. 

The χ2 Distribution: Since it arises in numerous situations, the χ2 distribution is 
extremely useful. According to statistical theory, the standard normal variable Z 
squared is χ2 distributed with 1 degree of freedom. Let Z1, Z2,…, Zn be k independent 
standard normal random variables. If each random variable is squared, then a χ2 

distribution with k degrees of freedom will be followed by their sum, such that 

n 2 
2 2X =∑ i = X ( )  (25)k 

i =1 

This χ2 statistic reveals that the addition of independent squared normal 
random variables is where the χ2 distribution comes from. The χ2 random variable 
cannot be negative as a sum of squares, so the χ2 distribution is slanted to the 
right and the χ2 random variable is bounded by zero on the lower end. The χ2 

distribution approaches the normal distribution as degrees of freedom increase. In 
fact, the χ2 distribution nears a normal distribution with a variance equal to two 
times the degrees of freedom, and the mean is equal to the degrees of freedom as 
they increase. 

The χ2 distribution with ν = n – 1 degrees of freedom is roughly the predicted 
variance of a random sample of size n taken from a normal population with 
variance σ2. The sampling distribution of the test statistic χ2 is such that 

n 2 
− = i(n s  1) 2 ∑ i 1 (X X− )

2 2X = = ≈ χ = (v n= −1) (26)a2 2σ σ 

Two distributions can be compared using the χ2 distribution. The χ2 distribution 
can be employed to test whether the actual frequencies parallel the predicted 
frequencies if the frequencies of events are witnessed in some frequency bins or 
categories under both the expected and the observed distributions. The way that 
the test statistic is written is as: 

2
I J (O − E )2 i i 2X = ∑ ∑ ≈ χa (I − 1, J − 1), (27)i =1 j =1 Ei 
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where the number of columns and rows in a two-way contingency table are J and 
I. Multiway tables, where, for example, there could be I rows, J columns, and K 
elements associated with each i jth bin, can be accommodated by the test statistic. 
The degrees of freedom become (I – 1)(J – 1)(K – 1). The expected frequency 
could result from a model of statistical independence (a frequency distribution 
founded on a presumed statistical distribution such as the normal distribution) 
or an empirical distribution (wherein two empirical distributions are compared). 
The reliability of the test statistic can be compromised by small and expected 
frequencies when using the test statistic (Washington et al., 2020). 
The F Distribution: The F distribution, which was discovered in 1924 by Sir 
Ronald A. Fisher (an English statistician whom it is now named after), is another 
extremely useful statistical distribution. The ratio of two independent χ2 random 
variables, both divided by their own degrees of freedom, is used to approximate 
this distribution. As an example, let χ21 be an χ2 random variable that has 1 degree 
of freedom, and χ22 be an χ2 random variable that has 2 degrees of freedom. 

If there are two variables F distributed with χ1 = 1 and χ2 = 2 degrees of 
freedom, respectively, 

2
1 

2χ1 
vF* = 1 ≈ F v v ( ,  ) α 1 2 (28)2χ2 
v2 

Testing if two samples come from a single population with variance σ2 or 
testing the variance ratio of two samples taken from a population that is normal 
is a useful application of the F distribution. The test statistic F*’s sampling 
distribution is about F distributed with ν1 (numerator) and ν2 (denominator) 
degrees of freedom if we have independent random samples of sizes n1 and n2 
with estimated variances s 2

2 , respectively, such that and s 
2s
*F 1)
 (29)
F v = n − , v = n( 1 −α 1 1 2 2 
1= = 
2s2 

The F distributions are asymmetric, which is a quality that is “inherited” from 
the χ2 distributions; their shape also looks like that of the χ2 distributions. Note 
that F(2,10) ≠ F(10,2) 

4.3.4. Mean, Variance and Covariance 
The Mean: For one-dimensional data, it can be written as: 

i imean { } (30)( x ) = ∑ x 
N 

The mean of each data point is each component of the mean ({x}), but there 
isn’t a simple analogue of the median (so one could ask how does one order high 
dimensional data?). 
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Notice that one has 

mean({x – mean({x})}) = 0 (31) 

(i.e., the dataset resulting from subtracting from a dataset has a zero mean). 
Covariance: Standard deviation, variance, and correlation can be observed as 
an example of a more general data operation- obtaining two factors from all the 
vectors in a dataset of vectors, giving two 1D datasets of N items, and using {x} 
for one and {y} for the other. The ith element of {x} corresponds to the ith element 
of {y} (the i’th element of {x} is one part of some larger vector xi and the i’th 
element of {y} is another component of this vector). The covariance of {x} and 
{y} can be defined. 

Covariance 
Assuming two sets of N data items, {x} and {y}, the covariance can be calculated 
by 

( mean ({ }) ) ( ( y − mean ({ } ))∑i xi − x i y
cov ({ },{ }) x y = 

N 

The inclination of corresponding elements (defined by t elements ordered 
in the dataset, so x1 corresponds to y1, x2 corresponds to y2) of {x} and {y} to 
be bigger than (resp. smaller than) the mean is measured by the covariance. The 
covariance should be positive if {x} is typically bigger (resp. smaller) than its 
mean for data points where {y} is also bigger (resp. smaller) than its mean. The 
covariance should be negative if {x} is typically bigger (resp. smaller) than its 
mean for data points where {y} is smaller (resp. bigger) than its mean. Notice that 

std(x)2 = var({x}) = cov({x}, {x}) (32) 

Substituting the expressions can prove this. The covariance of a dataset 
measures its inclination to not be constant due to the fact that variance is a measure 
of the inclination of a dataset to differ from the mean. The relationship between 
correlation and covariance is even more important and is shown in the box below. 

Important Equation 
cov x  y({ },{ }) cov  xy =({( )}) 

cov x  x y y({ },{ }) cov({ },{ }) 

Sometimes this is a beneficial way to consider correlation; it says that the 
inclination of {x} and {y} to be bigger (resp. smaller) than their averages for the 
same data points, in comparison to the amount that they change on their own, is 
measured by the correlation. 

The Covariance Matrix: Using covariance instead of correlation permits 
the unification of some ideas. Particularly, it is simple for data items that are 
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d-dimensional vectors to calculate one matrix that contains all covariances 
between all the pairs of components (referred to as a covariance matrix). 

Covariance Matrix 
The covariance matrix is: 

(x	 − mean x  )(x − mean x  ({ }) )∑ ({ })	 
T 

i i iCovmat x =({ }) 
N 

It is quite usual to write a covariance matrix as Σ, and this convention will be 
followed here. 

Σ is often used to represent covariance matrices, regardless of what dataset 
it is (context is used to determine exactly which dataset is intended). In general, 
when referring to the j, kth entry of a matrix A, Aj k is written, so the covariance is 
Σj k between the jth and k’th data components (Washington et al., 2020). 

Properties of the Covariance Matrix 
•		 The j, k’th entry of the covariance matrix is the covariance of the jth and the 

k’th components of x, which is written 
•		 The j, jth entry of the covariance matrix is the variance of the jth component 

of x. 
•		 The covariance matrix is symmetric. 
•		 The covariance matrix is always positive semidefinite; it is positive definite, 
unless there is some vector a such that aT (xi – mean({xi }) = 0 for all i. 

Mean and Covariance Under Affine Transformations 
Assume a d-dimensional dataset {x}. Choosing a matrix A and vector b, and 
creating a new dataset {m}, wherein mi = Axi + b, provides an affine transformation 
for this data. Here A just has to have a second dimension d. 
Computing the covariance and mean of {m} is easy. One has 

mean({m}) = mean({Ax + b}) = Amean({x}) + b (33) 

Multiplying the original mean by A and adding b gives the new mean; 
equivalently, by transforming in the same way the points were transformed the 
old mean. 

It is also simple to compute the new covariance matrix. One has 

Covmat({m}) = Covmat({Ax + b}) 

∑ (m − mean ({ }) ) ( m − mean mm ({ }) )T 
i i	 i= 

N 

i ( i − Amean ({ }) − b) ( Ax i + b − Amean ({ }) x − b)T∑ Ax + b x 
= 

N 
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A ⎣∑i ( i x ) ( i x ) ⎦ 
AT⎡ x − mean ({ }) x − mean ({ }) T ⎤ 

= ACovmat({x})AT (34)
N 

One can attempt to pick affine transformations that result in “good” 
covariance matrices and means. Choosing b is common so that the new dataset’s 
mean is zero, but a large amount of information about it can be revealed through 
an appropriate choice of A. 

Need to know 
Transform a dataset {x} into a new dataset {m}, where mi = Axi + b. Then 
mean({m}) = Amean({x}) + b Covmat({m}) = ACovmat({x}) AT 

Eigenvectors and Diagonalization 
If M = MT, then a matrix M is symmetric, and it must be square. Assume that u is 
a d × 1 vector, S is a d × d symmetric matrix, and λ is a scalar. If one has 

Su = λu, (35) 

u is considered an eigenvector of S and the matching eigenvalue is λ. To 
have eigenvectors and eigenvalues, matrices do not need to be symmetric, but the 
ones that are symmetric are the ones of interest. 

The eigenvalues are real numbers in the case of a symmetric matrix, and 
there are d distinct eigenvectors that are normal to each other and can be scaled to 
have unit length; they can be stacked into an orthonormal matrix U = [u1, ..., ud] 
(orthonormal meaning that UT U = I). 

This means there is an orthonormal matrix U and a diagonal matrix Λ so that 

SU = UΛ (36) 

There is a g number of such matrices because the equation continues to work 
with a new Λ, which is obtained through reordering the original Λ’s diagonal 
elements, and it is possible to reorder the matrix U’s eigenvectors. Tracking this 
complexity doesn’t have a reason, but instead, the convention is adopted that the 
components of U are arranged so that the components of Λ are arranged with the 
greatest value first along the diagonal, giving a very specific procedure. 

Diagonaizing a Symmetric Matrix 
Any symmetric matrix S can be converted to a diagonal form by computing 

UT SU = Λ 

There are procedures through numerical and statistical programming 
environments to compute U and Λ. It is assumed that the elements of U are 
ordered so that the elements of Λ are sorted along the diagonal, with the largest 
value coming first. 
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Orthonormal Matrices Are Rotations 
Orthonormal matrices should be thought of as rotations as they do not change 
lengths or angles. For x a vector, and R an orthonormal matrix, m = Rx 

such that, u Tu = xT RT Rx = xT Ix = xT x, 

which means that R doesn’t change lengths. For y, z, both unit vectors, the cosine 
of the angle between them is 

yT x. 
Due to the argument above, the inner product of Ry and Rx is the same as yT x; 
this means that R doesn’t change angles, either. 

The Multivariate Normal Distribution 
It is suggested that it is necessary to use simpler probability models by the high 
dimensional data facts shown above. The multivariate normal distribution, also 
called the Gaussian distribution, is the most important model. This model has 
two sets of parameters, the covariance Σ and the mean μ. The covariance is a              
d × d-dimensional matrix (a symmetric matrix) for a d-dimensional model and 
a d-dimensional column vector is the mean. For the definitions to have meaning, 
the covariance matrix must be positive definite. The distribution p(μ, Σ) form is 

1 ⎛ 1 T −1 ⎞ p( ,µ ∑ =) exp ⎜− (x − µ) ∑ (x − µ)⎟ (37)
d( )  det (  ) ⎝ 2 ⎠2π ∑ 

The names of the parameters are explained by the following facts: 

Parameters of Multivariate Normal Distribution 
Assuming a multivariate normal distribution, 
• E[x] = μ, which means that the mean of the distribution is μ. 
• E[(x – μ) (x – μ)T] = Σ, which means that the entries in Σ represent covariances. 

Assume now a dataset of items xi, wherein i goes from 1 to N, and that one 
wishes to use a multivariate normal distribution to model this data. µ , the mean’s 
maximum likelihood estimate, is, 

∑i ix µ = (38)
N 

(Σ̂), the covariance’s maximum likelihood estimate, is, 



 T∑ (x − µ) ∑ (x − µ)
 i i i i∑ = (39)

N 

These facts mean that the majority of what is intriguing about Gaussians (or 
multivariate normal distributions) is already known (Washington et al., 2020). 
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Chapter Conclusion 
This chapter provides a brief introduction of matrix algebra and some basic 
concepts of probability. Some of the key topics discussed in this chapter are matrix 
multiplication, matrix division, the rank of a matrix, eigenvalues, eigenvectors, 
and properties of matrices. This chapter also narrates on conditional probability, 
statistical independence, least squares, maximum likelihood, mean, variance, and 
covariance. As highway safety analysis requires advanced statistical knowledge, 
there is a need for a clear understanding of matrix algebra and probability theory. 

Further Reading 
Gentle, J., 2007. Matrix Algebra: Theory, Computations, and Applications in Statistics 

(Springer Texts in Statistics), Springer.  

Reference 
Washington, S., Karlaftis, M.G., Mannering, F. and Anastasopoulos, P., 2020. Statistical 

and Econometric Methods for Transportation Data Analysis. CRC Press. 



 

 

 
 

  
 

 
 

 

  

chapter 

5 

Supervised Learning 

5.1. Introduction 
Supervised learning is one of the popular machine learning algorithms in highway 
safety studies. Many studies used different supervised learning algorithms to 
solve highway safety-related regression and classification problems. The current 
chapter is mostly focused on classification or regression problems. It should be 
noted that this chapter does not provide discussions on all applied supervised AI 
algorithms in highway safety issues. 

5.2. Popular Models and Algorithms 
5.2.1. Logistic Regression 
Logistic regression is a classification learning algorithm, not actually a regression. 
The name arises from statistics because the mathematical formulation of linear 
regression has similarities to logistic regression. To explain logistic regression, 
the binary classification case is used, and it can be naturally extended to include 
multiclass classification. 

The aim is still to model yi as a linear xi equation in logistic regression, but, 
with a binary yi, it is not straightforward. Afunction that ranges from minus infinity 
to plus infinity is a linear combination of features such as wxi + b; in contrast, 
there are only two possible values of yi. Before the existence of computers, when 
scientists were required to perform manual calculations, they were eager to 
discover a linear classification model. They discovered they would only have to 
discover a simple continuous function whose codomain is (0, 1) if negative labels 
are defined as 0 and positive labels as 1. In this case, x will be assigned a negative 
label if the value returned by the model for input x is closer to 0. The example 
will receive a positive label in any other case. A function that has this trait is the 
sigmoid function or the standard logistic function: 

1f x = (1)( ) − x1+ e



 

 

  
 

 

  

 

 

 
 

 

  

 

  
 

  

  

79 Supervised Learning 

where e is the base of the natural logarithm (also called Euler’s number; ex is also 
called the exp(x) function in Excel and in multiple programming languages). If the 
values of x and b are optimized appropriately, the output of f(x) can be understood 
as the probability of yi being positive. As an example, if it’s higher than or equal 
to the threshold 0.5, it is said that the class of x is positive; if not, it’s negative. 

In practice, the threshold choice could differ depending on the problem. We 
return to this in Chapter 5 where model performance assessment is discussed. 

So, the logistic regression model looks like this: 

1def f x =( ),w b  −(wx + b) (2)
1+ e 

One is able to see the term wx + b from linear regression, but how does 
one now find the best values w * and b * for the model? In linear regression, the 
empirical risk (defined as the average squared error loss, also called the mean 
squared error or MSE) is minimized. 

5.2.2. Decision Tree 
An acyclic table, which can be used to make choices, is called a decision tree. A 
particular function j of the feature vector is investigated in all branching nodes 
of the graph. The left branch is followed if the value of the function is beneath 
the given threshold; otherwise, the right branch is followed. The judgment on the 
class to which the example belongs is taken when the leaf node is reached. 

There are different formulations of the decision tree learning algorithm. In 
this book only one (called ID3) is considered. The optimization criterion here is 
the average log-likelihood: 

1 N ( )  ( y ln − ( )y ln f x x (3)
N ∑ i ID3 i + −1 i ) 1  ( f ID3 i )i = 1 

where fID3 is a decision tree. 
It seems similar to logistic regression by now. However, it is different from 

the logistic regression learning algorithm which, by finding an optimal solution, 
generates a parametric model fw*, b*. 

The ID3 algorithm optimizes it roughly to the optimization criteria by 
building a non-parametric model. 

def fID3 ( )x Pr(y =1| x) (4)= 

The algorithm for learning ID3 operates as follows. Let a set of named 
examples be denoted by S. At the outset, there is only a start node in the decision 
tree that includes all examples: 

Ndef SS= {( xi , γi )} . A constant fID3 model is used in the beginning:i =1 

1f S = y.ID3 ∑ x y  S (5)( ,  ) ∈S| |  
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For any input x, the prediction provided by the above model, f xID
S ( ) , will be 

the same. 
Then one searches through all features j = 1, ... D and all thresholds t and 

splits the set S into two subsets: 

def ( )j def ( )jS | ) , } + ( , ) ( ,  )  S x  ≥ t− {(x, y) ( x, y ∈S x  < t and S { x y | x y ∈ , } (6)= = 

The two new subsets would go to two new leaf nodes, and one evaluates, for 
all potential pairs (j, t), how good the split is with pieces S– and S+. Last, one picks 
the best of such values (j, t), splits S into S+ and S–, forms two new leaf nodes, and 
continues recursively on S+ and S– (or quits if no split results in a model that is 
sufficiently better than the previous one). 

Now, one should ask what is implied by the words “evaluate how good 
the division is.” By using the criterion called entropy, the goodness of a split is 
calculated in ID3. A calculation of uncertainty about a random variable is entropy. 
When all the values of the random variables are similarly likely, it achieves its 
limit. When the random variable may have only one value, entropy approaches its 
lowest. The entropy of a series of examples S is given by the following: 

S S S S− −  1 )H S( ) = −  f  ln f  (1 f ) ln ( − f (7)ID3 ID3 ID3 ID3 

The entropy of a split of a set of examples by a certain feature j and a threshold 
t, H(S–, S+), is just a weighted sum of two entropies: 

S− S+| |  | |  H S  S ( ,  )− + = H S( ) + H S  (8)( )  
| |S − S +

| |  

So, in ID3, one finds a split at each step, at each leaf node, that minimizes the 
entropy or one stops at this node of the leaf. 
In any of the below situations, the algorithm stops at a leaf node: 
• All examples in the leaf node are classified correctly by the one-piece model. 
• One cannot find an attribute to split upon. 
• The split reduces the entropy less than some ∈ (the value for which has to be 

found experimentally). 
• The tree reaches some maximum depth d (also has to be found experimentally). 

Need to know 
Since the decision to break the dataset on each iteration in ID3 is local (does 
not depend on potential splits), an optimal solution is not guaranteed by the 
algorithm. By using methods such as backtracking during the search for the 
ideal decision tree, the model can be strengthened at the expense of potentially 
taking longer to create a model. 
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5.2.3. Support Vector Machine 
Presume a labeled dataset made up of N pairs (xi, yi), with xi as the ith feature 
vector, and yi as the ith class label (see Figure 29). Presume two different classes, 
and that yi is –1 or 1. One wishes to predict the sign of y or at any point x. A linear 
classifier is used, so one will predict for a new data item x 

sign(aT x + b) (9) 

and the specific classifier that is used comes from one’s choice of a and b. 
Suppose there is a named dataset of N pairs (xi, yi). Here, xi is the vector of the 

ith function, and yi is the mark of the ith class. Say that there are two groups, and 
that either 1 or −1 is yi. For some point x, one wishes to predict the sign of y. A 
linear classifier is used, so that one will predict sign (aT x + b) for a new data item 
x, and the option of a and b is given to the unique classifier one uses. 

a and b can be thought of as standing for a hyperplane, provided by the points 
wherein aT x + b = 0 is given. Note that the amplitude of aT x + b increases 
when point x travels farther away from the hyperplane. An instance of a decision 
boundary is when the positive data is isolated from the negative data by this 
hyperplane. As a point crosses the judgment boundary, the mark expected for 
that point adjusts. There are limits for choices with both classifiers. A beneficial 
approach for constructing classifiers is looking for the judgment boundary that 
gives the best actions. 

A Linear Model with a Single Feature 
Assume the use of a linear model with one feature. For an example with feature 
value x, this predicts sign (ax + b). Equivalently, the model tests x against the 

threshold – b . 
a 

By selecting values that minimize a price function, one will select a and b. 
Two priorities must be achieved by the cost function. First, a term that guarantees 
that each example of training is on the correct side of the judgment boundary (or, 
at least, not too much on the wrong side) is necessary. The second priority is that 
the cost function requires a word that can punish errors on query examples. The 
form of the suitable cost function is: 

Training error cost + λ penalty term (10) 

in which λ represents an unknown weight that achieves the two objectives. 
The value of λ will eventually be set by a search process. 



82 Artificial Intelligence in Highway Safety  

  

 

  

  

     

    

   

 

Figure 29. Concept of SVM. 

The Hinge Loss 
The equation 

γi = aT xi + b (11) 

represents the value used for example i by the linear function. The function C(γi, 
yi) compares γi with yi. The following represents the training error cost: 

N 
( /  )1 

1 
N i =∑ (  , )  C yi iγ (12) 

The hinge loss can be shown by 

C(γi, yi) = max(0, 1 – yiγi) (13) 

and it has the properties mentioned below: 
• If the signs for γi and yi are different, then C should be large. Additionally, as xi 

moves on the wrong side away from the boundary, the cost increases linearly. 
• If the signs for γi and yi are the same, but yi γi < 1, then xi is located near the 

decision boundary, meaning there is a cost, which increases as xi nears the 
boundary. 

• If yi γi > 1, then the sign is correctly predicted by the classifier and there are no 
costs as xi is far from the boundary. 

To mitigate this loss, a classifier is trained by making strong negative or positive 
predictions for each example, and for ones that it is incorrect about, making 
predictions with a minimal magnitude possible. A support vector machine or 
SVM is a linear classifier taught with hinge loss. 
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Regularization 
Since there is one odd property of the hinge loss, the penalty term is required. 
Assume that all training instances are appropriately identified by the pair a, b, 
such that yi(aT xi + b) > 0. Then, by scaling a and b, one can still guarantee that the 
hinge loss is zero for the dataset, so one can pick a scale such that yj(aT xj + b) > 
1 for each example index j. This scale has not been altered by the outcome of the 
classification rule on training data. If a and b give zero hinge failure, then 2a and 
2b do so as well. This ought to be bothersome, for it means one cannot uniquely 
select the parameters of the classifier. 

One can do so by applying a penalty term to favor solutions in which ‖a‖ is 
small for the hinge loss. It is sufficient to ensure that (1/2)aTa is small (the 1/2 
element makes the gradient cleaner) to get an a of small length. This penalty 
word would guarantee that there’s a particular selection of classifier parameters 
when the hinge loss is zero. It is often referred to as regularization to incorporate 
a punishment word to facilitate the solution to a learning question. The penalty 
term is frequently called a regularizer because it appears to deter broad (and 
therefore have a high potential failure on future test results) solutions but is not 
clearly backed by training data. The parameter λ is also called the regularization 
parameter. 

Utilizing the hinge loss to establish the training cost and regularizing the 
penalty term (1/2)aT a indicates that the cost function is 

T
N ⎛ a a  ⎞⎡ T ⎤S(a, b; λ) = ( /1 N ) max (0 1 − y (a x + b, )) λ (14)⎣⎢ ∑ i = 1 i i ⎦⎥

+ ⎜⎜ 2 
⎟⎟

⎝ ⎠
There are now two challenges to overcome. First, suppose λ is known; one 

then needs to find values for a and b that minimize S(a, b; λ). Second, there 
currently isn’t a method for choosing λ, so an appropriate value will have to be 
searched for. 

Finding a Classifier with Stochastic Gradient Descent 
For the price feature, the standard methods for seeking a minimum are 
unsuccessful. Next, u = [a, b] should be written for the vector gained by stacking 
the vector a along with b. One has a function, g(u), and one wants to get a u 
value that minimizes it. Often, a problem like this can be solved by creating the 
gradient and discovering a value of u that changes the gradient to zero, but this 
doesn’t work here (because problems are created by the max). One needs to use 
a numerical approach. 

The point u(n) is taken and updated to u(n +1), and then searched to see whether 
a minimum is the product in typical numerical methods. This approach begins 
from a starting point. For general problems, the starting point chosen may or may 
not be important, but for the dilemma a random starting point is good. Typically, 
the update is gained through calculating the path p(n) such that η, g(u(n) + η p(n)) 
is smaller than g(u(n)). Such a trajectory is accepted as a descent direction, and 
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one needs to evaluate how far to go in the direction of descent, a method called 
line search. 
Choosing a Step Length: It takes some work to pick a step length η. Since one 
doesn’t want to test the function g, one cannot check for the move that gives the 
user the best g value (doing so requires looking at each of the gi terms). Instead, 
the methodology can investigate large shifts in the values of the classifier’s 
parameters initially, and smaller ones later slowing it down; hence, one employs 
a huge step length η at the outset. It is also called a steplong schedule or learning 
schedule to pick how η gets smaller. 

Searching for λ 
A good meaning for λ is not known to us. By selecting a set of different values, 
using each value to fit an SVM and using λ that results in the best output is the 
prime objective. Experience has demonstrated that a method’s output is not deeply 
susceptible to the λ value, so one is able to look at values that are spaced very far 
apart. Taking a small number (e.g., 1e – 4), and multiplying it by powers of 10 
(or 3 if one has a fast computer and is fussy) is normal. So, one could look at λ 
∈ {1e – 4, 1e – 3, 1e – 2, 1e – 1}, for instance. One understands how to match a 
given value of λ to a SVM. Choosing the value that results in the best SVM and 
using that to get the best classifier is the challenge (Lantz, 2013). 

5.2.4. Random Forests (RF) 
Random Forests (RF) have many decision tree classifiers and combine multiple 
decision trees into a single, efficient model through the “bagging” concept 
of Breiman. It utilizes the self-help approach (i.e., the bootstrap resampling 
technology) by recurrently choosing random k (k < N) sample sets to create 
novel training sample sets from the initial training samples of N. Some samples 
may be gathered more than once during the overall collection process. In each 
of the random bagging sampling rounds, around 36.8 percent of the training 
data won’t be sampled, relating to out-of-bag (OOB) data; this uncollected data 
doesn’t engage in model fitting during testing but may be utilized for detection of 
model generalization capabilities. For the creation of random forests, the training 
sample is utilized to produce k buffeting decision or regression trees (CART) 
and then to assign the test sample return values by average use or a majority 
vote decision. Strong generalization capacity and low variance tolerance with 
no additional pruning can in general be accomplished by random forests due to 
the fact that randomness can easily minimize model variance. Of course, during 
preparation, the fitting model degree can worsen, which leads to higher bias, but 
it's just relative. The CART algorithm is a binary tree, however, meaning that 
only two branches will lead to each non-leaf node. The vector is likely to be 
used several times if a non-leaf node is a multi-level (over two) discrete variable, 
and simultaneously, if a non-leaf node is a continuous variable, it is viewed as a 
discrete variable by the decision tree (Huang, 2019). 
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The CART used in RF is based on the Gini coefficient’s set of functions. 
The Gini coefficient is chosen according to the requirement that the maximum 
purity of each child node is achieved, with all observations belonging to the 
same classification on that child node. In that case, with the lowest volatility but 
maximum purity, the Gini coefficient meets its minimum value. CART's Gini 
coefficient can be expressed as follows: 

Gini(p) = 2p(1 – p) (15) 

If while traversing each segmentation point of each feature A = a is used, then 
D is split into two sections, respectively D1 (the sample set that meets A = a) and 
D2 (the sample set that meets A a). The Gini coefficient of D, under the condition 
of function A = a, is: 

D D1 2Gini(D, A) = Gini D ( ) + ( )  Gini D (16)1 2D D 

where Gini(D, A) is the uncertainty of D. 
Each CART in RF finds the segmentation point that has the lowest feature 

Gini coefficients till the stop condition is met, breaking the data set into two 
subsets and constantly crossing all potential segmentation points of the feature 
within the tree a. Figure 30 shows a diagram of a Random Forest over a dataset X. 

Need to know 
Compared to other traditional algorithms, the CART algorithm in RF differs. 
Every selected feature in an RF tree is generated randomly from all m features, 
which has lowered the tendency of overfitting. Specific eigenvalues or feature 
combinations aren’t used to determine the model, and control of the model’s 
fitting ability indefinitely is not improved by the increase of randomness. An RF, 
unlike ordinary decision trees, also improves the establishment of decision trees. 
Ordinary decision trees require picking an optimal feature among all m sample 
features on the node to do the left and right subtree division of the decision 
tree, but each tree of the RF is a part of selected features, and in order to divide 
the left and right subtrees of the decision tree an optimal feature is selected 
among these few features, enhancing the generalization ability of the model and 
increasing the effect of randomness. Assuming that for each tree m sub-features 
are chosen, then the smaller the m sub is, the worse is the fitting degree of the 
model to the training set, and there will be an increase in the generalization 
ability, an increase in bias, and a decrease in the variance of the model. The 
opposite effects will occur with a larger m sub. The value of the m sub is 
typically thought to be a parameter, and in order to get an appropriate value 
through tuning it will be constantly adjusted. 
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Figure 30. Random forest. 

5.2.5.  Naïve Bayes Classifier 
According to theory, based on the given data and assumptions, the optimal Bayes 
classifier gives the best possible classification outcomes. 

In text mining, this is extremely valid (but not only) since the designation 
of a right class-label cj depends on the number of attributes in social-media 
contributions or text documents. Their repertoire can be very broad after 
accumulating many training samples (which is nice from the chance computing 
point of view), thousands or tens of thousands of specific terms (or general terms). 

Each word has its probability in every class and there are very many possible 
attribute combinations, even if the data is reduced by, for example, eliminating 
insignificant terms. Let a1, a2, ..., aN be the given attributes (vocabulary words). 
In any class, each word has its likelihood and there are many potential variations 
of attributes, even though the data is diminished by, for instance, removing 
irrelevant words. 

Let the given attributes be a1, a2, ..., aN (vocabulary words). The best 
description, cMAP, can be written as: 

cMAP = cj ∈ Cargmaxp(a1, a2, ..., aN |cj) p(cj) (17) 

For large values of N, the computational complexity is given by the item 
p(a1, a2, ..., aN) in Eq. 21. Because of the possible mutual conditional dependence 
of attributes, it is necessary to compute probabilities of all their possible 
combinations for a given cj. The computational complexity is provided by the 
item p(a1, a2, ..., aN) for large values of N. Because of the possible reciprocal 
conditional dependence of attributes, it is important for a given cj to compute the 
probabilities of all their possible combinations (Lantz, 2013). 



 

    

 
 

   

  

 

 

 
 

87 Supervised Learning 

The definition of the so-called naïve Bayes classifier, which is based on a 
presumption (theoretically not very accurate) that there is no interdependence 
between the attributes (which is 'naïvity'), resulted in a way to make the 
calculation simpler and technically applicable. This suggests that it is possible 
to use a simplified equation for the classification to evaluate cMAP, which can be 
called cNB (for NB like Naïve Bayes): 

∈Cargmaxp c  p a 	  (18)( )  c( | ) cMAP = c j j ∏ ( i j )
i 

In other words, only the a posteriori probabilities of observable attributes 
times the a priori likelihood of a class event per classified textual object must 
be determined using the probabilities of attributes in the training results. The 
classification result could be more often inaccurate because of the theoretical 
incorrectness, based on how much the principle of freedom is broken. 

The naïve Bayes classifier is quite common despite this incorrectness since 
its findings are very appropriate in thousands of current applications. However, 
when reading the classification outcomes, one should be vigilant - this inaccuracy 
could be one of the explanations for the rare incorrect classification that e-mail 
users recognize well: non-spam classified as spam and vice versa. 

5.2.6.  Artificial Neural Networks 
An artificial neuron can be interpreted as a function of transfer φ(.) with n + 1 
inputs xi weighted by wi, where xi∈R, – ∞ < wi < + ∞: 

⎛ n ⎞ ⎛ n ⎞ 
y = ϕ(w x) =ϕ ⎜ w x ⎟ ⎜ w x ⎟ ⋅ ∑ i i ⎟ = ϕ θ + ∑ i i  (19)⎜ ⎜ ⎟

⎝ i = 0 ⎠ ⎝ i = 0 ⎠ 

where for the dot product of the vectors w ∙ x with the constant value of x0 = 1.0 
there is a bias (threshold) θ = w0 x0 = w0 ∙ 1.0 that determines the value of the 
transfer function φ(.) from which the neuron is activated and provides its output ≠ 
0.0. Hence, the neuron generally makes the transformation R" → R. 

Determining the specific φ function depends on the type of application and 
known or anticipated properties of the approximated unknown function 	ŷ = 
f x . A commonly used nonlinear transfer function φ is sigmoid (known also as ( )

logistic), S(x), where the dot product of the w ∙ x vectors with the constant value 
of x0 = 1.0 there is the bias (threshold) θ = w0x0 = w0 ∙ 1.0, which specifies the 
value of the φ(.) transition function from which the neuron is activated and giving 
its output ≠ 0.0. Therefore, the neuron usually generates the R" → R transition 
(Lantz, 2013). 

The determination of the basic φ function is based on the type of operation 
and the proven or expected features of the approximate unknown function ŷ = 
f x( ). Sigmoid (also called logistic) S(x) is a widely used nonlinear transfer 

function φ, where, 
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S x( )  (  = + e−1), ( )  = , limS x 0 S x  = 11 ( )  (20)x → + ∞ 

and where, as the neuron returns 1 for classification, the normal threshold is for 
S(x) ≥ 0.5, otherwise 0. However, for some purposes, there are also a variety of 
alternatives normally needed by particular applications; information can be found 
in the literature. 

Neurons can be mixed to estimate uncertain complex nonlinear (including 
discontinuous or non-differentiable) functions in layers in a network and can 
also be used for classification or regression advantageously. The error function 
E (or classification in this case) of the approximation is commonly defined 
as follows: 

1 2E = ( y − y) (21) 
2 

where y is a known correct value and ŷ is a value returned for the given training 
data sample by the trained network. The square of the difference y – ŷ eliminates 
negative error values and highlights larger errors whose removal takes precedence 
over smaller errors (multiplication by 1/2 is just for formal reasons, so that the 
number 2 in the exponent may not be considered in the derivative when looking 
for the steepest descent of the error). To correct the output of φ(w ∙ x) for the 
input sample x, only the weight vector w can be modified because the values of x 
are given. This modification affects the significance of the n weighted individual 
components (attributes xi) of the input vector x = (x1, x2, …, xn), whose combination 
determines the required output value of the approximated function f ( ) in whichx
y is a proven right value and ŷ is a value returned by the qualified network for the 
given training data set. The y – ŷ discrepancy square reduces negative error values 
and illustrates larger errors whose elimination takes precedence over smaller errors 
(multiplication by 1/2 is for formal purposes only, so that when checking for the 
steepest descent of the error the number 2 in the exponent will not be considered 
in the derivative). Only the weight vector w can be changed to correct the output 
of φ(w ∙ x) for the input sample x since the values of x are given. The importance 
of the n weighted individual components (xi attributes) of the input vector x = (x1, 
x2, …, xn) is influenced by this change, whose combination specifies the necessary 
output value of the approximate function f (x). There are, of course, no wi weights 
known before beginning the training phase. 

The instantaneous location of a point describing a certain iterative solution 
within an n–dimensional space is often determined by these weights. The target is 
preferably the optimum solution, the highest classification accuracy (alternatively 
the lowest classification error) in our case, which is the global maximum of the 
desired function f (x) ≈ f (x). 

The initial values of wi determine the starting point and, since it is generally 
not known where to start from, these coordinate values can only be generated 
randomly. It will be possible to evaluate the starting subspace (or point) more 



 

 

 
 

 

 

 

 
 

 
 

 

 

 

 

 
 
   
 

 

 
 

 
 

 
 

 

 

89 Supervised Learning 

precisely in a case where some original, if restricted, information is available. 
Because of a potential error in the performance of the qualified network, it is 
important to change the attribute weights accordingly. It is generally achieved 
progressively in each iteration stage with the individual layers in the direction 
from the output to the input layer, so the term 'backup error propagation' is also 
used. Further information can be found in the various existing literatures (Lantz, 
2013). 

Advantages and disadvantages of the key algorithms 
Algorithms Advantages Disadvantages 

Support vector 
machine (SVM) 

• Can utilize predictive power 
of linear input combinations. 

• Higher prediction accuracy. 
• Minimized generalization 

error. 
• Easy to explain or interpret. 

• Not powerful in handling 
computational scalability and 
mixed data types. 

• Sensitive to kernel choice and 
tuning parameters. 

• Slow for big data training. 

Decision Trees 

• Some tolerance to correlated 
inputs. 

• Handle missing values. 
• Suitable for both numerical 

and categorical data. 
• Work well with big data. 

• Cannot work on (linear) 
combinations of features. 

• Relatively less predictive in 
many situations. 

• Practical decision-tree 
learning algorithms cannot 
guarantee to return the 
globally optimal decision tree. 

• Overfitting issue. 

Logistic 
regression 

• Easy to interpret. 
• Provides confidence intervals 
• Quickly update the 

classification model to 
incorporate new data. 

• Cannot handle the missing 
values of continuous 
variables. 

• Multicollinearity problem. 
• Sensitive to extreme values of 

continuous variables. 

Neural 
networks 

• Precise prediction accuracy. 
• Some tolerance to correlated 

inputs. 

• Not robust to outliers. 
• Susceptible to irrelevant 

features. 
• Not suitable for big data. 

5.2.7. Cubist 
Cubist is a type of rule-based ensemble regression model. In Cubist, a simple 
model tree is generated with a separate linear regression model for each terminal 
node. The paths along the model tree are compressed into rules, and these rules 
are streamlined and trimmed. The min_n parameter is the primary method of 
limiting the tree sizes, while max_rules limits the number of rules. 

Cubist ensembles are produced using committees, which are related to 
boosting. Once the first model within the committee is generated, the second 
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model adjusts the outcome data based on whether the first model under- or over-
predicted the outcome. The new outcome y* is computed for iteration m using 

* y(m) = −y (y(m − 1) − y) (22) 

If the previous iteration of a sample is over-predicted, the outcome for the 
next iteration will be adjusted so that it is more likely to be under-predicted to 
compensate. This modification process will continue for each ensemble variation. 

There is also an opportunity for a post-hoc adjustment after the model is 
created using the training set. When the model predicts a new sample, it can be 
adjusted by its closest neighbors from the original training set. For K neighbors, 
the model-based predicted value is adjusted by the neighbor using: 

1 ∑K w tl ⎡⎣ 1 + −  (y t )⎤ (23)
l = 1 l ⎦K 

in which t represents the training set prediction and w represents an inverse weight 
to the distance to its neighbor. 

5.2.8. Extreme Gradient Boosting (XGBoost) 
Boosting meta-algorithms typically employ a similar algorithm, called a weak 
learner, in their ensemble. In the weak learner algorithm, a classification error 
of less than 50% is adequate assuming there are two classes; however, a more 
accurate rate is desired. 

Additional classifiers with similar properties are added slowly to upgrade the 
overall outcome and improve the results of classification. Each additional classifier 
may be successfully used separately if it is randomly selected during the training 
phase, while other samples are left to colleagues. Thus, the classification ability 
of the ensemble will be enhanced. The initial criterion is the determination of the 
number of weak learners, nwl. This variable is related to the random separation 
of the training set into the correct number of training subsets, nwl, one subset 
per learner. 

There is no clear algorithm for the nwl value to be calculated in advance. 
The basic requirement is that any sample from the training set D is included in 
the training phase. Additionally, the number of training samples per weak learner 
must remain approximately the same, provided that each learner has an equal vote 
in the final process. The classifications for an unlabeled item are given by each 
trained learner, and the result is determined by the majority. 

The theory is quite basic, but, unfortunately, it is more difficult in practice. 
Typically, simpler classification tasks are distinguished by the fact that the initial 
trained classifier operates correctly on most of samples m1, where m1  mi, i = 
2 …., nwl. In the absence of training samples, the presumption that only a small 
number of samples still need to be addressed by the appropriate classifiers leads 
to insufficient training. As a result, some training samples available in D remain 
unused and it produces non-optimal results, given the circumstances. 



 

    

  
 

  

 
 

     

  

 

  

  

 

91 Supervised Learning 

Usually, the solution is applied to replicate the entire boosting process 
multiple times to ensure the optimum value for m1, which is roughly equal to 
the distribution of samples in training subsets, and utilize all training samples, 
if possible. To do this, multiple heuristics are used to attempt the fulfillment of 
requirements. 

Let xi = {xi1, xi2, …, xij} define a vector of observed values on the ith 

observation for j features, wherein i ∈ {1, 2, 3, …, I} and j ∈{1, 2, 3, ..., J}. The 
target outcome for the ith observation is the value of yi. To forecast the result using 
additive functions, a tree ensemble model is produced as 

T 
y = Φ( ) = ∑ f x( ),x1 i t i (24)

t = 1 

in which ft represents the correlating tree structure and T represents the number 
of trees. Each tree is described by a function q that connects an observation to the 
lth leaf, wherein l ∈{1, 2, 3, …, L}, and a weight (w) on each leaf, is defined as 

f (x) = wq(x), w∈ RL , q: RJ → L. (25) 

Once the weights are determined and the tree structure is generated, by first 
assigning a leaf on each tree to be observed based on the traits of the feature set, 
and then calculating the weights on the corresponding leaves, a predicted outcome 
is achieved. 

The algorithm develops trees by optimizing the following objective function: 

L( )  = l y  y + Ω( )  (26)Φ ( ,  )  f∑ i i ∑ t 
i t 

in which l is a differentiable loss function that quantifies the difference between the 
predicted and observed outcomes. In this equation, the complexity of the model 
is limited by Ω, which is defined as a regularization term to prevent overfitting. 
In this study, in the context of a classification problem that has two outcomes, l is 
defined as a logistic loss function: 

− y − yn 1 + − ) (l y( ,  )  y = y ln l ( + e i ) (1 y ln ln 1+ e i ) (27)i i i i 

The term regularization can be defined as, 

1 λ 2Ω( )  = γL + || w || , f (28)t 
2 

where the number of leaves in the tree structure is represented by L, and γ and λ 
represent the penalties of the tree’s complexities. A type of L2 regularization is 
represented by the term λ||w||2 on the weights of the leaves. 

The objective function is optimized additively; this process begins with a 
constant prediction, and then, to minimize the loss function, one searches for a 
new tree, and it is added at each iteration as shown here: 
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( )0 
yi = 0 

( )1 ( )0
y = y + ( )f xi i 1 i 

( )2 ( )1
y = y + ( )f xi i 2 i 

( )t (t − 1)
y = y + f xi i t i( )  (29) 

Thus, at the iteration t, the objective function is written as 
(t −1)


L( )t = ∑ l yi , yi + t ( i ))+ Ω( ft )
(  f x  (30) 
i 

A second-order Taylor approximation was employed by Chen and Guestrin 
(2016) to refine this objective function rapidly, and the L(t) second-order Taylor 
approximation is 

⎡ (t −1) 1 ⎤( )t 2L � l y , �y ) + ( ) + h ( )⎥ + Ω( f( g f x f x  ), (31)∑ ⎢⎣ i i i t i i t i ⎦ t
2i 

in which for the loss function, gi and hi respectively are the first- and second-
order gradient statistics, considering the predicted value from the preceding step, 
 (t − 1)
 
yi
 . These variables can be calculated as 

(t −1) 
y(t−1) 

( )t ∂l yi , yi ( yi − )e i + yi(  ) 1 g = = −  (32)i (t −1) (t −1))
∂ yi e yi + 1 

(t − 1) (t − 1) 
2 y 

( )  l y , yi ) e i 
t ∂ ( i  =hi = 

(t − 1) 2 (33)
2 (t − 1)∂( y ) ⎛ y ⎞⎞i ie + 1

⎝⎜ ⎠⎟ 

It can be demonstrated that the l th leaf’s optimal weight could be determined 
for a fixed tree structure at iteration t by, 

∑ g∈ w = −  
i Sl i 

l ' (34)∑ h + λi S  i∈ l 

It is possible to determine if the prediction is improved by a particular tree 
structure by calculating the gain score with the equation, 

2L 2⎡ (∑ ∈ g ) ∑ ⎤i Sl i ( i gi ) (35)Gain = ⎢∑ − ⎥ − γ , 
⎢l = 1 ∑i S∈ l 

hi + λ ∑i hi + λ ⎥⎣ ⎦ 

where Sl is a collection of observations assigned to the lth leaf. 



 

 

  

 
 

  

   
 

  

  

  

  

93 Supervised Learning 

During the development of trees and the addition of new branches, Equation 
35 is used to evaluate each possible split. For each structure, the XGBoost 
algorithm begins from a single leaf structure and, so long as there is a split with a 
positive gain, the addition of branches continues. 

5.2.9. Categorical Boosting (CatBoost) 
CatBoost is one of the most recent algorithms for a gradient boosting decision tree 
(GBDT) which is able to handle categorical functions (Huang, 2019). The unique 
qualities of this approach are described below: 

• It 	can handle categorical attributes during training. During training, the 
CatBoost algorithm uses the complete dataset. The target statistics (TS) 
method handles categorical features efficiently with minimal information loss. 
A random permutation is performed by the CatBoost to calculate an average 
label value for each of the dataset’s examples. In the permutation, the examples 
with the equivalent category value are placed ahead of the previous ones. If a 
permutation is Θ = [σ1, …, σn]n

T, it is replaced with: 

p −1 
⎡x = x ⎤ ⋅Y + β ⋅ Psj∑ j =1 s s⎣ p k, p kx = 

s p k  
p −1

, ⎦	 (36) 
, ∑ ⎡x = x ⎤ + β+

j =1 s s⎣ p k, p k,	 ⎦ 

where the prior value is represented by P and the weight of the value by β. The 
standard method for pre-calculating regression tasks is using the average label 
value from the dataset. 

• It combines all categorical characteristics into a new combination. CatBoost 
considers each combination when generating a new split within the tree. For 
the first split, no combinations are considered, but for the following splits, 
the CatBoost algorithm considers all the preset combinations of categorical 
features in the dataset. Each split that is chosen for the tree is considered a 
category with two values, so it is used as a combination. 

• It utilizes unbiased boosting with categorical characteristics, and the TS 
method converts categorical features into numerical values by creating a 
different distribution from the original. 

• The CatBoost algorithm creates randomly generated permutations of the 
training data. The algorithm samples a random permutation to obtain gradients, 
and on its basis creates multiple permutations and increases the robustness 
of the algorithm. These permutations are similar to the ones used to measure 
statistics for classification functions. Different permutations are used to train 
distinct models so that the use of multiple permutations won’t cause overfitting. 

• CatBoost makes base predictors from oblivious trees. These trees are evenly 
balanced and, therefore, they are less susceptible to overfitting (Huang, 2019). 
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Parameters of Key Algorithms 
Function XGBoost CatBoost 

Important 
parameters 
which control 
overfitting. 

1. learning_rate or eta 
– optimal values lie 
between 0.01-0.2 

2. max_depth 

1. Learning_rate 
2. Depth – value can be any integer up 

to 16. Recommended – [1 to 10] 
3. No such feature like min_child_ 

3. min_child_weight: 
similar to min_child 
leaf; default is 1 

weight 
4. l2-leaf-reg: L2 regularization 

coefficient. Used for leaf value 
calculation (any positive integer 
allowed) 

Parameters 1. Not available 1. cat_features: It denotes the index of 
for categorical 
values 

categorical features 
2. one_hot_max_size: Uses one-

hot encoding for all features with 
number of different values less than 
or equal to the given parameter value 
(max – 255) 

Parameters 
for controlling 
speed 

1. colsample_bytree: 
subsample ratio of 
columns 

2. subsample: subsample 
ratio of the training 
instance 

1. rsm: Random subspace method. The 
percentage of features to use at each 
split selection 

2. No such parameter to subset data 

3. Iterations: maximum number of trees 
3. n_estimators: maximum 

number of decision trees; 
high value can lead to 
overfitting 

that can be built; high value can lead 
to overfitting 

5.3. Supervised Learning based Highway 
Safety Studies 

Supervised learning has been extensively used in highway safety research. Table 8 
provides a list of studies which used different ML algorithms in different highway 
safety problems. 

Table 8. Supervised learning based highway safety studies 

Algorithm Research area Studies 
Crash Injury Li et al. (2012); Iranitalab and Khattak (2017); 
Analysis Zhang et al. (2018); Effati et al. (2015); Assi et al. 

(2020) 
Real-Time Risk Yu and Abdel-Aty (2013) 
Assessment 
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Pedestrian Safety Dollar et al. (2009); Hong Cheng et al. (2005); 
Ludwig et al. (2011); Severino et al. (2019) 

Bicycle Safety Cho et al. (2010) 
Truck Safety He et al. (2019) 
Railroad Safety Ranganathan and Olson (2010); Toyoda et al. 

(2017) 
Pipeline Safety Hou et al. (2014); Wu et al. (2019) 

SVM Intersection Safety Elhenawy et al. (2015); Aoude et al. (2012) 
Work Zone Safety Mokhtarimousavi et al. (2019); Wang et al. (2017) 
Roadway Departure Das et al. (2020) 
Safety 
Driver Behavior Tango and Botta (2013); Li et al. (2015); Chen 

and Chen (2017); Yeo et al. (2009); Ahmadi et al. 
(2020) 

Older Road User Patel (2019) 
Crash Injury Zhang et al. (2018) 
Analysis 
Railroad Safety Soleimani et al. (2019); Zhou et al. (2020) 

DT 
Real-Time Risk 
Assessment 

Theofilatos et al. (2019); Yu and Abdel-Aty (2013) 

Patterns of López et al. (2014) 
Contributing 
Factors in Crashes 
Incident Detection Lee et al. (2018) 
Driver Behavior Osman et al. (2019); Yao et al. (2019) 
Crash Injury Iranitalab and Khattak (2017); Zhang et al. (2018); 
Analysis Müller et al. (2018); Zualkernan et al. (2018) 
Real-Time Risk Xu et al. (2013) 
Assessment 

RF 
Incident Detection 
Motorcycle Safety 

Dogru and Subasi (2018) 
Lamb and Lee (2019); Rezapour et al. (2020) 

Railroad Safety Keramati et al. (2020); Soleimani et al. (2019); 
Zhou et al. (2020); Xia et al. (2018) 

Intersection Safety Jahangiri et al. (2016); Elhenawy et al. (2015) 
Work Zone Safety Chang et al. (2020) 
Roadway Departure Das et al. (2020) 
Safety 
Driver Behavior Osman et al. (2019); Li et al. (2020) 
Older Road User Mafi et al. (2018) 
Incident Detection Sivaraman and Trivedi (2009) 
Pedestrian Safety Broggi et al. (2009); Dollar et al. (2009); Guo et 

al. (2010) 
AdaBoost Bicycle Safety Jung et al. (2012) 

Intersection Safety Yu and Zhou (2019); Elhenawy et al. (2015) 
(Contd.) 
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Table 8. (Contd.) 

Algorithm Research area Studies 
Older Road User Du et al. (2014) 

GB Railroad Safety Toyoda et al. (2017); Soleimani et al. (2019); Lee 

KNN Crash Injury 
et al. (2019); Lu et al. (2020) 
Iranitalab and Khattak (2017); Zhang et al. (2018) 

Analysis 
SGB Real-Time Risk Ahmed and Abdel-Aty (2013) 

Assessment 
XGBoost Real-Time Risk Parsa et al. (2020) 

Assessment 
MARS Crash Frequency Abdel-Aty and Haleem (2011) 

Analysis 

Resources 
Readers can explore the following curated list of machine learning frameworks, 
libraries and software: 
https://github.com/josephmisiti/awesome-machine-learning 

Case Study 1 
Exposure is important for the precision accuracy of crash prediction models. 
Show how machine learning models can help in estimating traffic exposures from 
locations with no count stations. 
Solution: 
Key information was gathered from the TxDOT roadway inventory database 
(RHiNO) for the block group level from the 2010 U.S. Census Geographic 
Information System (GIS) data, and to approximate the number of non-motorized 
trips from the 2009 NHTS data. The data gathered in this database development 
task is reviewed in the following sections. For additional details of this study, 
readers can consult the Dixon et al. (2017) report. 

Databases 
TxDOT Roadway Inventory Database 
Several possible data sources were considered for assessing this information, 
but in the end RHiNO was chosen for use as one of the main data sources. In 
TxDOT there are defined criteria for multiple candidate elements that are 
recognized within this analysis. As an example, bridge reconstruction (shifting 
barriers from the road), traffic volume, and speed limits are currently impacting 
the minimum widths of roadway shoulders. These variables were thought of as a 
starting point for evaluating candidate suitability criteria data elements, and the 
criteria listed portray the usual shoulder widths as the TxDOT Roadway Design 
Manual recommended and identify existing TxDOT Roadway Design Manual 
recommendations for bicycle usage. 

https://www.github.com
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10,357 miles of rural paved roadways were identified for analysis. Rural two-
lane roadways make up approximately 56 percent of the total roadways, and their 
average shoulder width (from a range of observed shoulder widths) ranges from 
zero to 28 feet. The average shoulder (from a range of observed shoulder widths) 
width ranges from zero to 32 feet for rural multi-lane roadways. The Texas 
roadway network for rural multi-lane roadways and rural two-lane roadways is 
illustrated in Figure 31. 

Figure 31. Texas rural two-lane and multi-lane roads of interest. 

U.S. Census Data 
2010 Census geographic and demographic data was obtained from two different 
sources: the Topologically Integrated Geographic Encoding and Referencing 
(TIGER) block shapefiles and the American FactFinder’s demographic 
information. Generally, census data is subdivided into three major units, which 
are briefly described below: 
• The intermediate-level geographic unit, the clusters of blocks and division 

of tracts, identified as the first digit of the block code, typically defined as 
containing 600 to 3,000 people, is known as the block group. 

• The highest-level geographic unit, relatively permanent statistical subdivisions 
of a region, identified using up to 4 digit integer numbers, typically defined to 
contain 1,200 to 8,000 people, is known as the tract. 

• The lowest-level geographic unit, the division of block groups, generally small 
statistical areas bounded by visible features such as small water bodies, streets, 
roads, or railroad tracks, is known as the block. 

Both block group level and tract level Census data for Texas was collected. 
The geographic unit is the basis for the amount of available economic and 
demographic data from the census website. At the tract level, more data is easily 
accessible. The number of data items at the block level is considerably limited, 
but due to its small spatial size, it has higher data accuracy at the tract level. 
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National Household Travel Survey (NHTS) Data 
Data is limited that is associated with non-motorized travel, but the NHTS 
database is a primary source for non-motorized trips data that is accessible to 
transportation professionals. Every five to seven years the NHTS is conducted 
by the FHWA in order to offer data for different transportation modes on daily 
travel. The program has expanded from the original 15,000 household samples in 
1969 to 150,147 household samples in 2009. 46,423 household samples (out of 
150,147) were based in Texas. 

Model Development 
To aid in prioritizing the selection of potential shoulder widening locations in 
order to promote pedestrian and bicycle safety, one must figure out the weekly 
number of predicted non-motorized trips. Locations with more trips of this kind 
logically ought to be higher ranked than locations that don’t have the prospect 
of any pedestrian or bicycle activity. 9,400 bike trips and 100,400 walk trips 
were recorded by the 2009 NHTS. 148 households were surveyed for Texas rural 
roadways, with 1,367 trips. The survey logged 284 bike trips and 1,083 walk trips 
out of the total trips. The percentages of bike and pedestrian trips per week based 
on five different trip groups are shown in Table 9 and were generated by using the 
NHTS data for 148 households in Texas. 

Table 9. Non-motorized trips per week from NHTS sample data 

Trips Per Week Pedestrian (percent) Bicycle (percent) 
0-5.00 43.3 64.0 

5.01-10.00 36.7 32.0 
10.01-15.00 6.7 0.0 
15.01-20.00 3.3 0.0 
Above 20.00 10.0 4.0 

Using the same data, Table 10 recaps the four NHTS block group level rural 
road variables that were used in this analysis. 

To develop the SVR model, five block-group level explanatory variables 
(household size, population density, urban-rural code, percent renter-occupied 
housing, and housing units per square mile) were used from the Texas rural 
roadway NHTS dataset. Models were first separately developed for bicycle and 
pedestrian trips, and later the bicycle mode share was determined to be very low 
in comparison to the pedestrian trips. Two different models were developed: 

• Model 1: Rural model for weekly pedestrian trips, and 
• Model 2: Rural model for weekly non-motorized trips (both pedestrian and 

bicycle). 

A tuning method is performed to select the hyperparameters (cost function 
(C), ∈, γ). The final selected C, ∈, and γ are, respectively, 10, 0.4, and 1. These 



 

 

  
 

99 Supervised Learning 

Table 10. Summary of four explanatory variables from NHTS sample data 

Variable Names Percentage (%) 
Population per sq. mile-Block Group 

0-99 33.6 
100-499 28.9 
500-999 14.1 

1,000-1,999 17.2 
2,000-3,999 6.2 

Housing units per sq. mile-Block Group 
0-99 44.5 

100-499 39.8 
500-999 15.7 

Percent renter-occupier- Block Group (%) 
0-4 7.8 
5-14 37.5 
15-24 27.3 
25-34 17.2 
35-44 5.5 
45-54 3.1 
55-64 1.6 
Household size- Block Group (number of people) 

1 5.5 
2 23.4 
3 11.7 
4 30.5 
5 15.6 
6 9.4 
7 3.9 

values’ performances are tested on a reduced validation set (10%), and the 
prediction accuracy of the train set for both models was 90 percent and 68 percent, 
respectively. Models were also developed for the test set data (40 percent of the 
main data is considered as a test set). Compared to the train set data, the prediction 
accuracy of the test set is lower in value (61 percent and 58 percent, respectively). 
A general framework SVR (where x < 20%, and a + b = 1) is shown in Figure 32. 

In order to predict the block group using counts of non-motorized trips (using 
Model 2 - the non-motorized model), the developed models were then utilized. 
The roadway geometric files were, upon transecting the 2009 NHTS block group 



100 Artificial Intelligence in Highway Safety  

 

 
 

  

 
   

  

GIS shapefiles with the state roadway inventory shapefile for Texas, in spatial-
relation to the block group and their predicted non-motorized trip counts. Using 
this method, disaggregate-level non-motorized trip counts were determined for 
certain rural roadways. 

Figure 32. Flowchart of SVR model development. 

Although variations accompany the other tested variables, their values 
drastically differed based on the training set sample size. It isn’t practical to repeat 
the application of this SVR procedure each time to estimate the number of non-
motorized trips. To perform this task, variable importance using a random forest 
algorithm is done using a package with the R statistical software (23). Suppose a 
randomly selected vector of input variables (X = X1, …, Xn) to a random response 
variable Y ∈ Y is considered for analysis. The significance of a variable Xk while 
predicting or estimating Y is found with the Gini index, computed by adding the 
decrease in impurity according to the following equation: 

1Importance X  k ) = ∑ ∑ p t  d (38)( ( ).
NT T t ∈T v  s  : (  ) = Xt k 

where, 
t = node 
T = all nodes 
p(t) = proportion Nt /N of sample for node t 
st = split for which all variables are sampled into two major nodes L and tR to 

maximize the decrease, d 
v(st) = variable used in split st 
d = i(t) – pL i(tL) – pR i(tR) = decrease 
NT = all variables 
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Figure 33 shows the variable importance plot for the selected variables, 
which shows variable importance in descending order. 

Figure 33. Variable importance plot. 

From the variance importance, it is found that population density per square 
mile is the most significant variable in estimating non-motorized trips per 
week. Figure 34 shows the distribution of non-motorized trips per week against 
population density per square mile for the variation of another two key factors: 
household size per square mile, and percent renters occupied per square mile. 
Due to the limited frequency above 12,500 people per square mile, the threshold 
is considered up to 12,500. It clearly shows that non-motorized trips increase 
against the increase of population density per square mile until hitting a certain 
threshold for different attributes of these two factors. 

Figure 34. Predicted non-motorized trips per week vs. population density per mile 
for different household size and percent renters occupied. 
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The authors also developed a more convenient graphic from the results, shown 
in Figure 35, in which for rural Texas locations the number of non-motorized trips 
can be predicted. The key input into this table is the population density- note that 
for each population density level the 20th percentile and 80th percentile thresholds 
are shown in order to show this type of data’s variable nature. 

Figure 35. Predicted number of non-motorized trips per week 
for rural Texas locations. 

Case Study 2 
Operating speed is a key factor in traffic crashes and crash-related injuries. Show 
how a decision tree can help in understanding the relationship between operating 
speed and other key variables. 
Solution: 
To figure out which variables are most associated with small differences between 
crowdsourced speed data (i.e., TMCS) and tube speed data, a decision tree approach 
was used in this evaluation. A decision tree looks like a flow chart wherein the 
test on a variable (e.g., the number of signals is less than 4) is represented by each 
node, and the outcomes of that test are represented by the branches. The mean 
TMCS value for no (there are more than four signals) and yes (there are four or 
less signals) would be shown by the branches in the example of the number of 
signals. For additional details of this study, readers can consult the Fitzpatrick and 
Das (2019) report. 

A rule fit method to find hidden rules was adopted for predicting the selected 
variables from a pool’s importance, which contains ranges of the factors using 
“rule pruning” and “rule generation” algorithms. Large datasets with a mix of 
variables, ranging from categorical to numeric, can be handled by the rule-based 
analysis, resulting in easy interpretation. By considering all parameters to be 
intuitive parameters, rule based-decision trees are derived from the dataset, which 
eliminates lower significant variables. 
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To investigate the characteristics that could have affected the results, different 
subsets of the available variables are used, permitting the opportunity to identify 
whether a subset of variables could be considered appropriate for estimating an 
arterial performance e. Focusing on the roadway characteristics to explore if those 
variables could help explain the variations between the speeds measured at the 
spot location (tube data) and those measured for the corridor (crowdsourced data) 
was one approach. Number of through lanes, number of signals, median width, 
the distance between the nearest roundabout or signalized intersection and the 
tubes, posted speed limit, number of driveways, and segment length were some 
of the variables considered. Adding in the variables associated with a period, such 
as light level, type of day (e.g., weekend or weekday), or day of the week was 
another approach. Adding in the variables that were associated with a 15-min 
period, such as confidence level, LOS, and vehicle volume per lane for the 15-min 
period was the third approach. 

The results when only considering geometric variables are shown in Figure 
36. The number of signals was revealed to be the most influential variable. 
When there are fewer signals within the corridor, smaller differences between 
the on-road tube speeds and the crowdsourced speeds are present; segments with 
less than 4 signals in the corridor had better matches than those with more in 
this dataset. Signals can introduce delay within the corridor and are associated 
with large disruptions in travel; subsequently, it is logical that the number of 
signals would have a noteworthy impact when using crowdsourced data as a 
representative speed for a specific location. The number of driveways was the 
next influential geometric variable shown in Figure 36 (DrvUsigSame_BC and 
DrvUsigOpp_BC). Driveways, like signals, can introduce disruptions or conflicts 
within the travel stream. The travel time for other vehicles can be increased when 
a vehicle slows to turn right at a driveway. Although a vehicle that is turning out 
of a driveway is supposed to wait for a sufficient gap, drivers have been shown 
to potentially turn out onto the major roadway, anticipating that, in order to avoid 
a crash, major street drivers will slow down. The likelihood that there will be an 
additional delay to travel time from one end of the corridor to the other, resulting 
in a potentially larger difference between speeds measured at a specific location 
and crowdsourced data, increases with the number of driveways. 

Figure 37 shows a decision tree that concentrates on temporal variables like 
the type of day or the light level. For this analysis all 15-min periods are included; 
in other words, a range of vehicle volume or level of service is represented. The 
analysis revealed that the day type was the most influential type of variable; there 
was a smaller difference between the on-road tube speeds and crowdsourced 
speeds during the weekend than on week days (i.e., Friday and week days). The 
next branch in Figure 37 shows the variable of light condition based on time of day. 
Overall, the dusk light condition on a weekend was associated with the smallest 
difference between crowdsourced and spot speeds. However, the difference in 
speeds for both daytime and dusk light conditions on the weekend were very 
similar to each other. 
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Figure 36. Decision tree for speed difference using only geometric variables. 

Figure 37. Decision tree for speed difference using only temporal variables. 

Figure 38 shows a decision tree that also concentrates on temporal variables 
like the light level and the day of the week, with the additional restriction of 
including only the 15-min periods when LOS A, B, or C (as computed from the 
tube data) are present. Previous research has defined uncongested conditions 
as being LOS A, B, or C, so those categories were included in this evaluation. 
This analysis may help with the question of which conditions can be utilized to 
approximate the speed in uncongested conditions. As shown in Figure 38, the 
smallest difference between the tube speed and crowdsourced speed was found by 
the analysis on Saturday and Sunday. 
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Figure 38. Decision tree for speed difference using temporal variables when only 
considering those 15-min periods when LOS A, B, or C is present. 

Example Problem 1 
Show a reproducible example with performance results of different ML algorithm 
in estimating crash injury types. 
Solution: 
To perform this analysis, e-scooter crash data from Louisiana has been used. The 
coding to answer the question is provided in the following code chunks. The code 
results are not shown (few major plots are shown to explain the results) 

Example Problem 1 (Code Chunk 1) 
## Please check my RPUBS for additional codes: https://rpubs.com/subasish 

## Load required packages 
library(catboost) 
library(caret) 
library(data.table) 
library(dplyr) 
library(kernlab) 
library(randomForest) 
setwd("~folder_location") 

dat1= read.csv("EScotterCr_Fin1.csv") 
names(dat1) 

dat2=dat1[,-c(1, 2, 3)] 
dim(dat2) 

(Contd.) 

https://www.rpubs.com
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data <- as.data.frame(as.matrix(dat2), stringsAsFactors=TRUE)
	
dat3=data[,c(1:12, 19)]
	
head(dat3)
	

x <- data[,1:12]
	
y <- data[,19]
	

grid <- expand.grid(depth = c(4, 6, 8),
 learning_rate = 0.1,
 iterations = 100,
 l2_leaf_reg = 0.1,
 rsm = 0.95,
 border_count = 64) 

control <- trainControl(method="repeatedcv", number=10, repeats=3) 
model <- train(x, as.factor(make.names(y)),

 method = catboost.caret,
 logging_level = 'Silent', preProc = NULL,
 tuneGrid = grid, trControl = control) 

print(model)
	
importance <- varImp(model, scale = FALSE)
	
print(importance)
	

head(predict(model, type = 'prob'))
	

control <- trainControl(method="repeatedcv", number=10, repeats=3)
	
# CART
	
set.seed(7)
	
fit.cart <- train(SEVERITY_CD~., data=dat3, method="rpart", trControl=control)
	
# LDA
	
set.seed(7)
	
fit.lda <- train(SEVERITY_CD~., data=dat3, method="lda", trControl=control)
	
# SVM 
set.seed(7)
	
fit.svm <- train(SEVERITY_CD~., data=dat3, method="svmRadial", trControl=control)
	
# kNN
	
set.seed(7)
	
fit.knn <- train(SEVERITY_CD~., data=dat3, method="knn", trControl=control)
	
# Random Forest 
set.seed(7)
	
fit.rf <- train(SEVERITY_CD~., data=dat3, method="rf", trControl=control)
	
# collect resamples 
results <- resamples(list(CART=fit.cart, LDA=fit.lda, SVM=fit.svm, KNN=fit.knn, 

RF=fit.rf, CB=model))
	
summary(results)
	

scales <- list(x=list(relation="free"), y=list(relation="free"))
	
bwplot(results, scales=scales)
	

http://www.RF=fit.rf
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Figure 39 shows the accuracy and Kappa measures of different MLalgorithms. 
A box plot is used to show the values. CB is shown to have the highest mean in 
both accuracy and kappa. 

Figure 39. Accuracy and Kappa measures of different ML algorithms. 

Coding Help 
List all the models in the popular machine learning R package ‘caret.’ 
Solution: 
The reader can use the following code chuck to link all ML models in the ‘caret’ 
package in an interactive table format. 

Coding Help 
## Please check my RPUBS for additional codes: https://rpubs.com/subasish 
## Codes are published here: https://rpubs.com/subasish/614171 

library(htmltab) 
library(DT) 

setwd("~folder_location") 
caret= read.csv("caret.csv") 

datatable(
 caret, extensions = c('Select', 'Buttons'), options = list(

 select = list(style = 'os', items = 'row'),
 dom = 'Blfrtip',
 rowId = 0,
 buttons = c('csv', 'excel')

 ),
 selection = 'none' 
) 
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Chapter Conclusion 
This chapter provides a brief description of different supervised learning 
algorithms. Some of the popular models and algorithms discussed in this chapter 
are logistic regressions, decision trees, support vector machines, random forests, 
artificial neural networks, naïve bayes classifiers, cubists, XGBoost, and CatBoost. 
The chapter also provides a list of relevant studies. Example problems and case 
studies are provided later in this chapter. 

Further Reading 
Bali, R., Sarkar, D., 2016. R Machine Learning by Example. Packt Publishing Ltd. 
Beeley, C., 2013. Web Application Development with R using Shiny. Packt Publishing Ltd. 
Bivand, R.S., Pebesma, E. and Gómez-Rubio, V., 2013. Applied Spatial Data Analysis with 

R. Springer Science & Business Media. 
Boehmke, B. and Greenwell, B.M., 2019. Hands-On Machine Learning with R. CRC Press. 
Das, S., Dutta, A., Avelar, R., Dixon, K.K., Sun, X., 2019. Supervised association rules 
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chapter 

6 

Unsupervised Learning 

6.1. Introduction 
This chapter provides brief descriptions of the popular unsupervised learning 
algorithms used in highway safety research. 

6.2. Popular Algorithms 
6.2.1. K-Means 
The k-means clustering algorithm operates as follows. First, the analysts must 
select k, which is the number of clusters. Next, they will randomly place k feature 
vectors, or centroids, in space 1. Then, using a metric, such as the Euclidean 
distance, they compute the difference between each example x and each centroid 
c. Next, the closest centroid is assigned to each example, and the average feature 
vector for each centroid is labeled. The new positions of the centroids are based 
on the average feature vectors. One can recalculate the distance between each 
example and centroid to alter the assignment and then repeat the process until the 
assignments remain the same. The model is the list of examples and the centroid 
IDs that are assigned to each one. The final positions are influenced by the initial 
position of the centroids, so two trials of k-means can potentially produce two 
different models. 

One can recompute the distance from each example to each centroid, modify 
the assignment, and repeat the procedure until the assignments don’t change after 
the centroid locations were recomputed. The model is the list of assignments 
of centroids ID to the examples. The initial position of centroids influences the 
final positions, so two runs of k-means can result in two different models. One 
run of the k-means algorithm results in different background colors representing 
regions in which all points belong to the same cluster. The value of k, the number 
of clusters, is a hyperparameter that has to be tuned by the data analyst. There are 
some techniques for selecting k. None of them have been proven to be optimal. 
Most of them require the analyst to make an “educated guess” by looking at some 
metrics or by examining cluster assignments visually. Later in this chapter, one 
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considers a technique that allows choosing a reasonably good value for k without 
looking at the data and making guesses. 

6.2.2. K-Nearest Neighbors 
K-Nearest Neighbors (kNN) is a type of non-parametric learning algorithm. 
Unlike learning algorithms that permit the training data to be thrown out after 
the model is developed, kNN stores all training examples in its memory. The 
kNN algorithm seeks k training examples nearest to x once a new example x is 
presented and presents either the average label or the majority label in case of 
classification or regression, respectively. 

A distance function can be utilized to determine two points’ closeness. The 
Euclidean distance given above is often used in practice. The negative cosine 
similarity is another popular choice for the distance function. Cosine similarity 
is defined as 

D ( )j ( )j∑ x x  
def j =1 i k 

s x  x( ,  ) c (∠ x xos ( , )) = i k = i k 
D ( )j D ( )j∑ ( xi )2 ∑∑ ( x )2 

(1) 

j =1 j =1 k

and it is a similarity measure of the direction of two vectors. If the angle is 0 
degrees between two vectors, that means the vectors point in the same direction 
and that cosine similarity is 1. If the vectors are orthogonal, the cosine similarity 
is 0. The cosine similarity is ≠ 1 if the vectors point in opposite directions. To use 
cosine similarity as a distance metric, it must be multiplied by ≠ 1. The Chebychev 
distance, Mahalanobis distance, and Hamming distance are examples of other 
popular metrics. The choices the analyst makes prior to running the algorithm 
include the distance metric and the value for k; these are the hyperparameters. 

The next reasonable step in understanding the algorithm is learning about 
the cost function. Considering the algorithm’s popularity from the early 1960s, 
it is surprising that the cost function is not more widely studied in the literature. 
For convenience, one will follow the assumptions of binary classification 
(y ∈ {0,1}) with cosine similarity and normalized feature vectors for the 
derivation. Under these assumptions, kNN conducts a locally linear classification 
with the coefficient parameter, 

1 2w = y ' '  + wx w  || || (2)x x∑ ( 'x y  R x, ')∈ ( )k 2 
where Rk(x) represents the set of the nearest neighbors of k to the input example 
x. The equation above states that one excludes the vectors with a label 0 in order 
to take the sum of all nearest neighbor feature vectors to some input vector x. The 
classification judgment is made by specifying a threshold on the dot-product wx 
x that is equal to the cosine similarity between wx and x in the case of normalized 
feature vectors. 

Now, one can define the cost function as such 
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1 2L = −  y ' '  + wx w  || || (3)∑ x y R x  x( ', ')∈ ( ) k 2 

and set the right-hand side derivative of the first order to zero, which will yield the 
coefficient vector formula in Equation 2. 

Advantages and Disadvantages of the Key Algorithms 
Algorithms Advantages	 Disadvantages 

The k-means 
method 

k-nearest 
neighbor (k-NN) 

•		 Relatively efficient. 
•		 Can process big data. 

•		 Nonparametric. 
•		 Inexpensive in the 

learning process. 
•		 Classifies any data 

whenever any given 
instances of similarity 
measures are found 

•		 Robust to outliers on the 
predictors 

•		 Often terminates at a local 
optimum. 

•		 Mean needs to be defined. 
•		 Does not work for categorical 

or nominal data. 
•		 Not suitable for noisy datasets. 
• Not suitable for discovering 

clusters with non-convex shapes. 
• Computation is costly for big data. 
• Model interpretation is difficult. 
• The number of dimensions heavily 

impacts the performance. 
• Susceptible to irrelevant features 

and correlated inputs. 
•		 Not suitable for mixed data. 

6.3. Dimension Reduction Methods in Highway 
Safety 

Representing Data on Principal Components 
A dataset of N d-dimensional vectors {x}, once translated to have a mean of 
zero, forms a new dataset {m} wherein mi = xi – mean({x}). Covmat({m}) = 
Covmat({x}) is diagonalized to get 

UT Covmat({x})U = Λ (4) 

and it forms the dataset {r}, using the rule 

ri = UT mi = UT (xi – mean({x})) (5) 

This dataset’s mean is zero and has a diagonal covariance. In comparison 
to the majority of high dimensional datasets, many of the covariance matrix’s 
diagonal entries are incredibly small, meaning that it is possible to build on the 
high dimensional dataset an accurate low dimensional representation. 

The covariance matrix of {r} is diagonal, and the diagonal has interesting 
values. It is very common for a small number of large values and a large number 
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of small values in the diagonal to be found in the high dimensional datasets, 
meaning that the data is a low dimensional blob within a high dimensional space. 

Now assume that Covmat({r}) has few large and many small diagonal 
entries; the data blob denoted by {r} admits a low dimensional representation that 
is accurate. The dataset {r} is d-dimensional, but an attempt to represent it with a 
s-dimensional dataset is made to see what error has occurred. Choose some s < d, 
then choose every data point ri and replace the last d – s elements with 0 results 
in data called pi. It would be beneficial to discern the average error involved in 
denoting ri with pi, and this is 

1
∑
i ⎡
⎣
(ri −
p )i 

T (ri −
p )i ⎤⎦
 (6)

N 

j( ) is written for the j′ element of ri, and so on. pi is zero in the last d – sri 
elements. 

The mean error then is 

2=1 ⎡ j d  r ( )j ⎤∑ ∑ ( i ) (7)i  j s 1 ⎥⎢ = +N ⎣ ⎦

This number is known, because it is known that {r} has zero mean. The sum 
of the covariance matrix’s diagonal elements from r, r to d, d is the error. 

=j d  = ⎡ 1 ( )j 2 ⎤ j d  ( )jr = var r ∑ ∑ ( i ) ∑ ({ }) (8)j s + ⎥= 1 ⎢ i  j s= + 1⎣ N ⎦ 

Equivalently, presuming that the eigenvalues are arranged in descending 
order, writing λi for the ith eigenvalue of Covmat({x}), the error is 

∑ j d  λ j 
= 

j s 1= +  (9) 

If, in comparison to the first s components sum, this sum is small, then a small 
error results from dropping the last d – s components – the data can be thought of 
as s-dimensional in this case. 

This observation is highly important. Relatively low dimensional blobs are 
produced by a large amount of high dimensional data. The primary directions 
of variation can be identified in these blobs, and can be used to represent and 
understand the dataset. 

Representing Data on Principal Components 
A new dataset { x } would be created by reversing the translation and rotation for 
the predicted dataset {p}, and the ith element would be given by 

x i = Up + mean({ }x ) (10)i 

However, this expression states that x i is created by adding mean({x}) to 
a weighted sum of the first s columns of U (due to the fact that all the other 
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components of pi are zero). If uj is written for U’s jth column and ωij for a weight 
value, then it produces 

 { }  (11) x = 
s w u  + mean xi ∑ j =1 ij j ( ) 

As s is typically a lot less than d, which means that the dataset is being 
represented using a lower-dimensional dataset, this sum is significant. An 
s-dimensional flat subspace of d-dimensional space was chosen and a point in 
that subset was used to represent each data item. The uj are called loadings or 
principal components of the dataset; the ri

(j) are usually called coefficients but 
are sometimes known as scores. The principal components analysis or PCA 
forms the representation. The weights ωij are easy to evaluate. 

( )j (12)wij = ri = (xi − mean x  { }  j( ))
T u 

The Error in a Low Dimensional Representation 
The error is determined easily in approximating {x} with { x }. It is also easy to 
calculate the error in representing {r} by {p}. One has 

1 T j d  ( )j j d== 

N 
⎡ r p  ) (  r p  )⎤ = 

= +  
var( r( − − { }) = λ (13)∑ i ⎣ i i i i ⎦ ∑ j s 1 ∑ j s= +1 j 

A small error results from dropping the last d – s components if, in comparison 
to the first s components sum, this sum is small. 

It is now easy to get the average error in denoting {x} with { x }. Translations 
and rotations don’t change lengths. This means 

21 ∑i 
1 =2 j dxi − x i r p  − = ∑ j s 1 

λ j (14)= ∑ i ii = +N N 

Since these are the values of the d – s eigenvalues of Covmat({x}) that were 
chosen to be ignored, it is easy to evaluate. s could be chosen by identifying how 
much error can be tolerated, but it is more typical to plot the covariance matrix’s 
eigenvalues and search for a “knee.” It can be seen that the sum of the remaining 
eigenvalues is small. 

Principal Component Analysis 
Assume a general dataset xi consisting of N d-dimensional vectors, then, for the 
covariance matrix, write Σ = Covmat({x}). Form U, Λ, such that 

ΣU=UΛ 

These are the eigenvalues and eigenvectors of Σ. The entries of Λ need to 
be sorted in decreasing order. Choose the number of dimensions that one wishes 
to represent (r), which is usually done by plotting the eigenvalues and looking 
for a “knee”. 
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Constructing a Low Dimensional Representation: Write ui for the ith column 
of U for 1 ≤ j ≤ s. The data point xi should be represented as 

s 
x = mean x  + ⎡u x  − mean { }  ⎤ui ( ){ }  ∑ ⎣ 

T
j ( i ( )x )⎦ j 

j i= 

The error in this representation is 
j d  

2|| x x  −  i || = λ
1 ∑ i ∑

= 

j 
i j s 1N = +  

6.4. Categorical Data Analysis 
6.4.1. The Singular Value Decomposition 
It is possible to obtain a decomposition for any m × p matrix X. 

X = UΣVT, (15) 

where V is p × p, U is m × m, and Σ is m × p. The diagonal entries of Σ are non-
negative, and U and V are both orthonormal (i.e., UUT = I and VVT = I). This 
decomposition is called singular value decomposition (SVD). 

When the matrix is not square, a diagonal matrix means that all the entries, 
except for the i, i entries for i in the range of 1 to min(m, p), are zero. If Σ is tall 
and skinny, then the top square is diagonal and the rest are zero; if Σ is short and 
broad, the left square is diagonal and the rest are zero. Singular values is the term 
for what is on the diagonal of Σ. There are methods to accurately and efficiently 
calculate the SVD on a large scale, but, if the correct function is found, then any 
computing environment should be able to compute it. More information on this 
should be given by the manual for a specific environment. 

Singular Value Decomposition 
Any decent numerical linear algebra package or computing environment will 
produce a decomposition, given a matrix X, where, 

X = UΣVT , 

Σ is the diagonal with non-negative entries, and U and V are both orthonormal. 
Most environments that can do an SVD can be persuaded to provide the columns 
of U and rows of VT corresponding to the k largest singular values. 

Since the singular values could be reordered followed by the reordering of 
U and V, there are many SVDs for a given matrix. It is always assumed that 
(moving down) the diagonal entries in Σ are arranged from the greatest to the 
least. Here, the rows of VT and the columns of U that correspond to non-zero 
diagonal elements of Σ are distinct. 
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There’s a relationship between diagonalizing a matrix and forming an SVD; 
particularly, XT X is symmetric, and is diagonalized as 

XT X = VΣT ΣVT (16) 

TXXT = UΣΣTU (17) 

Need to know 
A SVD decomposes a matrix X as X = UΣVT where V is p × p, U is m × m, and 
Σ is m × p and is diagonal. The diagonal entries of Σ are non-negative and both 
U and V are orthonormal. The SVD of X yields the diagonalization of XXT and 
the diagonalization of XT X. 

SVD and PCA 
Assume there is a zero mean in a dataset. As is typical, there are N data items, 
each of which is a d-dimensional column vector. These are arranged into a matrix, 

T T TX = ( x1 x2  xN ) 
in which each row is a data vector, and the covariance matrix is 

1 TCovmat ({ }X ) = X X (18)
N 

Remember it has a mean of zero. From the SVD of X, one gets 

X = UΣVT (19) 

However, one has XT X = V ΣT ΣVT so that 
T1 T ∑ ∑(  ) = X X V V  (20)Covmat { }X V  ( ) = 

N N 

and ΣT Σ is diagonal. Vs columns have the principal components of X by pattern 
matching, and 

TΣ Σ (21) 
N 

are each component’s changes, meaning that the principal components of that 
dataset’s SVD can be read without really creating the covariance matrix; the SVD 
of X is formed, and the principal components are the columns of V. Keep in mind 
that these are the columns of V, not VT . 

NIPALS is a method of extracting some principal components from a data 
matrix and is a means of recovering a partial SVD of X. A vector u and a vector 
w are created by NIPALS so that wuT is close to X and u is a unit vector. The 
following is given by pattern matching: 
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•		uT is VT’s row that corresponds to the largest singular value; 
w

• is U’s column that corresponds to the largest singular value; 
|| w || 

• ||w|| is the largest singular value. 

If NIPALS is used to extract multiple principal components, several columns 
of U, several rows of VT, and several singular values will be obtained, but since 
numerical errors accumulate, this is not an accurate or efficient way to extract 
multiple singular values. Specialist packages should be used for a partial SVD 
that has many singular values. 

SVD and Low Rank Approximations 
If one wishes to produce Xs such that Xs’s rank is s (which is less than d) and such 
that ||X – Xs||2 is minimized, and one has X, with rank d an SVD will give Xs. One 
should take the SVD to get X = UΣVT, then set all except the s largest singular 
values in Σ to 0 to write Σs for the matrix. Given that 

Xs = U ΣsVT	 (22) 

It is clear Xs has rank s. ||X – Xs||2 can be minimized by observing, 

||X – Xs||2 = ||Σ – Σs||2 .		 (23) 

Σs has many zeros, which make the majority of U’s columns and VT’s rows 
irrelevant, bringing up a potential source of confusion. Write Us for the m × s 
matrix that consists of the first s columns of U, and so on, and for the s × s 
submatrix of Σs with non-zero diagonal, write Σs (s). This gives 

T ( )s T∑	 V (24)X = ∑U V = U ( )s s s s s 

It is quite common to switch from one representation to the other without 
comment. 

6.5. Correspondence Analysis 
6.5.1. Multiple Correspondence Analysis 
MCA’s mathematical theory development is very complex. It is necessary to 
construct a matrix that is founded on pairwise cross-tabulation of each variable, 
but it is not necessary to define dependable and response variables. A way to 
explain MCA for a table with variables (categorical or qualitative) is selecting an 
individual record (in a row), i, wherein three columns represent three variables 
that have three different category indicators (a1, b2, and c3); these three categories 
can be used to create the spatial distribution of the points in different dimensions. 
A good comparison for a combination of points is a geographic map with the same 
distance scale, in all directions. Since a geometric diagram cannot be contracted 
or strained along a certain dimension, its dimensionality reveals the basic property 
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of any combination of points. A two-dimensional combination is often useful for 
scrutinizing the points that lie on the plane, and they are generally referred to as 
the complete combinations’ principal dimensions, arranged in descending order 
of significance. In order to make a combination of groups, MCA aims to use a 
large dataset. 

First it is necessary to think of I as the number of transactions and P as the 
number of variables; the matrix will appear similar to a table for all the categorical 
values, “I multiplied by P.” If variable p’s number of categories is Tp, then 

PT = ∑  T is the total number of categories for all variables. Another matrix, p =1 p 
where each of the variables show all their possible categorical values through 
several columns, “I multiplied by T ,” is generated. 

Now it is necessary to think of category k associates with assorted individual 
records that can be represented by nk (nk > 0), wherein fk = nk/n = relative 
frequency of k associated individuals. A row profile is created with the values of 
fk. The variables that both have different categories are used to create the distance 
between two individual records. For variable p, individual record i has category 
k and individual record i′ has category k′ (this differs from k). Variable p’s part of 
the squared difference between individual records i′ and i is 

1 12d i i =( ,  ') +p (25)f fk k ' 

The overall squared distance between i and i′ is, 

12 2d i i ( ,  ') = d ( ,  ') (26)∑ p i i P p P∈ 

The individuals’ combination of n points in a space is used to determine the 
set of all distances between individual records. L is the space’s dimensionality, 
where L ≤ K – P; it is presumed that n ≥ L. If the mean point of the combination is 
G and the point representing an individual is denoted by M i, the squared distance 
from point Mi to point G is written as 

1 1i 2(GM ) = ∑ (27)
P fk K  k∈ i 

Where an individual i’s response pattern is Ki; the set of individual records i 
is associated with P categories. 

A weighted combination of K points is the cloud of categories, and category 
k is written as point Mk with weight nk. The category points weight sum is n for 
each variable; subsequently, for the whole set K, the sum is nP. Point Mk’s relative 
weight wk is wk = nk/(nP) = fk /P; the sum of the whole set is 1 as for each variable 
the sum of the relative weights of category points is 1/P. 

nk fk 1 w = = with ∑ w = and ∑ w = 1 (28)k k kk K∈ k Knp p q p ∈ 
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The squared distance between Mk′ and M k, assuming the number of distinct 
records with both categories k and k′ is denoted by nkk ′, is, 

n + n − 2nk k ' 2 k k ' kk ' (M M  ) = (29)
n nk k ' 
n 

The number of individual records that are related to either k or k′ is the 
numerator, and the familiar “theoretical frequency” for the cell (k, k ′) of the Kp × 
Kp ′ two-way table for two different variables, p′ and p is the denominator. 

6.5.2. Taxicab Correspondence Analysis 
To explain the extended theory of TCA, a series of papers was used by Choulakian. 
An overview of TCA is offered in this section. The basis for correspondence 
analysis (CA) is Euclidean distance, whereas Manhattan, City Block, or Taxicab 
distance is the basis for Taxicab correspondence analysis (TCA). To evaluate 
these  distances, let X = (x1, x2, ….., xn) and Y = (y1, y2, ….., yn) and a vector v = 
(v1,v2, ….., vn): 

n 2Euclidean Distance = ED(X, Y) = ∑ (x − y )i ii = 1 

n 2[with L2 Norm = ||v||2 = ∑ ( )vi ⎤ (30)i =1 ⎦ 

nTaxicab Distance = TD X Y  ( , ) = ∑ | x1 − y |ii = 1 

n 
| |[with L1 Norm = ||v||1 = ∑ i = 1
vi ] (31) 

Singular value decomposition (SVD) is the foundation for both TCA and 
CA, within which a real matrix A is decomposed as MΛ1/2 N ′, with N the matrix 
of eigenvectors of A′A (with constraints M ′M = I and N′N = I), M the orthogonal 
matrix of the corresponding eigenvectors, and Λ the diagonal matrix of the real 
non-negative eigenvalues of AA′. The SVD theory corresponds to the k-rank 
matrix reconstruction formula: 

k 
a = m nij ∑ iα iα (32)

i = 1 

Finding the first vectors m1 and n1 principal components of A to resolve the 
equivalent optimization problem is the basis of this approach. 

max ||Am||2 subject to ||m|||2 = 1 

max ||A′ n||2 subject to ||n||2 = 1 

Taxicab Correspondence Analysis considers the table’s profiles, respectively 
R = Dr 

–1 D for the rows and L = Dl –1 D for the columns, and is defined as the 

λα 
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Taxicab Singular Value Decomposition of the data table D = T – rl′. Unlike CA, 
the solution is recursive as it considers previous factors’ residuals at each step, 
leading to the reconstruction formula: 

'T  p p ' + 
k 1 B C= r c  ∑α = 2 λ a α (33) 

a 

Elementwise the formula becomes 

k 1t = t t + ∑ B C (34)ij i j  α 2 iα j. .  α= λα 

After transformation 

⎛ k 1 ⎞ 
n = nr l  1 + b cij i j  ⎜ ∑α = 2 λ iα αj ⎟ (35)⎝ α ⎠ 

6.6. Unsupervised Learning, Semi-Supervised, and 
Reinforcement Learning based Highway safety 
Studies 

Unsupervised learning hasn’t been widely used in highway safety analysis. Rule 
mining and correspondence analysis are the most used algorithms in highway 
safety research. Usage of semi-supervised and reinforcement learning in highway 
safety analysis is still limited. Table 11 provides a list of studies which used 
different ML algorithms in different highway safety problems. 

Table 11. Unsupervised, semi-supervised, and reinforcement learning 
based highway safety studies 

Algorithm Research Area Studies 
Unsupervised Learning 

Association 
Rules Mining 

Patterns of Contributing 
Factors in Crashes. 

Das et al. (2019); Kong et al. (2020); 
Kumar and Toshniwal (2016); Liu et 
al. (1998) 

K-means 
Patterns of Contributing 
Factors in Crashes. 

Nandurge and Dharwadkar (2017) 

Work Zone Safety. Wang et al. (2017) 
Children Road Users. Kwon and Cho (2020) 

PCA 
Real-Time Risk 
Assessment. 

Ni et al. (2019) 

Pipeline Safety. Khodayari-Rostamabad et al. (2009) 
t-SNE Work Zone Safety. Chang et al. (2020) 
LDA Incident Detection. Nie et al. (2018) 
TCA Patterns of Contributing 

Factors in Crashes. 
Das and Dutta (2020) 

(Contd.) 
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Table 11. (Contd.) 
LCA Railroad Safety Zhao et al. (2019) 

Semi-supervised Learning 
Semi-supervised Driver Behavior. Wang et al. (2010) 
Learning Route Choice Modelling. Cao et al. (2020) 
Semi-supervised Driver Behavior. Li et al. (2021) 
LSTM 
DBNs Real-Time Risk Ni et al. (2019) 

Assessment. 
Semi-Supervised Maritime Safety. Paolo et al. (2021) 
Recursively 
Partitioned 
Mixture Models 
Semi-Supervised Driver Distraction Liu et al. (2016) 
Extreme Detection. 
Learning 
Machine 

Reinforcement Learning 
Deep RL		 Work Zone Safety. Ren et al. (2020) 

Roadway Departure Safety. Mousa et al. (2020) 
AV Safety. Rasheed et al. (2020) 

Multi-Objective Intersection Safety. Gong et al. (2020) 
RL 

Resources 
Readers can consult the following link for a curated list of unsupervised learning: 
https://github.com/LongLong-Jing/awesome-unsupervised-learning 

Case Study 1 
Correspondence analysis is an important tool in categorical data analysis. As 
crash data have many variables which are categorical in nature, it is important 
to understand the hidden trends using correspondence analysis. Provide a case 
study by showing all steps to perform correspondence analysis on a crash event 
database. 
Data Integration 
This case study gathered from the Louisiana Department of Transportation and 
Development (LADOTD) crash data from 2010-2016 (seven years’ worth). The 
dataset has three major files: the crash file, the vehicle file, and the roadway 
inventory file. The crash file has general information about crash characteristics 
and circumstances. The roadway inventory file contains information about 
crash location, roadway type, traffic volume, segment length, and other relevant 
geometric information. As delivery vehicles are not classified as a specific vehicle 
type in Louisiana crash data, it is necessary to explore the police-reported crash 
narrative data to identify which crashes involved delivery vehicles. A set of 

https://www.github.com
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delivery-related keywords (e.g., delivery, pizza delivery, food delivery, grocery 
delivery) was used to identify the crash reports associated with delivery-related 
crashes. A manual effort was made to identify delivery-related crashes using 
broader vehicle categories (limited to passenger car, light truck, van, and pickups) 
and manually reading the crash narrative reports. After identifying these events in 
the ‘vehicle’ table, a data merging method was conducted to develop a database 
with crash, roadway, vehicle, and driver information (see Figure 40). The final 
dataset contains 1,623 unique crashes with 3,015 involved drivers. 

Figure 40. Data preparation flowchart. 

Exploratory Data Analysis 
It is important to perform a data-driven variable selection method when performing 
a robust analysis. As the crash dataset contains a wide range of variables (e.g., 
numerical, integer, nominal or categorical, ordinal), it is important to determine 
which variables can provide intuitive knowledge about the crash occurrences. 
After removing redundant variables (e.g., district name, agency name, driver 
registration) for this study, this study selected a list of 40 variables for preliminary 
exploration. As the dataset is limited in size, variables with higher than 20% 
missing data were eliminated. In addition, variables examined in the studies 
discussed in the literature review were also explored. After performing all quality 
checks, sixteen variables were selected for the final analysis. The final dataset is 
conducted at the person level (3,015 drivers), in which each row indicates the 
driver level information, and each column indicates a selected variable. With one 
hot encoding, the final matrix was 3,015 by 91. Table 12 lists the distribution 
of the key variable categories. There were several interesting findings shown in 
the table. One finding is that the majority of the crashes occurred on straight-
aligned roadways. Another finding is that approximately 90% of crashes occurred 
on city streets, parish roads, and state highways. Two-way undivided roadways 
are associated with 68% of crashes, and nearly 92% of crashes occurred in 
business, residential, and mixed localities. Most crashes were multiple vehicle 
crashes occurring on low posted speed limit roadways, and approximately 70% 
of the crashes occurred at an intersection. Around 80% of drivers are either 
white or African American, and most of the drivers involved in delivery-related 
crashes are between the ages of 25 to 64 years. There are no significant insights 
in lighting, weather, or day of the week variables. Injury crashes are lower in 
delivery-related crashes, and there were no fatal crashes during the study period. 
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Alcohol involvement is also rarely found; in only about 0.40% of cases, the 
drivers were asked for alcohol tests. Inattention and distraction were associated 
with approximately 29% of delivery vehicle-related crashes. 

Table 12. Descriptive statistics 

Category Perc. Category Perc. 
Alignment (Align.) Posted Speed Limit (PSL) 
Straight-Level 93.77 30 mph or less 58.79 
Straight-Level-Elev.  0.90 35-45 mph 35.04 
Curve-Level  2.78 50-60 mph  5.33 
Curve-Level-Elev.  0.30 65-70 mph  0.84 
Dip, Hump-Straight  0.13 Number of Vehicles Involved (NVeh) 
Hillcrest-Curve  0.07 Multi Vehicle 89.21 
Hillcrest-Straight  0.57 Single Vehicle 10.75 
On Grade-Curve  0.20 Not reported  0.03 
On Grade-Straight  0.84 Intersection Type (Intersec.) 
Other  0.44 Intersection 70.82 
Highway Type (Hwy.) Segmentation 29.15 
City Street 45.46 Not reported  0.03 
Parish Road 27.71 Driver Gender (Gen.) 
State Hwy 16.28 Female 24.66 
U.S. Hwy  7.87 Male 57.39 
Interstate  1.74 Unknown 17.82 
Toll Road  0.94 Driver Race (Race) 
Roadway Type (Road) White 47.07 
2-Way No Sep. 68.27 African American 32.40 
2-Way with Sep. 16.08 Others  2.68 
One-Way Road 12.76 Asian  0.03 
2-Way with Barr.  1.64 Unknown 17.82 
Other  1.24 Driver Age (Age) 
Locality Type (Locality) 15-24 12.8 
Business Cont. 31.69 25-34 20.37 
Mixed 33.97 35-44 16.31 
Residential 25.76 45-54 15.61 
Industrial  2.21 55-64 11.22 
Residential Scatt.  3.45 > 65  5.93 
Open Country  0.97 Driver Injury Type (Inj.) 
School/Playground  0.67 Not reported 17.72 
Other  1.27 Incapacitating/Severe  0.50 
Lighting Condition (Lighting) Non-Incapacitating/Moderate  1.64 
Daylight 89.15 Possible/Complaint  7.37 
Dark – Cont. St. Light  6.16 No Injury 90.49 
Dark – No St. Lights  1.68 Driver Alcohol Test (Alc.) 
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Dark – Int. St.Light  1.04 No Test Given 77.86 
Dawn  0.10 Test Given, Bac  0.37 
Dusk  1.31 Test Given, Results Pending  0.03 
Other  0.57 Not reported 21.61 
Weather Type (Weather) Driver Condition (Cond.) 
Clear 75.54 Normal 48.68 
Cloudy 17.92 Inattentive 25.56 
Rain  5.49 Distracted  3.52 
Blowing Sand, Soil, Dirt, 0.07 Drinking Alcohol – Impaired  0.27 
Snow
Fog/Smoke  0.07 Drinking Alcohol – Not 0.10 

Impaired
Not reported  0.03 Drug Use – Impaired  0.10 
Severe Crosswind  0.03 Apparently Asleep/Blackout  0.23 
Sleet/Hail  0.07 Fatigued  0.13 
Snow  0.07 Physical Impairment (Eyes, Ear, 0.07 

Limb)
Other  0.70 Other 21.34 
Day of Week (DOW) 
MTWT 71.69 
FSS 28.31 

Cluster Corresponding Analysis 
Correspondence analysis (CA) is a frequently used data analysis technique for 
categorical data analysis. The core idea is to perform dimension reduction from 
simple multi-way and two-way tables, which contain an association between the 
columns and rows from a multifaceted dataset. Different variants of CA have 
been used in transportation studies. Cluster correspondence analysis, a variant 
of CA, combines both cluster analysis and the dimension reduction method 
for categorical datasets. The cluster correspondence analysis algorithm assigns 
individuals to optimal scaling values and variable attributes to clusters to achieve 
variance maximization objectives. A brief overview of this method is presented 
here. 

First, consider that the data is associated with n individuals (e.g., drivers 
involved in delivery vehicle-related crashes) for p categorical variables (e.g., 
roadway alignment). This information can be expressed by super indicator matrix 

pZ with n × Q dimension, where Q = ∑ q j . An indicator matrix ZK can be 
j = 1 

used to develop a tabular format to cross-tabulate cluster memberships with the 
nominal or categorical variables such as F = Z ′ K Z, where ZK is the n × K indicator 
matrix indicating cluster membership. The application of the CA framework 
to this matrix populates optimal scaling values for columns (as categories) and 
rows (as clusters). The clusters are separated optimally based on the distributions 
over the categorical variables in the two-dimensional plane. In the same way, 
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the categories that have different distributions over the clusters are separated 
optimally, which can be expressed as: 

* *' − / −1 −1/ 2 *1 2max  φ (Z B ) = 
1 traceB D  ' D Z  ' MZD BZ  MZ (36)clusca K ' z K Z K zp 

Where, 

M = In – 1n 1′n/n 

−1 2 */B = npD  Bz 

DK = Z ′ K ZK, is a diagonal matrix with cluster sizes 
Dz  is a diagonal matrix so that Dz 1Q = Z ′1n 
To perform this analysis, an open-source R package ‘clustrd’ was used, and 

this study utilized the Calinski-Harabasz measure out of several validity measures. 
This measure, also called the valence ratio criterion, is the ratio of the sum of 
between-clusters and inter-cluster dispersion for all clusters; the higher the score, 
the better the performances. This measure is used for the application of k-means 
clustering to complete clustering for different k measures. 

Results and Discussions 
The selection of a suitable number of clusters was one of the critical issues. After 
performing several tests, this effort finally limited the number of clusters to 6. 
Due to the nature of the data and unknown information, all the other trials with 
fewer or more clusters contained more than 50% of the information in cluster 1, 
which presents a general trend in the overall data. This study determined that a 
six-cluster, two-dimensional solution would be the most suitable for this analysis. 
The objective criterion value of the final model is 7.2714. In the framework 
of CA, the origin designates the mean profile, and all other coordinates show 
divergences from this mean profile. The locations of the cluster centroids answer 
research question 1 by indicating that there are cluster or sub-group effects in the 
light delivery vehicle-related crash databases. Table 13 lists the cluster size, sum 
of squares, and coordinates of the cluster centroids on two axes or dimensions. 

Table 13. Location of the cluster centroids and other measures 

Cluster Size Sum of Dimension 1 Dimension 2 
(percentage) Squares 

Cluster 1 1444 (47.4%) 0.0126 -0.0069 -0.0049 
Cluster 2 737 (24.7%) 0.0149 -0.0108 0.0022 
Cluster 3 524 (17.6%) 0.0217 0.0333 0.0012 
Cluster 4 212 (7.1%) 0.0076 0.0051 -0.0021 
Cluster 5 73 (2.4%) 0.0141 -0.0081 0.0364 
Cluster 6 25 (0.8%) 0.0068 -0.0112 0.0956 
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Each cluster’s 20 characteristics that have the highest standardized residuals 
(negative or positive) are shown in the six plots of Figures 41 and 42. A positive 
(or negative) residual means that the attribute has a frequency above (or below) 
average within the cluster. Characteristics with positive residual means are 
considered in the following explanation. Cluster-based analysis answers research 
question 2 by explaining the patterns of the risk factors associated with light 
delivery vehicle crashes. 

Figure 41 goes over the top 20 largest standardized residuals per cluster 
(clusters 1-3), and Figure 42 goes over the top 20 largest standardized residuals 
per cluster (clusters 4-6). 

Cluster 1 
This cluster has seven characteristics with positive residual means: inattentive 
driver condition, movement due to driver violation, prior movement backing up, 
male drivers, posted speed limit of 30 mph or less, drivers aged 25-34, and race 
of the driver as black. This indicates that there is an association between black 
male drivers aged 25-34 and inattentive driving, driver violations, and a prior 
movement of backing up on roads with a posted speed limit of 30 mph or less. 

Cluster 2 
There are ten qualities with positive residual means in this cluster: posted 
speed limit of 35-45 mph, U.S. highway, state highway, 2-way road with 
separation, posted speed limit of 50-60 mph, possible injury or complaint, located 
in a residential scattered area, normal driving conditions, normal movement 
conditions, and drivers aged 15-24. This indicates that there is an association 
between possible injuries or complaints from drivers aged 15-24 with normal 
driver and movement conditions on U.S. highways, state highways, or 2-way 
roads with separation with a posted speed limit of 35-45 mph or 50-60 mph in 
residential scattered areas. 

Cluster 3 
There are eight qualities with positive residual means in this cluster: unknown 
gender, unknown race, unreported age, other driving condition, properly parked 
prior condition, other movement condition, other vehicle type, and other prior 
condition. This indicates that there is an association between drivers with 
unknown or unreported gender, race, and age and conditions of ‘other’ for driving 
condition, movement condition, vehicle type, and prior condition. They are also 
associated with properly parked as the prior condition. 

Cluster 4 
There are ten characteristics with positive residual means in this cluster: 
other movement, other driving condition, other prior condition, other vehicle type, 
properly parked prior condition, other alignment, black drivers, posted speed limit 
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of 30 mph or less, highway city street, and other weather. This indicates that there 
is an association between a city street with a posted speed limit of 30 mph or less 
and ‘other’ for prior condition, driver condition, movement, weather, vehicle type, 
and roadway alignment. They were also associated with African American drivers 
and properly parked as the prior condition. 

Figure 41. Top 20 largest standardized residuals per cluster (cluster 1-3). 
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Figure 42. Top 20 largest standardized residuals per cluster (cluster 4-6). 
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Cluster 5 
There are nineteen qualities with positive residual means in this cluster: 
interstate highway, other location, driving condition impaired by drinking 
alcohol, blood alcohol content test given, posted speed limit of 50-60 mph, 
open country location, movement of vehicle out of control, 2-way road with a 
barrier, straight-level-elevated alignment, prior condition ran off the road, curve-
level-elevated alignment, asleep or blackout driver condition, severe crosswind 
weather condition, defective steering in the vehicle, engine failure in the vehicle, 
continuous streetlights, prior condition changing lanes on a multi-lane road, no 
streetlights, and movement to avoid an animal. This indicates that there is an 
association between a very large number of variables. Drivers that were asleep or 
blacked out, impaired by drinking alcohol, and given a blood alcohol content test 
were associated with out-of-control movements of the vehicle, running off the 
road, defective steering in the vehicle, engine failure in the vehicle, changing lanes 
on a multi-lane road, and movement to avoid an animal. They were also associated 
with interstate highways in open country or other locations with a speed limit of 
50-60 mph. The road types associated with this were 2-way roads with a barrier 
and straight-level-elevated or curve-level-elevated alignment, severe crosswind 
weather conditions, and either continuous streetlights or no streetlights. 

Cluster 6 
There are seventeen attributes with positive residual means in this cluster: 
a posted speed limit of 65-70 mph, open country location, interstate highway, 
2-way roads with a barrier, straight-level-elevated alignment, other location, 
no streetlights, on grade-straight alignment, movement to avoid an object, 
toll road highway, intermittent streetlights, incapacitating or severe injury, 
fatigued driver condition, 2-way road with separation, asleep or blackout driver 
condition, movement due to vehicle condition, and prior movement proceeding 
straight ahead. This indicates that there is an association between crashes with 
incapacitating or severe injuries and interstate highways, toll roads, or 2-way 
roads with a barrier or separation in the open country or another location with 
intermittent or no streetlights. These were also associated with drivers that were 
asleep or blacked out and fatigued, as well as a posted speed limit of 65-70 mph, 
straight-level-elevated or grade-straight alignment, movement to avoid an object, 
separation movement due to vehicle condition, and prior movement proceeding 
straight ahead. 

One of the major advantages of this analysis is the capability to generate 
‘proportion odds’ for the attributes in each cluster (see Table 14). One general 
observation is that cluster 5 and cluster 6 have very high odds for a few attributes 
compared to other clusters. These two clusters are associated with freeway-related 
crashes, which represent around 3% of the data. 
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Table 14. Proportion odds of the attributes by clusters 

Variable Category Cluster Cluster Cluster Cluster Cluster Cluster 
1 2 3 4 5 6 

Align. Straight-Level 1.05 0.93 1.02 1.00 0.70 0.55 
Align. Straight-Level- 0.00 1.33 0.44 0.00 15.22 26.67 

Elev. 
Align. Curve-Level 0.29 2.23 0.76 0.86 3.96 2.88 
Align. Curve-Level 0.00 1.67 0.67 0.00 18.33 0.00 

Elev. 
Align. Dip, Hump 0.00 3.08 0.00 0.00 10.77 0.00 

Straight 
Align. Hillcrest-Curve 1.43 0.00 2.86 0.00 0.00 0.00 
Align. Hillcrest-Straight 0.88 2.46 0.00 0.00 0.00 0.00 
Align. On Grade-Curve 0.50 2.50 0.00 0.00 0.00 0.00 
Align. On Grade 0.00 2.74 0.00 1.07 3.21 19.05 

Straight 
Align. Other 0.23 0.00 2.50 6.36 0.00 0.00 
Hwy. City Street 1.16 0.37 1.44 1.38 0.30 0.00 
Hwy. Parish Road 1.27 0.67 0.87 0.99 0.44 0.00 
Hwy. State Hwy 0.62 2.36 0.42 0.35 0.93 0.00 
Hwy. U.S. Hwy 0.23 3.13 0.27 0.24 2.26 0.51 
Hwy. Interstate 0.00 0.06 0.11 0.00 23.62 45.98 
Hwy. Toll Road 0.11 1.60 1.17 2.55 0.00 17.02 
Road 2-Way No Sep. 1.14 0.84 0.98 0.97 0.48 0.00 
Road 2-Way with Sep. 0.56 2.15 0.53 0.67 1.45 3.23 
Road One-Way Road 0.94 0.39 1.69 1.48 1.94 0.94 
Road 2-Way with Barr. 0.00 1.71 0.37 0.55 11.71 21.95 
Road Other 0.89 0.08 2.02 2.66 0.00 0.00 
Loc. Business Cont. 0.95 1.34 0.78 0.95 0.65 0.00 
Loc. Mixed 1.01 0.93 1.17 0.99 0.57 0.12 
Loc. Residential 1.20 0.49 1.20 1.30 0.32 0.00 
Loc. Industrial 1.27 1.04 0.68 0.23 0.63 0.00 
Loc. Residential Scatt. 0.35 2.84 0.38 0.55 1.19 0.00 
Loc. Open Country 0.00 0.00 0.00 0.00 16.91 70.10 
Loc. School/ 0.90 1.04 1.49 0.75 0.00 0.00 

Playground 
Loc. Other 0.00 0.39 0.79 0.00 23.70 22.05 
Light. Daylight 1.05 0.96 0.95 1.03 0.78 0.72 
Light. Dark – Cont. 0.67 1.10 1.54 0.76 3.56 0.00 

St. Light 
Light. Dark – No 0.00 2.44 0.77 0.30 4.88 14.29 

St. Lights 
Light. Dark – Int. 0.38 2.12 1.06 0.48 0.00 11.54 

St. Light 
Light. Dawn 2.00 0.00 0.00 0.00 0.00 0.00 
Light. Dusk 1.15 0.92 0.84 1.07 0.00 0.00 

(Contd.) 
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      Variable Category Cluster Cluster Cluster Cluster Cluster Cluster 
1 2 3 4 5 6 

Light. Other 0.18 0.00 4.39 2.46 0.00 0.00 
Wea. Clear 0.97 1.05 0.99 1.05 0.91 1.11 
Wea. Cloudy 1.17 0.78 0.98 0.69 1.14 0.89 
Wea. Rain 0.95 1.06 0.97 1.04 1.75 0.00 
Wea. Blowing Sand, 1.43 1.43 0.00 0.00 0.00 0.00 

Soil, Dirt, Snow 
Wea. Fog/Smoke 0.00 0.00 5.71 0.00 0.00 0.00 
Wea. Not reported 0.00 0.00 6.67 0.00 0.00 0.00 
Wea. Severe Crosswind 0.00 0.00 0.00 0.00 46.67 0.00 
Wea. Sleet/Hail 0.00 1.43 2.86 0.00 0.00 0.00 
Wea. Snow 0.00 4.29 0.00 0.00 0.00 0.00 
Wea. Other 0.71 0.00 2.14 4.00 0.00 0.00 
DOW MTWT 1.03 0.97 0.98 0.96 0.82 1.17 
DOW FSS 0.91 1.08 1.04 1.10 1.45 0.57 
PSL 30 mph or less 1.26 0.22 1.42 1.35 0.14 0.00 
PSL 35-45 mph 0.74 2.04 0.45 0.51 1.25 0.00 
PSL 50-60 mph 0.02 2.85 0.19 0.53 8.22 2.25 
PSL 65-70 mph 0.00 0.00 0.00 0.00 4.88 104.76 
NVeh Multi Vehicle 0.95 1.05 1.04 1.03 0.97 1.08 
NVeh Single Vehicle 1.39 0.56 0.66 0.79 1.27 0.37 
NVeh Not reported 0.00 0.00 6.67 0.00 0.00 0.00 
Intersec Intersection 0.99 0.91 1.11 1.03 1.14 1.02 
Intersec No-intersection 1.02 1.21 0.72 0.92 0.66 0.96 
Intersec Not reported 0.00 0.00 6.67 0.00 0.00 0.00 
Gen. Female 1.07 1.48 0.02 1.15 1.39 0.81 
Gen. Male 1.28 1.10 0.01 1.15 1.05 1.25 
Gen. Unknown 0.00 0.00 5.52 0.29 0.31 0.45 
Race White 1.18 1.37 0.01 0.87 1.22 1.19 
Race Afrin American 1.29 0.99 0.02 1.52 1.14 0.86 

(Black) 
Race Others 1.04 1.27 0.22 1.75 0.00 2.99 
Race Asian 3.33 0.00 0.00 0.00 0.00 0.00 
Race Unknown 0.00 0.00 5.52 0.29 0.31 0.45 
Age 15-24 1.01 1.73 0.06 0.55 1.28 1.56 
Age 25-34 1.41 0.90 0.01 1.20 0.74 0.59 
Age 35-44 1.13 1.26 0.08 1.18 1.51 1.96 
Age 45-54 1.15 1.24 0.06 1.39 1.14 1.02 
Age 55-64 1.28 1.05 0.04 1.27 1.22 0.71 
Age > 65 1.25 1.30 0.03 0.79 0.69 0.67 
Age Not reported 0.00 0.00 5.42 0.48 0.46 0.45 
Inj. Incapacitating/ 0.00 2.80 0.00 1.00 5.40 16.00 

Severe 
Inj. Non 0.37 2.80 0.12 0.55 2.50 0.00 

Incapacitating/ 
Moderate 
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Inj. Possible/ 0.54 2.54 0.00 0.57 2.42 1.63 
Complaint 

Inj. No Injury 1.05 0.83 1.10 1.04 0.83 0.88 
Alc. No Test Given 1.13 1.15 0.49 0.96 0.69 1.18 
Alc. Test Given, Bac 0.00 0.81 0.00 0.00 29.73 10.81 
Alc. Test Given, 0.00 3.33 0.00 0.00 0.00 0.00 

Results Pending 
Alc. Test Refused 0.00 0.77 3.08 0.00 10.77 0.00 
Alc. Not reported 0.56 0.44 2.85 1.18 1.58 0.19 
Cond. Normal 1.09 1.48 0.11 0.89 1.10 1.23 
Cond. Inattentive 1.65 0.74 0.02 0.16 0.80 0.31 
Cond. Distracted 0.99 1.88 0.00 0.26 0.40 3.41 
Cond. Drinking Alcohol 0.00 0.37 0.00 0.00 35.56 0.00 

– Impaired 
Cond. Drinking Alcohol 1.00 1.00 2.00 0.00 0.00 0.00 

– Not Impaired 
Cond. Drug Use – 0.00 4.00 0.00 0.00 0.00 0.00 

Impaired 
Cond. Apparently 0.00 1.74 0.00 0.00 17.83 17.39 

Asleep/Blackout 
Cond. Fatigued 0.00 2.31 1.54 0.00  0.00 30.77 
Cond. Physical 1.43 0.00 0.00 0.00  0.00  0.00 

Impairment 
(Eyes, Ear, Limb) 

Cond. Other 0.06 0.05 4.40 2.41 0.52 0.56 

The key findings from this table are stated below: 

• Cluster 1 does not have drastically high odd measures for any other attributes. 
The highest odd measures for each of the variables are: alignment (hillcrest
curve = 1.43), highway type (Parish road = 1.27), roadway type (2-way 
undivided = 1.14), locality (industrial = 1.27), lighting (dawn = 2.00), weather 
(blowing sand/dirt = 1.43), day of the week (Monday to Thursday = 1.03), 
posted speed limit (30 mph or less = 1.26), intersection type (non-intersection 
= 1.02), gender (male = 1.28), race (Asian = 3.33), age (25-34 years = 1.41), 
injury type (no injury = 1.05), alcohol test (no test given = 1.13), and driver 
condition (inattentive = 1.65). It should be noted that this cluster comprises 
around 47% of the overall information. This cluster also shows some odds 
measures are zero. Based on the values, this cluster is not associated with 
interstate, open country, and driver impairment. 

• Cluster 2 shows higher odds for some key attributes: curve alignment, dark 
as lighting condition, snow/sleet weather, 35-60 mph posted speed limit, 
severe and moderate injury, drug-impaired, and distracted driver. This cluster 
represents around 25% of the data, and it indicates that drug-impaired drivers 
are associated with delivery-related crashes under certain conditions. 

• Cluster 3, with 18% information, mainly presents that there is a significant 
number of crashes with inadequate information regarding some key variables. 
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There is a need for additional efforts in the completion of the crash data 
characteristics, which is at this time out of the scope of this study. 

• Cluster 4 represents 7% of the data. For categorical variables, some of the 
categories and attributes are not well defined. These attributes are clustered 
together as ‘others’ to make the number of categories limited. The other 
attributes with higher odds in this cluster are city streets and roadways with 
a posted speed limit of 30 mph or less. The other attributes also indicate the 
trivial nature of the variable attributes. 

• Cluster 5 represents alcohol-impaired crashes on interstate roadways in open 
country localities. Driver condition as apparently asleep/blackout also shows 
higher odds. Another interesting feature of this cluster is that severe crosswind 
shows higher odds for this cluster. 

• Cluster 6 properties are similar to Cluster 5. However, this cluster is not 
associated with driver impairment. The driver condition being apparently 
asleep/blacked out and being fatigued also show higher odds.

 Example Problem 1 
Provide some use cases of Principal Component Analysis (PCA) and Uniform 
Manifold Approximation and Projection (UMAP) 
Solution: 
PCA and UMA are both popular dimension reduction methods for non-categorical 
data. The following replicable codes show how to use PCA and UMAP in crash 
data analysis. 

Example Problem 1 (Code Chunk 1) 
## Please check my RPUBS for additional codes: https://rpubs.com/subasish
	

setwd("~folder location")
	
library(data.table)
	
library(embed)
	
moo= read.csv("new1.csv")
	
head(moo)
	
pca_rec <- recipe(~., data = moo) %>%

 update_role(YEAR, SOE, new_role = "id") %>%

 step_normalize(all_predictors()) %>%

 step_pca(all_predictors())
	

pca_prep <- prep(pca_rec) 
pca_prep 

tidied_pca <- tidy(pca_prep, 2)
	
library(tidyverse)
	
library(tidymodels)
	
theme_set(theme_bw(base_size = 18))
	
tidied_pca %>% 

https://www.rpubs.com


 137Unsupervised Learning 

filter(component %in% paste0("PC", 1:5)) %>%

 mutate(component = fct_inorder(component)) %>%

 ggplot(aes(value, terms, fill = terms)) +


  geom_col(show.legend = FALSE) +

 facet_wrap(~component, nrow = 1) +

 labs(y = NULL)
	

library(tidytext) 

tidied_pca %>%
 filter(component %in% paste0("PC", 1:4)) %>%

 group_by(component) %>%

 top_n(8, abs(value)) %>%

 ungroup() %>%

 mutate(terms = reorder_within(terms, abs(value), component)) %>%

 ggplot(aes(abs(value), terms, fill = value > 0)) +

 geom_col() +

 facet_wrap(~component, scales = "free_y") +

 scale_y_reordered() +

 labs(

 x = "Absolute value of contribution",

 y = NULL, fill = "Positive?"


 )
	

juice(pca_prep) %>%
 ggplot(aes(PC1, PC2, label = SOE)) +
 geom_point(aes(color = YEAR ), alpha = 0.7, size = 2) +

  geom_text(check_overlap = TRUE, hjust = "inward", family = "IBMPlexSans") +
 labs(color = NULL) 

library(embed) 

umap_rec <- recipe(~., data = moo) %>%
 update_role(YEAR, SOE, new_role = "id") %>%
 step_normalize(all_predictors()) %>%
 step_umap(all_predictors()) 

umap_prep <- prep(umap_rec) 
umap_prep 

juice(umap_prep) %>%
 ggplot(aes(umap_1, umap_2, label = SOE)) +

  geom_point(aes(color = YEAR), alpha = 0.7, size = 2) +
  geom_text(check_overlap = TRUE, hjust = "inward", family = "IBMPlexSans") +
 labs(color = NULL) 
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  Figure 43 and Figure 44 show the PCA plot and UMAP plot, respectively. 
The clustering patterns of these two methods differ. 

Figure 43. PCA plot. 

Figure 44. UMAP plot. 

Chapter Conclusion 
This chapter provides a brief description of different unsupervised learning 
algorithms. Included are K-means, k-nearest neighbors, dimension reduction 
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methods, categorical data analysis, and correspondence analysis. The chapter 
also provides a list of relevant studies. Example problems and case studies are 
provided later in this chapter. 
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7 

Deep Learning 

7.1. Introduction 
Deep learning has been the most researched area in the past few years. Deep 
learning algorithms have been used in a multitude of highway safety studies. 
A brief overview of the most used deep learning algorithms in highway safety 
analysis is described in this chapter. 

7.2. Popular Algorithms 
7.2.1. LSTM 
The original long short-term memory (LSTM) model was improved by the core 
contribution of using self-loops to create pathways wherein the gradient is capable 
of flowing for extended periods of time, and the idea of making the self-loop 
weights conditioned was pivotal. Controlling the self-loop weight with a hidden 
unit allows for a dynamic change in the time scale of integration; in this case, 
due to the fact that the model produces the time constants itself, the time scale of 
integration for even an LSTM with fixed parameters can change due to the input 
sequence. There are many applications in which the LSTM has been successful, 
such as speech recognition, unrestrained handwriting recognition, handwriting 
generation, image captioning, machine translation, and parsing. 

The shallow recurrent network architecture’s analogous forward propagation 
equations are listed below. LSTM recurrent networks contain LSTM cells with 
a self-loop (internal recurrence), along with the outer recurrence of the recurrent 
neural network (RNN), and have the same outputs and inputs as ordinary recurrent 
networks, with a unit gating procedure that manages the output of information 
and more parameters rather than having just one unit apply an elementwise 
nonlinearity function to the affine transformation of inputs and recurring units. 

The state unit, si 
( )t , contains a linear self-loop (comparable to the loose units) 

that is the most crucial part. A forget gate unit, fi 
( )t  (for time step t and cell i), 

uses a sigmoid unit to select a weight with a value between 0 and 1 and controls 
the weight of the self-loop t (or the associated time constant): 
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( )t f f ( )t f (t − 1)f = σ (b + ∑  U x  + ∑ W h  )i i j i j j j , j (1), i j 

wherein the current input vector is x(t) and the current hidden layer vector is 
h(t), with all the LSTM cells outputs, and where W (f ), b(f ) and U (f ) represent the 
recurrent weights, biases, and input weights for the forget gates, respectively. 
Then, the LSTM cell’s internal state is updated with a conditional self-loop 

( )t :weight fi 
( )  ( ) (  t −1) t ( )t f (t −1)t t ( )s = f s  + g σ b + ∑  U x  + ∑  W hi i i ( i  j i j j  j  , )i , i j  j  (2) 

where W, U, and b represent the recurrent weights, input weights, and biases of 
tthe LSTM cell, respectively. The external input gate unit gi
( )  is calculated with a 

method that is similar to the forget gate (with a sigmoid unit to get a gating value 
between 0 and 1), but with different constraints:

( )t g g ( )t g (t 1)g = σ b + ∑  U x  + ∑  W h −( i  j i j j  j  , )i , i j  j  (3) 
The LSTM cell’s output hi

( )t  can be turned off through the output gate qi
( )t , 

which additionally employs a sigmoid unit for gating: 
( )t ( )t ( )th = tanh (  s )qi i i 

( )t o o ( )t o (t 1)q = σ (b + ∑  U x  + ∑  W h − ) (4)i j , j ,i  i j j  i j j  

which has parameters W o , U o , and bo for its recurrent weights, input weights, and 
biases, respectively. 

The cell state si 
( )t can be used as an additional input (along with its weight) 

into the i-th unit’s gates, but an additional three parameters are required for this. 

Need to know 
It has been demonstrated that LSTM networks learn long-term dependencies 
more readily than the simple recurrent architectures. This was first shown in 
artificial data sets that were created to examine the ability of LTSM networks to 
learn long-term dependencies, and then on difficult sequence processing tasks 
in which the performances were state-of-the-art. Many alternatives and variants 
for the LSTM have been studied and used, which are discussed next. 

Autoencoders are neural networks that are trained to duplicate their input 
into output with an internal hidden layer h that defines a code that is utilized 
to represent the input. There are essentially two parts to the network: a decoder 
that produces a reconstruction r = g(h), and an encoder function h = f(x). An 
autoencoder isn’t especially useful if it is able to simply learn to set g(f(x)) = x 
everywhere, and instead is typically limited in how it is only permitted to make 
an approximate copy and only a duplicate input that is similar to the training data. 
The model often learns useful properties of the data because it prioritizes which 
parts of the input should be duplicated. 

The concept of an encoder and a decoder have been generalized by 
autoencoders’ past deterministic functions to stochastic mappings pencoder(h|x) 
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and pdecoder(x|h). The concept of autoencoders has for decades been in the 
history of neural networks, where they were typically used for feature learning or 
dimensionality reduction. Autoencoders have recently been brought to the front 
of generative modeling thanks to theoretical connections between latent variable 
models and autoencoders. Autoencoders are a distinct case of feedforward 
networks that can learn using identical methods; recirculation (a learning 
algorithm that is founded on the comparison of the network activations of the 
original input to the activations on the reconstructed input), unlike with general 
feedforward networks, can be used to train autoencoders. AI applications often 
have used recirculation, but it is considered to be more biologically plausible than 
back-propagation (see Figure 45). 

Figure 45. The structure of an autoencoder. 

7.2.2. Monte Carlo Sampling 
It is possible to approximate a sum or integral when it cannot be exactly computed 
(e.g., if there is an exponential number of terms in the sum with no known exact 
simplification) through the use of Monte Carlo sampling. This concept considers 
the integral or sum to be an expectation under some distribution and by a 
correspondence average to approximate the expectation. Consider 

s = ∑  p x f x  ( )  ( )  = E  f x  x p[ ( )] 

s = ∫ p x f x dx E  f x (5)( )  ( )  = p[ ( )] 

acts as the integral or sum to be approximated, redrafted as an expected value, 
with constraint p representing a probability density (for the integral) or probability 
distribution (for the sum) over random variable x. 
S is estimated by taking n samples x(1), ..., x(n) from p, then calculating the 

empirical average 
1 n ( )i )s = ∑ f x  (6)n (i=1N 

Different properties justify this approximation. The estimator ŝ being unbiased 
is the first observation, due to the fact that 

n ( )i n[ ]   E sn = 1n ∑i =1 E  f (x ) = 1n ∑i =1 s = s. (7) 
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Along with this, the law of large numbers shows that the mean almost always 
converges with the anticipated value if the samples x(i) are i.i.d.: 

s n = s, (8) 
if the individual terms’ variance, Var [f(x(i))], is bounded, consider the variance of 
ŝn as n increases; so long as Var [f(x(i))],< ∞, the variance Var s n[ ] decreases and 
converges to 0: 

1[  ] = ∑ Var fVar S n 
n [ ( )] x2 i =1n 

Var f  x[ ( )] 
= (9) 

n 

7.3. Boltzmann Machines 
Boltzmann machines were initially considered to be a general connectionist 
approach for learning arbitrary probability distributions over binary vectors. This 
section introduces binary Boltzmann machines. 

The definition presented over a d-dimensional binary random vector of the 
Boltzmann machine is x ∈ {0,1}d. It is an energy-based model, meaning that an 
energy function can be used to define the joint probability distribution: 

P(x) = ex(–E(x))Z (10) 

Z is the partition function and E(x) is the energy function that certifies that 
∑x P x = 1  the Boltzmann machine’s energy function is: ( )  ;

E x( ) = − x Ux b x T − T (11) 
where b represents the bias parameters vector and U is the “weight” matrix of 
model parameters. 

Generally, a group of training examples (all n-dimensional) is taken from 
the Boltzmann machine settings. Equation 11 indicates the joint probability 
distribution over the observed variables. This scenario, even though viable, limits 
the types of interactions among the variables that are described by the weight 
matrix with the observed variables, which means that a linear model (logistic 
regression) produced from the other unit’s values provides the probability of one 
unit being on. 

Need to know 
The Boltzmann machine increases in power when some variables are not 
observed. The latent variables are able to act in the likeness of a multi-layer 
perceptron’s hidden units and higher-order interactions among the visible units 
can be modeled. In the same way that the inclusion of hidden units to convert 
a logistic regression into a MLP causes it to act as a universal approximator 
of functions, a Boltzmann machine with hidden units is no longer limited to 
predicting linear relationships between variables; instead, it acts as a universal 
approximator over discrete variables of probability mass functions. 
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The units x are formally decomposed into two subsets: the latent (or hidden) 
units h and the visible units v. The energy function thus becomes 

T T T T TE x( ) = − v R − − h b v c h v v Wh h S − − . (12) 

7.3.1. Boltzmann Machine Learning 
The basis for the learning algorithms of Boltzmann machines is usually the 

v d  vmaximum likelihood. Shaping of P ( ) an Pdata ( )v P ( )  statistics ismodel model 
aided by the remainder of the network, and knowledge about how the statistics 
were produced or the rest of the network isn’t necessary to update the weight. 
Subsequently, due to the “local” nature of the learning rule, the Boltzmann 
machine is biologically possible. If each random variable in a Boltzmann machine 
is a neuron, the ‘dendrites’ and ‘axons’ that connect two random variables can 
only be taught by discerning the cell firing pattern of the cells with which they 
have physical contact. Particularly, two units that activate together frequently 
have a strengthened connection in the positive phase. Despite being among the 
oldest hypothesized explanations of biological system learning, Hebbian learning 
rules remain relevant in modern times. 

Hypothesizing more machine existence is necessary for other learning 
algorithms that employ information beyond local statistics (e.g., the brain must 
retain a secondary communication network to convey gradient information 
through the network in the backward direction in order to utilize back-propagation 
in a multilayer perceptron). 

7.3.2. Generative Adversarial Networks 
Generative adversarial networks (GANs) are a generative modeling method 
founded on differentiable generator networks. Non-convergence was identified 
as a problem that could possibly cause GANs to underfit by Goodfellow (2014). 

GANs originate from a game theory scenario wherein the generator network 
competes against an opponent; the generator network yields samples x = (z; θ(g)). 
The discriminator network acts as its opponent to differentiate between samples 
produced by the generator and samples that are gathered from the training data, 
and it gives a probability value given by d = (x; θ(d)), which indicates the likelihood 
that x is an actual training sample rather than a model-produced, fake one. 

A zero-sum game, wherein a function v(θ(d), θ(d)) determines the payoff of the 
discriminator, is the easiest method to formulate learning in generative adversarial 
networks. The generator receives its payoff, –v(θ(d), θ(d)). As they learn, the players 
try to increase their own payoff, so that at the conjunction, 

g* = arg arg v(g, d). (13) 

The default choice for v is 
( )g dθ ( )  d x  

 log log (  − d x (14)v( , θ = Ex P data 
log ( )  + Ex Pmodel 

1 ( )). 
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Due to this, the discriminator is driven to learn how to accurately identify 
samples as either fake or real. At the same time, the generator tries to trick the 
classifier into thinking that the generated samples are real. At the convergence, the 
generator’s samples are indistinguishable from the real data, and the discriminator 
produces 1 and 2 for all data here. The classifier is unnecessary at this point. 

The GAN design’s primary motivation is to achieve a learning process that 
does not require a rough estimate or a partition function gradient estimation. At 
the point that maxd v(g, d) is convex in θ(g) (i.e., the point of maximization is 
located directly in the probability density functions), the process is asymptotically 
consistent and will converge (Goodfellow et al., 2016). 

When g and d are represented by neural networks and maxd v(g, d) is not 
convex, learning in GANs can be difficult. In general, it is not guaranteed that 
concurrent gradient descent on two players’ costs will reach equilibrium. Thus, 
consider the value function v (a, b) = ab, in which the first player holds a and 
gains a cost –ab, and the second player holds b and gains a cost –ab. If both 
players in the model make infinitesimally small gradient steps, and players aim 
to reduce their own cost at the cost of the other players, then a and b will be in a 
stable orbit instead of reaching a point of equilibrium at the origin. The equilibria 
for minimax games aren’t local minima of v, but rather points that have the same 
minima of time for the costs of both players, meaning that they represent the 
saddle points of v that are the local minima based on one player’s parameters and 
local maxima based on the other player’s parameters. Instead of ending up on the 
exact saddle point where neither player is able to reduce the cost, both players 
are able to alternate increasing and then decreasing v endlessly. It is unknown the 
extent to which this non-convergence problem impacts GANs. 

An alternate expression of the payoffs, wherein it is not a zero-sum game, with 
the same predicted gradient as the maximum likelihood learning with the optimal 
discriminator, was recognized by Goodfellow (2014). Given enough samples, this 
new formulation of the GAN game should converge because maximum likelihood 
training converges. In practice, this alternative formulation, unfortunately, doesn’t 
appear to improve convergence, potentially because of the high variance of the 
predicted gradient or the suboptimality of the discriminator. 

Another formulation that isn’t zero-sum or parallel to maximum likelihood 
is the best-performing formulation of the GAN game in realistic experiments. 
In this formulation, the generator works to (instead of attempting to lower the 
log probability that the discriminator makes correct predictions) raise the log 
probability of the discriminator making a mistake. This reformulation is 
motivated by the fact that, even in situations where the discriminator rejects 
all generator samples, the derivative of the generator’s cost function according 
to the discriminator’s logits is made to stay big. The stabilization of GAN 
learning continues to be a problem, but as long as the model architecture and 
hyperparameters are carefully selected, GAN learning performs well (Goodfellow 
et al., 2016). 
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A way to simplify the GAN learning problem is separating the generation 
process into multiple levels of detail. Training conditional GANs that learn to 
sample from a distribution p(x|y), instead of just a marginal distribution p(x), is 
a possibility. LAPGAN generators can confuse both discriminator networks and 
human observers, with experimental subjects identified as being real data being 
up to 40% of the outputs of the network (Goodfellow et al., 2016). 

Need to know 
An unusual capability is that the GAN network can fit probability distributions 
that assign a zero probability to the training points. The generator net learns to 
outline a manifold with points that resemble training points instead of specific 
points that maximize the log probability. This means that the model may allot 
a log-likelihood of negative infinity to the test set while denoting a manifold 
that an observer would judge as capturing the essence of the generation task. 
This is neither an advantage nor a disadvantage, and it could also be guaranteed 
that adding Gaussian noise to all generated values through the last layer of 
the generator causes the generator network to allocate non-zero probability 
to all points. To parametrize the mean of a conditional Gaussian distribution, 
generator networks that add Gaussian noise in this way use sample points from 
the same distribution of the generator network. 

7.4. Deep Learning Categories 
The section below discusses different deep learning architectures, explains their 
underlying algorithms, and presents an overview of the three primary groups 
of neural networks- Pretrained Unsupervised Networks, Convolutional Neural 
Networks, and Recurrent/Recursive Neural Networks (see Figure 46). 

Figure 46. Deep neural network, CNN, and RNN 
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7.4.1. Convolutional Neural Networks (CNNs) 
Biological processes are the inspiration behind CNNs, and, subsequently, they 
were created to imitate the brain’s visual cortex’s neural connectivity. They 
require significantly less data in comparison to conventional image classification 
algorithms (that need hand-engineered pre-processed filters). CNNs have 
applications in video and image recognition, medical image analysis, image 
classification, recommender systems, and natural language processing (NLP). 

7.4.2. CNN Structure 
In at least one of their layers, CNNs perform convolution rather than standard 
matrix multiplication (unlike conventional neural networks), and they have two 
distinct attributes: parameter sharing and sparse interactions. Parameters are 
generated based on the relationship between each input and output unit and are 
less efficient in traditional neural networks, and parameter sharing (also called 
tied weights) involves attaching the weight of one input unit to that of another. 
This ensures that in image classification scenarios only one set of parameters 
is learned for every image location. This is different from conventional neural 
networks, wherein weights are untied and individual parameter sets are learned 
at each location. Sparse connectivity is attained by reducing the model’s kernel 
size in comparison to the input. There could be millions of pixels that represent a 
high-resolution image in an image classification application, and the kernel will 
be configured so that it only captures the features’ most revealing image objects 
(such as contrast and edges). To represent the image when the image in question 
has fewer pixels, there is a reduction in parameters, which causes the reduction of 
computational overhead and memory utilization (Goodfellow et al., 2016). 

Need to know 
There are typically three steps performed in each of the convolutional network’s 
layers. First, the layer generates a set of linear activations by parallelly 
performing multiple convolutions. The second step (called the detector stage) 
runs the linear activations through non-linear activation functions to predict a 
non-linear mapping to the output. The third step is changing the output of a 
specific location in the net using the nearby outputs’ statistical values through 
a pooling function that further transforms the layer output. This highlights the 
CNNs convolutional aspect, wherein neighborhood values impact any given 
node. The operation will change the output value based on the maximum value 
of its rectangular neighborhood region in max pooling, whereas other pooling 
functions account for the mean value of the neighborhood region. 

Figure 47 shows a diagram of the layers of a CNN from the input layer to the 
output layer. 

Different layers have different weights applied until the network is capable 
of filtering the data and achieving results; this happens by building feature 
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Figure 47. Convolution neural network. 

maps using various kernels or filters and pooling the main convolutional layer. 
These tiers are each completely attached, and they produce an output. Although 
they are primarily used for visual sorting, CNNs also contain several beneficial 
applications, including action recognition, object tracking, text and language 
detection, and other classifications. The CNN forward propagation implemented 
is illustrated in the equations below, where Ψ is the nonlinearity weight matrix and 
ω is the n × n filter. 

n − 1 n −1 
l l −1⎛

∑ ∑ i a  

⎞ 
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7.4.3. CNN Architectures and Applications 
Multiple CNN architectures have been developed since their initial creation, 
such as ResNet, AlexNet, LeNet-5, and GoogLeNet. These networks use the 
same feature extraction structure with convolutional layers, but differ in feature 
mapping, the number of layers, and their efficiency. Despite CNN’s versatility 
in different problem spaces, there are limitations in their architectures, and they 
tend to get stuck at local minima and overfit, resulting in a higher computational 
time and lower model performance. To help compensate for these limitations, 
optimization algorithms can be considered. 
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7.4.4. Forward and Backward Propagation 
Once data is put into a neural network, it moves by forward propagation through 
several layers. The depth of the network is denoted by the number of layers in 
the network, and it incorporates an input vector, x. Each layer, l, has a size that 
signifies the number of nodes, and the weight matrix is applied to the activation 
function. The inbound data, a, is multiplied by a weight, w, and then that result is 
added to a bias, b. In Equation 19, j is the output node, and it differentiates the jth 
node from the lth layer; k represents the kth node from the prior layer, l – 1,which 

lacts as the input node. Thus, the value wjk  represents the weight relationship of 
the nodes from the two layers. The weight matrix and bias (when first set up) are 
randomly modified through a method called parameter initialization, in which a0 

represents the layer containing the input data vector. 
l l l − 1 lz j = ∑wjkak + bj (19) 

k 

The weighted input of the jth node in the lth layer, zlj , is subsequently fed 
into f, an activation function. 

1 la = f ( )zj j 

The purpose of an activation function is the production of a mapping or an 
output from a real number input to a real number (to figure out if the information 
in the node is useful, i.e., whether or not to activate the node). The activation 
function makes the layered design to the neural network, and it works as a neural 
network layer by executing functions on the initial input data and passing it to 
the next layer of the neural network (activation function). The type of activation 
function used determines the values that are made by the activation function. The 
selection process when developing the network necessitates some experimenting 
to determine which activation function will have the best results. Below are some 
common activation functions (Goodfellow et al., 2016). 

The sigmoid function (or logistic function) maps to real numbers with values 
between 0 and 1. 

1f x( ) =σ x − x( ) = (21)
1+ e

The hyperbolic tangent (tanh) activation function maps to real numbers with 
values that are between −1 and 1. 

x − x(e − e )f x = x (22)( )  tanh( ) = x − x(e + e ) 
The Rectified Linear Unit (ReLU) activation function maps to real numbers 

with values from 0 to ∞. 
f (x) = {0 for x < 0 x for x ≥ 0} (23) 

The Softmax activation function maps to real numbers with values from 0 
to 1. 

i
 ex fi x = 

j x (24)( )
∑ e j 
j = 1 
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The arbitrarily set initialized parameter values are later adjusted during the 
training of the network. The data is fed forward into the network and an output 
vector ŷ arises from the final result. The output vector is then used to compute the 
loss. 

The forward propagation equation is diminished to the simple vectorized 
equation 

Al = f(Wl Al – 1 + b1) (25) 

The training of a network by reducing the loss computed by the cost function, 
based on the input on how far the network is from predicting accurately, is called 
backpropagation. Many cost function types can be utilized, the mean squared 
error being one. 

1∑ 
i 1= 

n 

n 
Algorithm 1: Forward and Backward propagation in CNN 
Input: M-dimensional data, x = [x1, ..., xN]T 

where n is the number of data points. The mean of the square of the difference 
between the actual output given by the network and the desired (or the expected) 
output is considered to be the mean squared error. 

The gradient descent optimization algorithm is utilized in order to minimize 
loss so as to enhance the cost function, while the errors are backpropagated 
towards the front of the network. Gradient descent is the negative of the learning 
rate multiplied by the partial derivative of the cost function with respect to the 
weights. 

∂C
Δ =w −η (27)

∂w 

yi )
2 (26)C
 ( y
 −
=
 i 

Need to know 
The chain rule can be used through backpropagation to calculate the gradients 
all at once (meaning that the gradients are multiplied together to adjust the 
weights for each node accordingly). Backpropagation, in comparison to forward 
propagation, is beneficial in that it minimizes the number of calculations 
necessary to calculate the gradients. Forward propagation suffers from the 
issue that the cost function must be first computed before computing the partial 
derivative of the cost function based on each weight, producing an operation 
that requires a number of parameters, squared, iterations through the network to 
calculate the gradients. To calculate the gradient for each node, the network must 
complete an entire forward iteration. However, one propagation to compute the 
loss and then one backpropagation to update the weights with respect to the 
loss is the only thing needed to update the network with backpropagation. The 
pseudo-code in Algorithm 1 can also be used to understand backpropagation. 



 

 

 

 

   
  

 

   

 

 

 

 

 

153 Deep Learning 

7.4.5. Pretrained Unsupervised Networks 
Due to typically having limited training data, feature extraction and data 
generation are significant applications in deep learning. Different techniques are 
employed to supplement the original dataset r and provide a bigger dataset to 
train the network. Through the use of advanced deep learning architectures (i.e., 
Autoencoders and Generative Adversarial Networks (GANs)), synthetic data 
from the original dataset can be generated in order to advance model learning. 
These architectures both belong to the Pretrained Unsupervised Network (PUN) 
family, which is a deep learning model that employs unsupervised learning in 
order to teach each hidden layer in a neural network to produce a better fit for 
the dataset. To individually train each layer, an unsupervised learning algorithm 
is independently employed, with the input being the previously trained layer, 
and a refinement step is conducted throughout the entire network after the pre-
training on each layer is conducted with supervised learning. Examples of PUNs 
include Autoencoders, Generative Adversarial Networks (GAN), and Deep Belief 
Networks (DBN) (Kelleher, 2019). 

7.4.6. Autoencoders 
For dimensionality reduction, autoencoders learn a representation in which the 
input is equal to the output through the use of unsupervised learning. They have 
three parts: the hidden layer, input, and output. In the hidden layer, the data is 
compressed and then uncompressed through two primary steps of encoding and 
decoding the autoencoder algorithm in order to make an output that is close to 
the input. The mapping function between the input layer and hidden layer is 
represented by the following: 

y = f ( ) = s W x  (28)x (  + b)o 

wherein the input x  is mapped to the hidden layer y, W is the weighted matrix, 
and  is the coding parameter. Subsequently, the following would be the 
decoding function: 

z go y = x W y  ( + b′) (29)= , (  )  ′ 

The reconstruction of input x would be z. 
A variation of feed-forward neural networks with particular partiality for 

computing the reconstruction error of the original input is autoencoders, and 
(post-training) they are utilized as normal feed-forward neural networks for 
activations. Due to the fact that the neural network only uses the original input 
to learn weights instead of backpropagation (which has labels), this feature 
extraction is unsupervised. Autoencoders use unlabeled data in unsupervised 
learning and create a condensed representation of the input data, and they are 
taught to reproduce their own input data. 

7.4.7. Deep Belief Network 
Along with understanding various machine learning networks and their operations, 
it is useful to look at the ways that different networks are used together. Aconnection 
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that is built between each network, referred to as the Deep Belief Network (DBN), 
is able to combine neural networks together in different amalgamations in series 
with one another. It is structured through a widespread layered connection formed 
by linking multiple, smaller unsupervised neural networks, which can be better 
understood by scrutinizing the aspects of a DBN: a Belief Net and a Restricted 
Boltzmann Machine (Kelleher, 2019). 

A Belief Net is made up of randomly generated binary unit layers (ranging 
from “0” to “1”), with a weight function assigned to each of the connected 
layers; the bias and weight factor inputs from the other linked units are the basis 
for the likelihood of having a value of “1.” Layer-by-layer learning allows the 
determination of how a variable in one level could potentially interrelate with 
variables in a different layer. After training, the values of variables can be predicted 
through a bottom-up approach, beginning with a data vector on the bottom layer, 
and then, in the opposite direction, adding the generative weight function. 

A Restricted Boltzmann Machine (RBM) is a stochastic RNN made up 
of randomly generated binary units, with undefined edges between each unit. 
Between each of the hidden units, it has restricted connections because scalability 
is the main limitation of RBM (Goodfellow et al., 2016). 

7.4.8. Recurrent and Recursive Neural Networks 
Recurrent and Recursive Neural Networks are able to send data over time steps. 
4 structures are introduced in this class: Recurrent Neural Network, Recursive 
Neural Network, Long Short-term Memory (LSTM), and Attention. 

Recurrent Neural Network (RNN) 
David Rumelhart first introduced RNN in 1986. Image captioning, natural 
language processing (NLP), video analysis, and music analysis all rely on RNNs. 
Since they actively gather sequential and time dependencies between data, RNNs 
differ from standard neural networks (which assume independence between data 
points). See Figure 48 for more information. 

Parameter sharing is a defining attribute of RNNs. Without it, unique 
parameters are allocated by the model for each data point in a sequence and are 
thus unable to make predictions about variable-length sequences. This limitation is 
shown in natural language processing; as an example, the sentences to be decoded 
are “An incredible cricket player is Sachin Tendulkar” and “Sachin Tendulkar is 
an incredible cricket player.” A perfect model would be capable of recognizing 
‘Sachin Tendulkar’ as the cricket player in both sentences regardless of the words 
positioning, but a conventional multilayer network would fail in this situation due 
to the fact that it would interpret the language with respect to the unique weights 
set for each word in the sentence. RNNs, on the other hand, share weights across 
time steps (i.e., words in a sentence) and would be better suited for the task, 
allowing for more accurate sentence comprehension (Kelleher, 2019). 

RNNs typically supplement the traditional multilayer network architecture 
with cycles that connect neighboring time steps or nodes that make up the network’s 
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Figure 48. Recurrent neural network. 

internal memory (utilized to assess the characteristics of the present data point 
taken from recent data points). The majority of traditional feedforward neural 
networks are restricted to one-to-one mappings for input and output, but RNNs 
are capable of performing many to one (e.g., identifying voice), one to many, and 
many to many (e.g. translating speech) mappings. The mappings between inputs 
and outputs and loss are depicted using a computational graph, and a well-defined 
picture of in-network parameter sharing is given by decomposing the graph into a 
chain of events. A generalized equation for recurrence relationships is 

s(t) = f (st – 1) (30) 

s(t) represents the condition of the system that relies on a prior time-step represented 
by t – 1. This equation can then be rewritten as 

h(t) = f (ht – 1 , x(t) ;) (31) 

where h(t) is utilized to denote the condition and x(t) represents input from one 
specific time instance. h(t) is significant because it represents the task-relevant 
parts of the prior input sequence up to t. 

Previous forms of RNN architectures had versatility and promise but still 
had some limitations; RNN structures can, in theory, retain information for long 
periods, but not necessarily in practice. Conventional RNN networks (sometimes 
called Vanilla RNNs) are predisposed to an exploding gradient and a vanishing 
gradient, phenomena that result from propagation errors that accrue over several 
steps. RNNs can properly reference pieces of information if the gap between 
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references is not too large, but they start to decline when the gap increases, and 
RNNs aren’t always able to link the data. Variations of traditional RNN architecture 
that address these concerns include Truncated Backpropagation Through Time 
(TBPTT) and Long Short-Term Memory (LSTM). TBPTT rectifies exploding 
gradients by setting a limit for the number of steps through which an error can 
continue and LSTM counteracts vanishing gradients by utilizing recurrent edges 
featuring fixed unit weights. 

Need to know 
Encoder-Decoder Recurrent Neural Networks (EDRNN) and Bidirectional 
Recurrent Neural Networks (BRNN) are more examples of RNN networks. 
EDRNN is a framework that permits the RNN to learn how to map an input 
sequence to output sequences of variable lengths, which can be used to decode 
speech along with automating responses to speech. BRNNs differ from traditional 
causal structures used by a majority of other RNN frameworks because they 
make predictions based on the current data point in a sequence in relation to past 
and future data points. These predictions are useful in interpreting the meaning 
of sentences where each word is assessed in the context of all the values of 
the sentence. By accounting for the words on either side of the current word, 
many subtle linguistic dependencies are extrapolated, because the context of 
the sentence can cause words and phrases to have different meanings, and a 
bidirectional view lets the model be more likely to correctly extrapolate this 
context. BRNNs are also helpful in handwriting identification and identifying 
protein sequences from amino acid ordering (proteomics). 

Recursive Neural Network 
Recursive neural networks (not the same as RNNs) are non-linear adaptive models 
utilized to analyze data of variable length that feed the state of the network back 
into itself in a loop and that are capable of processing data structure inputs and are 
mostly suited for sentence and image deconstruction. Their architecture permits 
users to both determine the components of input data and quantitatively assess 
their relationships through a binary tree structure and a shared-weight matrix, 
which permits the recursive neural network to extrapolate from variable-length 
sequences of words and images. Recursive networks also have the advantage that 
for a sequence of length n, the depth (which is given as the number of compositions 
of nonlinear operations) can be taken from n to log(n), which permits efficient 
capturing of long-term dependencies. Recursive neural networks typically have a 
top-down propagation method and a bottom-up feed-forward method. Both these 
mechanisms make up the propagation through a common structure found in the 
majority of recursive networks. 

Two common types of recursive networks are the semi-supervised recursive 
autoencoder (used for deconstructing sentences for NLP applications) and the 
supervised recursive neural tensor (mainly used for computer vision applications). 
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A disadvantage of the majority of recursive neural networks is significant 
computational overhead (more than recurrent neural networks). Recursive 
networks are known for having long training times because they process excessive 
amounts of data, frequently with millions of parameters. Due to this, optimization 
techniques are consistently being created for these architectures, and large-scale 
use of recursive neural networks is enabled through advancements that have been 
made in parallel computing and the ever-growing advancement of processors. 

Attention 
The majority of modern neural network architectures use convolution and 
recurrence mechanisms as well as an encoder-decoder configuration, but an 
additional “attention” mechanism that’s becoming more popular among numerous 
architectures is employed by attention networks. Attention can be thought of as 
focusing attention on the task at hand. For example, when fixing paint in a room, 
attention is placed on the area of the room currently being painted. Attention 
networks focus at different time steps on specific areas. 

Models that use attention show greater prediction accuracy by locating global 
dependencies between data points and disregarding their distance in output and 

Differences between CNN and RNN 
CNN RNN 

CNN is applicable for sparse data like 
images. 
CNN is considered a more powerful tool 
than RNN. 
The interconnection consumes a limited 
set of input and generates a limited set of 
output according to the input. 
CNN is a clockwise and feed-forward 
oriented artificial neural network with a 
variety of multiple layers of perceptrons 
which is specially designed to utilize the 
minimum amount of pre-processing. 
CNN’s are special for video processing and 
image processing. 

CNN follows interconnectivity patterns 
between the neurons which are based 
on the visual cortex of animals, where 
the neurons are organized so that they 
are responsible for overlapping areas 
throughout the visual field. 

RNN is applicable for temporary data and 
sequential data. 
RNN has fewer features and low 
capabilities compared to CNN. 
RNN can allow arbitrary input length and 
output length. 

RNN works on a loop network which uses 
its internal memory to handle the arbitrary 
input sequences. 

RNN works primarily on time series 
information on the past influence of the 
consumer. Analyzing if the user is going to 
talk next or not. 
RNN works primarily on speech analysis 
and text analysis. 
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input sequences, and attention mechanisms also make calculations by the neural 
network more parallelizable. They are usually utilized along with convolution and 
recurrence, but, in a minimal portion of neural network architectures, attention 
may take the place of convolution and recurrence schemes. This architecture 
uses an attention scheme called intra-attention or self-attention, wherein multiple 
relationships are extrapolated between a data sequence’s different positions. Thus, 
the Transformer’s attention mechanism produces a more robust model creation by 
finding more patterns from input data. 

7.5. Deep Learning based Highway Safety Studies 
Deep learning has been widely used in highway safety research. Table 15 provides 
a list of studies which used different deep learning algorithms in different highway 
safety problems. 

Table 15. Deep learning based highway safety studies 

Algorithm Research Area Studies 

DL Model Patterns of Contributing 
Factors in Crashes 

Dong et al. (2018) 

Crash Injury Analysis Das et al. (2018) 

Safety Information 
Narratives 

Dabiri and Heaslip (2019) 

Railroad Safety Sheikh et al. (2004); Xia et al. 
(2018) 

Pipeline Safety Mohamed et al. (2015); Layouni et 
al. (2017); Wu et al. (2017); 

Driver Behavior Zhu et al. (2018); Kwon and Cho 
(2020) 

CNN Crash Frequency 
Analysis 

Wu and Hsu (2021) 

Pedestrian Safety Gauerhof et al. (2020); Li et al. 
(2020); Pourhomayoun (2020); 
Billones et al. (2018) 

Truck Safety Alsanad et al. (2020); Dai et al. 
(2015); Haj Mosa et al. (2016) 

Pipeline Safety Wu et al. (2019) 

Intersection Safety Hu et al. (2020) 

Roadway Departure 
Safety 

Zhang et al. (2018) 

Motorcycle Safety Siebert and Lin (2020) 
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R-CNN Real-Time Risk Formosa et al. (2019) 
Assessment 

Incident Detection Wu et al. (2020) 

Pedestrian Safety Zhang et al. (2016) 

LSTM Real-Time Risk Bao et al. (2019) 
Assessment 

Railroad Safety Xia et al. (2018) 

Maritime Safety Liu et al. (2020) 

Driver Behavior Xie et al. (2019) 

Feedforward Neural Crash Injury Analysis Assi et al. (2020) 
Network 

MLP Intersection Safety Hu et al. (2020) 

Deep Neural Network Work Zone Safety Chang et al. (2020) 

Multilayer Feedforward Work Zone Safety Chang et al. (2020) 
Neural Network 

Resources 
Readers can consult the following curated lists of deep learning resources: 
https://github.com/ChristosChristofidis/awesome-deep-learning 
https://github.com/terryum/awesome-deep-learning-papers 
https://github.com/endymecy/awesome-deeplearning-resources 

Example Problem 1 
Show a reproducible example of application of different DL algorithms in a crash 
count data analysis problem. 
Solution: The following code chuck shows the replication code for DL algorithm 
application in crash count data analysis. 

Example Problem 1 (Code Chunk 1) 
## Please check my RPUBS for additional codes: https://rpubs.com/subasish 

setwd("~folder location") 
dat= read.csv("TAHIR_rwd1.csv") 
table(dat$HwyClass) 
head(dat) 

dat1= subset(dat, HwyClass=="Rural Two-Lane") 
dim(dat1) 

(Contd.) 

https://www.rpubs.com
https://www.github.com
https://www.github.com
https://www.github.com
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## 75% of the sample size
	
smp_size <- floor(0.75 * nrow(dat1))
	

## set the seed to make your partition reproducible
	
set.seed(123) 
train_ind <- sample(seq_len(nrow(dat1)), size = smp_size) 

train <- dat1[train_ind, ] 
test <- dat1[-train_ind, ] 

dim(train) 
dim(test) 

train_df= train[, c(4, 5, 7:11)] 
test_df= test[, c(4, 5, 7:11)] 
library(keras) 
library(tfdatasets) 
library(tensorflow) 
library(tidyverse) 
library(dplyr) 

spec <- feature_spec(train_df, Total_Crash ~ . ) %>% 
step_numeric_column(all_numeric(), normalizer_fn = scaler_standard()) %>% 
fit() 

spec 

input <- layer_input_from_dataset(train_df %>% select(-Total_Crash)) 

output <- input %>% 
layer_dense_features(dense_features(spec)) %>% 
layer_dense(units = 64, activation = "relu") %>%

 layer_dense(units = 64, activation = "relu") %>%
 layer_dense(units = 1) 

model <- keras_model(input, output) 

summary(model) 

model %>% 
compile(
 loss = "mse",

 optimizer = optimizer_rmsprop(),

 metrics = list("mean_absolute_error")


 ) 

build_model <- function() {

  input <- layer_input_from_dataset(train_df %>% select(-Total_Crash))
	

http://www.floor(0.75
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output <- input %>% 

layer_dense_features(dense_features(spec)) %>% 

layer_dense(units = 64, activation = "relu") %>%


 layer_dense(units = 64, activation = "relu") %>%

 layer_dense(units = 1) 


model <- keras_model(input, output)

 model %>% 
compile(
 loss = "mse",

 optimizer = optimizer_rmsprop(),

 metrics = list("mean_absolute_error")


 )

 model
 

} 

# Display training progress 
print_dot_callback <- callback_lambda(
 on_epoch_end = function(epoch, logs) {

 if (epoch %% 80 == 0) cat(„\n“)

 cat(".")


 } 
) 

model <- build_model() 

history <- model %>% fit(
  x = train_df %>% select(-Total_Crash),
  y = train_df$Total_Crash,
 epochs = 200,
 validation_split = 0.2,
 verbose = 0,
 callbacks = list(print_dot_callback) 

) 
library(ggplot2) 
plot(history)+theme_bw(base_size=16)
	

test_predictions <- model %>% predict(test_df %>% select(-Total_Crash))
	
test_df$pred= test_predictions[ , 1]
	
sum(test_df$Total_Crash)
	
sum(test_df$Total_Crash)
	

train_predictions <- model %>% predict(train_df %>% select(-Total_Crash))
	
train_df$pred= train_predictions[ , 1]
	

sum(train_df$Total_Crash)
	
sum(train_df$Total_Crash)
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Figure 49 goes over the performance of training and validation data. The 
training data has a downward slope for both the graphs of loss and mean_absolute_ 
error, and the validation data has a positive slope for both. 

Figure 49. Performance of training and validation data. 

Chapter Conclusion 
This chapter provides details on some of the core and relevant deep learning 
algorithms. It documents topics such as LSTM, Monte Carlo sampling, Boltzmann 
machine learning, generative adversarial networks, and convolutional neural 
networks. It also provides descriptions on forward and backward propagation, 
pretrained unsupervised networks, autoencoders, deep belief networks, and 
recurrent and recursive neural networks. An example problem is also provided at 
the end of the chapter. 
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8 

Natural Language Processing 

8.1. Introduction 
The most frequently used data is text, and it makes up over 50% of unstructured 
data. Some examples are chat conversations, news, tweets or posts on social 
media, reviews of products or services, blogs and articles, and patient records in 
the health care sector. A relatively new example is the speech of voice-activated 
bots such as Siri and Alexa. Natural Language Processing should be utilized 
to gain noteworthy and actionable insights from text data and to discover its 
potential, along with deep learning and machine learning. However, what, exactly, 
is Natural Language Processing (NLP)? Machines/algorithms are not able to 
comprehend text or characters, so it is imperative to translate it into a machine-
understandable format (i.e., numbers or binary) in order to complete any kind of 
text data analysis. Natural language processing allows machines to understand 
and interpret human language (in the form of text data). 

Structured data is usually organized in databases, particularly relational 
databases. The high-level organization, typically represented by tables, enables 
easy and efficient processing, for instance, searching or filtering. Text data is 
usually considered to be unstructured. A newspaper article, e-mail, SMS, or a 
recipe in a cookbook definitely do not look like a table. However, because the 
texts are normally generated using the grammar of a natural language and rules of 
a certain linguistic style, they have some kind of structure. There exists another 
form of data between the structured and unstructured. It is the data that has some 
structure, but this structure does not conform to what is normally expected from 
structured data. It means that this structure cannot be directly converted to the 
structure of a relational database (tables). This data is known as semi-unstructured. 
Textual documents, especially those on the web, are a typical representation of 
this. In the semi-structured form, the structure is usually expressed by using some 
tags or other marks which identify and separate pieces of data and, thus, enable the 
creation of some data records and their relationships, which is often hierarchical 
(a tree of elements). 
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8.2. Text Mining 
Finding useful knowledge in a collection of text documents involves many 
different steps. To arrange them into a meaningful order, one might look at the 
general text mining process. It includes these steps: 
•		Defining the problem: This step is actually independent of any actions which 

may subsequently be taken. Here, the problem domain needs to be understood 
and the questions to be answered need to be defined. 

•		Collecting the necessary data: The sources of texts containing the desired 
information need to be identified and the documents collected. The texts 
can come from within a company (internal database or archive) or from 
external sources – for example, from the web. In this case, web scrapers need 
to be frequently implemented to directly grab the content of the web pages. 
Alternatively, the API of some web-based systems can be used to retrieve the 
data. After retrieval, texts are stored so that they are ready for further analysis. 

•		Defining features: Features that well characterize the texts and are suitable 
for the given task need to be defined. The features are typically based on the 
content of the documents. A very simple approach, bag-of-words with binary 
attribute weighting, takes every word as a Boolean feature. Its value indicates 
whether or not the word is in a document. Other methods might use more 
complicated weighting schemes or features that are derived from the words 
(modified words, combinations of words). 

•		Analyzing the data: This is the process of finding patterns in the data. 
According to the type of task to be solved (e.g., classification), a specific model 
or algorithm is selected, and its properties and parameters are defined. Then, the 
model can be applied to the data and the solved problem’s solution can be found. 
To answer a specific problem, more models are usually available. The choice is 
not explicitly given in advance. The models have different characteristics that 
influence the data mining process and its result. The model can be (white box) 
or does not have to be (black box) well interpretable by a human. Some models 
have higher computational complexity than others. According to the utilization 
of the model, fast creation can be preferred over fast application or vice versa. 
The suitability of a model is often strongly dependent on the data. The same 
model can provide excellent results for one data set while it can completely fail 
for another. Thus, selecting a proper model, finding the right structure for it, 
and tuning the parameters often requires a lot of experimental effort. 

•		Interpreting the results: Here, some results are obtained from the analysis. 
There is a need to carefully look at them and relate them to the problem one 
wanted to solve. This phase might include verification and validation steps in 
order to increase the reliability of the results. 

Some of the words that are too common do not usually contribute (or contribute 
only negligibly) to achieving a certain goal. For example, in the query ‘Find a hotel 
in Dhaka’ (in Bangladesh) submitted to a web search engine, the word ‘a’ does not 
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influence what will be retrieved by the search engine. The retrieved results will 
be the same no matter if ‘a’ is or is not in the query. The reason is simple – almost 
all documents written in English contain at least one occurrence of the word ‘a.’ 
On the other hand, the word Dhaka is very important because without it the search 
engine would return information about hotels in many other locations. 

Need to know 
Tokenization is the process of splitting a document into pieces of text known 
as tokens. These tokens are often the words contained in the text. In most 
European languages where the words are space delimited, the task seems to be 
quite simple – split the text at the places where there are white spaces. In some 
other languages, like Chinese, where there are no spaces between words, the text 
needs to be analyzed in greater depth. 

A word is the smallest lexical unit that can be used in isolation. A morpheme 
is the smallest unit of a word that carries some semantic or grammatical meaning. 
Morphemes typically include prefixes, suffixes, and a root. For example, the word 
unexpected consists of three morphemes: a prefix un-, a root expects, and a suffix 
-ed. Some morphemes can be used in a language by themselves (expect), while 
the others can’t (un, ed). The former is known as free forms, the latter as bound 
forms. 

Stems are parts of words that carry the basic meaning. When a stem consists of 
a single morpheme, it is identical to the root. Free stems can occur alone whereas 
bound stems cannot. Words are formed in a word-formation process using several 
rules. Inflection never changes the category of a word (e.g., a noun will be still a 
noun after adding a suffix) while derivation can change the category (a noun can 
become an adjective after adding a suffix). 

It is obvious that the semantic meaning of some words, when created from 
the same stem, is very close. When a newspaper article contains one of the words 
sport, sports, sporting, sported, or sporty, it is quite likely to be an article from 
the sports category. However, for a computer, all five words are different, and to 
assign an article correctly to the category, all five words need to be connected to 
it – for example, in a classification rule. 

The goal of syntactic parsing is to find out whether an input sentence is in a 
given language or to assign the structure to the input text. In order to assign the 
structure, the grammar of a language is needed. Since it is generally not possible 
to define rules that would create a parse for any sentence, statistical or machine 
learning parsers are very important. Complete parsing is a very complicated 
problem because ambiguities often exist. In many situations, it is enough to 
identify only unambiguous parts of texts. These parts are known as chunks, and 
they are found using a chunker or shallow parser. Shallow parsing (chunking) is 
thus a process of finding non-overlapping groups of words in the text that have 
a clear structure. Figure 50 illustrates the steps of NLP analysis, and Figure 51 
shows examples of stemming and lemmatization. 
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Figure 50. Steps of NLP analysis. 

Figure 51. Stemming and lemmatization. 

8.3. Topic Modeling 
8.3.1. Latent Dirichlet Allocation 
The latent Dirichlet allocation (LDA) model was created by Blei et al. (2003) to 
address issues of the probabilistic latent semantic analysis (PLSI) model, and it has 
since become a very popular topic model. The LDA model uses a K-dimensional 
latent random variable, which follows the Dirichlet distribution in order to show 
the topic mixture ratio of the document, to improve upon the PLSI model. 

The LDA model is better able than other models to match the semantic 
conditions due to it having greater descriptive power. The LDA model’s parameter 
space is simpler than the PLSI model, and the said space isn’t pertinent to LDA’s 
number of training documents. Subsequently, it is a hierarchical model with a 
stable structure that avoids any overfitting scenario. Due to this, the LDA model 
is viewed as a complete probability generative model. 

Let V be the set of distinct words that appear at least once in a bag of words Du 
for a user u ∈ U, and let U and Du represent the set of users and the bag of words 
created by a user u ∈ U, respectively. Z is utilized by the user to represent the set 
of latent topics in which a parameter is how the number of topics is given. Each 
user u has unique preferences for the topics denoted by a probabilistic distribution 
θu , which is a multinomial distribution over Z in the generative process of LDA. 
Also, φz denotes each topic z which has a multinomial distribution over V. 
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The visual representation of the LDA model is shown in Figure 52. The LDA 
generative process can be defined as: 

 
• Consider a multinomial distribution φ ~ Dir(β) for every topic z ∈ Z.z B 
• Consider a multinomial distribution φ ~ Dir(α) for every user u ∈ U.u 
• For every word w ∈ Du,     

• consider a topic z~Multinomial θu , . 8.8 
• consider a word w~Multinomial ( ) .φu      

The LDA model presumes that the multinomial distributions φz and θz
are drawn from Dirichlet distributions (conjugate prior distributions), whose   
parameters are respectively given as β and α . Each word w in Du is assumed 
to be selected by first drawing a topic z with following the topic preference b b
distribution θu and then choosing a word w from the corresponding 

 u 
distribution θz of the chosen topic z. The probability of a word w being 
generated by a user u according to the LDA model is estimated as: 

Dir( ; ) Σ Z θ φ  dθ α  | |  θ ,∫ u ( z =1 uz zw ) u (1) 

8.3.2. Structural Topic Model (STM) 
The STM is typically used to conduct textual analysis in linguistics and political 
science. STM and LDA are both Bayesian generative topic models that presume 
that each document is a mix of corpus-wide topics and that all topics are a 
distribution over words. STM advantages include document-level structure 
information presented to impact topic content (the distribution in topics of the 
keywords) and topical prevalence (i.e., topic proportions by document frequency). 
The STM highlights the suitability determination of studying how covariates 
impact text content (Hu et al., 2019). 

The technical variations between the frameworks of the LDA and STM 
models are presented in Figure 52. Each node is signified by a variable that is 
marked by the role it plays in the data generating method. Shaded nodes are 
observed variables; the rectangles indicate replication. Unshaded nodes are 
hidden variables: k ∈ {1, 2,…, K} catalogs each topic based on the user-selected 
number of topics, K n ∈ {1, 2, …, N} catalogs words in a document, and d ∈ {1, 
2, …, D} represents the document indexes. Figure 52 also shows that in LDA 
and STM only node w (i.e., document’s words) can be observed. The purpose of 
these two models is to identify the hidden topic information from the observed 
words, W, and output two critical matrices, topic-word distributions, β, and per-
document topic proportions, θ. Additionally, it shows that LDA and STM have 
similar frameworks with three components: topical prevalence parameters, the 
core language model, and consideration of topical content parameters. LDA and 
STM have the same components of the core language model, where θd and βd,k,v 
represent the hidden per-document topic proportions and per-corpus topic-word 
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distributions, respectively. wd,n represents the observed term, which is concluded 
from words indexed by v ∈ {1, 2, …, V}. zd,n represents the hidden topic assignment 
of each observed term. The two-step generative method for each document d in 
the corpus is followed by the core language model of STM and LDA. 
•		Step 1: Randomly select a distribution for document d over topics θd. 
•		Step 2: In the document d for each word wn, (1) from the distribution of topics 

θd in Step 1, select a random topic zd,n , and (2) randomly select a word wn from 
the matching distribution of the vocabulary βd,k,v, where k = zd,n. 

Figure 52. LDA and STM frameworks. 

The topical prevalence parameters (i.e., those that impact document-topic 
proportions θd) and topical content parameters (i.e., those that impact topic-word 
distributions βd,k,v) distinguish STM from LDA. Previous structures defined by 
generalized linear models parameterized by document-specific covariates X(Y) 
replace the topical prevalence (content) parameters of STM, whereas those of 
LDA are specific shared prior Dirichlet parameters α(η) (Hu et al., 2019). 

8.3.3. Keyword Assisted Topic Model 
Suppose there are a total of D documents, and that all d documents have Nd words 
and contain a total of V unique words; in document d, where Wd = {wd1,wd2,...,wdNd} 
denotes the set of all words utilized in document d, let the ith word be represented 
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by wdi. The topic of interest is recognizing the topics underlying each document. 
Two groups of topics are considered: keyword topics, which are the main topics 
of interest to researchers, and no-keyword topics, or topics with no keywords. 
Assume there is K number of topics, and that the first K̃ of them are keyword 
topics (i.e., K̃ ≤ K), and that for every keyword topic k, a set of Lk keywords, 
represented by Vk = {vk1,vk2, ..., vkLk} is given. The same keywords can be utilized 
for multiple keyword topics. Keywords are part of a total V distinctive words. 

Need to know 
Differences in STM compared to LDA are uncovered by the preceding 
algorithm differences, ensuring that, in theory, STM is more applicable in many 
research areas. STM pushes for document-level covariates (e.g., if reviews are 
negative or positive) to be added to the topical prevalence parameters which 
impact document-topic proportions, it encourages the addition of document-
level covariates to the topic content parameters which impact the topic-word 
distributions, and it is an expansion of the associated topic model (wherein 
topics can be associated with each other) which allows the correlations among 
topics to be examined easily 

The following data generation process is the basis for this model. For every 
word i in document d, the latent topic variable zdi ∈ {1, 2, ..., K} must be drawn 
out of the document’s topic distribution, 

zdi ~indepCategorical(θd ) 

where θd is a K-dimensional vector of topic probabilities for the document d with 
Σ
Kk =1 θdk = 1. The document-topic distribution θd is depicted by the relative ratio 
of each topic in document d. 

If a no-keyword topic is the sampled topic, then one draws the word wdi from 
the associated topic word distribution, 

wdi |zdi = k ~ indep Categorical(Φk) for k ∈ {K̃ + 1, K̃ + 2, ..., K} 
Vwhere for topic k with Σv = 1, Φk is a V-dimensional vector of word =1 Φkv 

probabilities. The relative frequency of each word within topic k is represented by 
this probability vector. 

If there are keywords in the sampled topic, however, one first draws a 
Bernoulli random variable sdi with success probability πk for word i in document 
d. If the said variable equals 1, then from the set of keywords word wdi is drawn 
for the topic using probability vector Φ̃k. If the variable equals 0, however, then 
one samples the word from the standard topic-word distribution 

sdi|zdi = k ~ indep Bernoulli(πk) for k ∈ {1, 2, ..., K̃} 

wdi|sdi, zdi = k ~ indep {Categorical(Φk) if 

sdi = 0 Categorical(Φ̃k) if sdi = 1 for k ∈ {1, 2, ..., K̃} 
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where πk is the likelihood of sampling from the set of keywords and Φk̃ is a V 
dimensional vector of word probabilities for the set of keywords of topic k, i.e., 
Vk. Subsequently, Lk of V elements in Φk̃  have positive values and the others are 
0 (Das, 2021). 

A mixture of two distributions is the foundation of the keyATM, one that 
has positive probabilities for all words and one that has positive probabilities for 
keywords only. This structure produces the previous means for the frequency 
of user-selected keywords given a topic larger than those of non-keywords in 
the same topic, and the previous variance is also greater for the frequency of 
keywords given a topic than it is for non-keywords, encouraging the keyATM to 
place greater importance on keywords, a priority while helping the model learn 
about the exact degree to which keywords are important for any particular topic 
from the data. 

8.3.4.	 Text Summarization 
Text summarization is the procedure of automatically creating a condensed 
version of a text with information that is useful to the user. The user’s needs 
determine the information content of a summary. 

Sentence’s simple heuristic features (like their overall word frequency, 
their position in the text, or some significant phrases that indicate the sentences’ 
importance) are the basis for early research on extractive summarization. The 
inverse document frequency, or IDF, is a measure that is frequently utilized to 
evaluate the significance of the words within a sentence, and is defined by the 
formula: 

idf 
  i =
log log
 
⎛
 
⎜
⎝
 

N 

ni 

⎞
 
⎟
⎠


(2)
 

Where ni is the number of documents in which word i occurs and N is the 
total number of the documents in a collection. The words likely to occur in almost 
all of the documents (e.g., articles “the” and “a”) have idf values closer to zero, 
whereas rarer words (e.g., proper nouns, medical terms) tend to have higher 
idf values. 

More innovative techniques use anaphora resolution or synonyms of the words 
to consider the relationship between the discourse structure or sentences. As more 
training data becomes available and more features are  proposed, researchers have 
attempted to integrate machine learning into summarization. The summarization 
approach evaluates the centrality of each sentence within a cluster and extracts the 
summary from the most central ones. 

8.4.	 Sentence Centrality and Centroid-based 
Summarization 

The centrality of the words contained in a sentence is frequently defined by the 
centrality of a sentence. A method that is often used to assess word centrality 
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looks at the center of the document cluster in a vector space. The center of a 
cluster is a pseudo-document consisting of words with tf × idf scores that are over 
a previously defined threshold, wherein the frequency of a word in the cluster is 
tf, and idf values are generally calculated over a similar genre and a significantly 
larger data set. 

8.5. Centrality-based Sentence Salience 
A cluster of documents can be looked at as a network of related sentences. 

The cosine between two corresponding vectors is how two sentences’ 
similarity is defined: 

2Σ ∈ , tf tf , (idfw x y w x w y, w )
idf-modified-cosine(x, y) = (3)

2Σ xi∈x (tf xi ,xidfxi ) × Σ y yi ∈ (tf y yi , idf yyi )
2 

in which tfw,s is the number of occurrences of the word w in the sentence s. 

8.5.1. Eigenvector Centrality and LexRank 
Each edge has been treated as a vote to figure out the overall centrality value of 
each node when computing degree centrality. 

The quality of the summaries may be negatively impacted by degree centrality 
in some instances, wherein multiple undesirable sentences vote for each other and 
therefore raise their centrality. 

This idea is formulated by considering how every node has a centrality value 
and distributing this centrality to its neighbors. This can be expressed by the 
equation 

( )  
p(u) = ∑ 

p v  
(4)vdeg( )v∈adj u[ ]  

where the set of nodes adjacent to u is adj[u], the centrality of node u is p(u), 
and deg(v) is the degree of the node v. Equation 4 can be written in matrix 
notation as 

p = BT p (5) 
or 

TB = pT (6) 
where the adjacency matrix of the similarity graph is employed to obtain matrix B 
by dividing each component by the equivalent row sum: 

A i  j( ,  )
B(i, j) = (7)Σk A i  k( ,  ) 

A row sum equals the degree of the corresponding node; all row sums 
are nonzero since every sentence is similar at least to itself. pT being the left 
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eigenvector of the matrix B with the corresponding eigenvalue of 1 is stated 
in Equation 7. Some mathematical foundations are necessary to ensure that an 
eigenvector such as this exists and can be identified and computed. 

8.5.2. Continuous LexRank 
Using the strength of the similarity links shows one improvement over LexRank. 
If the cosine values are directly used to build the similarity graph, there is typically 
a much denser but weighted graph. The corresponding transition matrix’s row 
sums can be normalized to give a stochastic matrix, and the subsequent equation 
is a modified version of LexRank for weighted graphs: 

modified co ine u v  d idf  − − s  ( , )  + − d ) p vp(u) = (1 ∑ ( )  (8)N v adj u Σ ∈adj v [ ] idf  − modi ffied − s  ( , )  co ine z  v ∈ [ ]  z 

8.6. NLP Based Highway Safety Studies 
NLP has been widely used in highway safety research. Table 16 provides a list of 
studies which used different NLP algorithms in different highway safety problems. 

Table 16. NLP based highway safety studies 

Algorithm Research Area Studies 
Heuristic Method Crash Record Text Mining Nouioua (2008) 
Rudimentary NLP 
Techniques 

Railway Safety Hughes et al. (2016) 

CNN and RNN Twitter-based Traffic Incident 
Detection 

Dabiri and Heaslip (2019) 

Topic Modelling Driver Behavior McLaurin et al. (2018) 
Motorcycle Safety Das et al. (2021) 

Speech Recognition Airline Safety Sun and Tang (2021) 

Text Mining 
Airline Safety 
Traffic Safety Culture 

Sun and Tang (2021) 
Sujon and Dai (2020) 

Public Opinion of Autonomous 
Vehicles 

Das et al. (2019) 

Content Analysis Sustainability Analysis Serna et al. (2017) 

Resources 
Julia Silge’s blog is an excellent place to get some real training on text mining:
 
https://juliasilge.com/blog/
 
Her book (Text Mining with R) is also a great resource:
 
https://www.tidytextmining.com/
 

https://www.tidytextmining.com
https://www.juliasilge.com
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Case Study 1 
It is anticipated that racism is a critical issue in tourism related reviews. Apply 
NLP tools to identify trends and patterns from these reviews. 
Solution: 
The data has been collected from a Li et al. study (2020). For this case study, U.S. 
based comments and reviews were selected. A total of 1,333 reviews (with the 
highest number of reviews from Nevada, i.e., 294) were included in the dataset. 
Heatmaps of the states by the number of reviews/comments for four different 
timelines: 1) 2007-2015, 2) 2016, 3) 2017, and 4) 2017-2018 are shown in Figure 
53. Nevada was the state with the most participants in each of the time periods; 
from 2007-2015 Nevada had approximately 150 reviews, in both 2016 and 2017 
it had approximately 40 reviews, and from 2018-2019 the state had approximately 
60 reviews. New York (98 reviews), California (83 reviews), Texas (76 reviews), 
Georgia (75 reviews), and Tennessee (70 reviews) also had a large number of 
reviews. The number of participants increased in the other states from the first 
time period (2007-2015) to the most recent time period (2018-2019) in several 
states, including Alabama, California, Florida, New York, Tennesee, and Texas. 

Figure 53. Number of reviews by state. 
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Three venues were the basis for the reviews: attraction (855 reviews), 
restaurant (309 reviews), and hotel (169 reviews). The top three states for the 
number of reviews by attraction are Nevada (288 reviews), New York (75 
reviews), and Tennessee (56 reviews). The top three states for hotel-related and 
restaurant-related reviews, respectively, are Florida (25 reviews), California 
(24 reviews), and Texas (18 reviews) and California (36 reviews), Texas (28 
reviews), and Florida (25 reviews). It is difficult to show this information in a 
single visualization. Alluvial plots could be suitable to show in between and 
within the distribution of the categorical information; the height of the black bars 
indicates the within proportions, and it clearly shows that Nevada and attraction 
are two major contributors in the state and venue type variables. The in-between 
proportions of the state and venue type are shown by the links and the width of 
the links. 

Co-occurrence Analysis 
An importation step of network analysis is co-occurrence analysis. The co
occurrence of the words in network visualization is shown in Figure 54. There are 
nine different clusters that contain a wide array of topics, with three visible major 
clusters (cluster 1 is related to Las Vegas (Nevada)-related trip reviews; cluster 2 
is associated with ‘museum’-related trip reviews; cluster 3 is mostly associated 
with the experience-related reviews and comments and some of the racism-
related keywords, e.g., black guy, crude humor, dirty joke, racist humor, and 
racial humor). Several race/racial related topics are in cluster 3; these keywords, 
however, are generated based on the black history museum-related reviews and 
include keywords such as racial equality, mass incarceration, Nazi, Hitler, pain, 
genocide, enslavement, death, bigot, lynching, and victim. 

Figure 54. Co-occurrence of the words in the review documents. 
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Figure 53 is used to generate Figure 54 by using clusters to show the keyword 
distribution. The co-occurrence of the keywords and their association patterns is 
better understood through the use of these plots. 

Emotion Mining 
An initial analysis of corpus-level (a set of texts or documents) emotion mining 
was first conducted by this study. The NRC Emotion Lexicon contains eight basic 
emotions (anticipation, surprise, joy, trust, anger, disgust, fear, and sadness) as 
well as a list of words and their positive and negative sentiment associations based 
on three prominent studies. The R package ‘sentimentr,’ with the functionality of 
producing proportional measures by 16 emotion clusters (eight basic emotions 
and eight negated emotions), was used in this study to perform emotion mining. 
Figure 55 shows this package’s distribution of the emotion patterns by 16 
clusters. In comparison to the six other emotion types, joy and trust show higher 
emotional propensities. This study (based on the proportional emotion measures) 
ranked the reviews based on two emotion groups: 1) anger-disgust and 2) fear-
sadness. The topic models were developed by the top 500 reviews, which the next 
section discusses. 

Figure 55. Distribution of the topics based on eight sentiments and their negations. 

Anger Disgust Corpora 
Value w denotes a vector of N words in document i (considering a total of M 
documents) in LDA. Each document is a configuration of topics represented by 
some topic distribution θ over the document i due to the fact that a topic z is 
assigned to each word wj of a document i. Low α values indicate that the topics 
are sparsely distributed in the documents while high α values indicate that each 
document has a relatively even distribution of the topics. Similarly, low β values 
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signify a sparse distribution of words in each topic while a high β value represents 
that topics are relatively distributed in the vocabulary of words. 

Six topic models based on the ‘anger disgust’ corpora are shown in Figure 
56. Topic 1 and Topic 4 are hotel and food quality-related. The rest of the topics 
involve some form of ‘racist/racism.’ Topic 2, Topic 3, and Topic 5 include the 
term ‘museum.’ Topic 2 and Topic 3 represent that these topics are related to 
‘black history’ and ‘museum.’The usage of racism and slurs in hotels, restaurants, 
and other places is represented in Topic 5. The usage of racist terms or jokes in 
tourism-related reviews is also shown in Topic 6. 

Figure 56. Topic models from ‘anger-disgust’ corpora. 

Fear Sadness Corpora 
Six topic models based on the ‘fear sadness’ corpora are shown in Figure 57. 
Topic 3, Topic 4, and Topic 5 are related to ‘museum.’ The usage of ‘racist’ terms 
in ‘attraction’ (e.g., music festival)-related reviews is represented in Topic 1. 
Hotel-related terms are in Topic 2. The usage of ‘racism’-related terms in the 
reviews associated with different sectors of tourism is displayed in Topic 6. 

Figure 57. Topic models from ‘fear-sadness’ corpora. 
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Interactive Topic Model Visualization 

A basic compact technique that is thorough is interactivity. It is an important 
technique for creating LDA visualizations to account for various challenges. The 
‘LDAvis’ package was utilized in this study to create interactive LDA models 
based on two highlighted topics (museum and racism) which are displayed in 
Figure 58 and Figure 59. A weblink was developed in this study to demonstrate 
these interactive plots. Two sections are contained in the plots: 

• A worldwide perspective of the topic model (shown in circles) in a two-
dimensional space is represented in the left section. The space between topics 
and their projections of the inter-topic distances onto two dimensions using 
multidimensional scaling is the basis for the centroids of the topics. In order to 
organize the topics by decreasing prevalence, the areas of the circles are used 
to encode each topic’s overall prevalence. The nearer the distance is, the higher 
the relevance. For example, topic 3, topic 11, and topic 16 are related to the 
‘museum’ topic, and topic 1, topic 2, topic 4, topic 5, topic 7, topic 9, and topic 
17 are ‘racism’ specific topics. 

• A horizontal bar chart highlighting the top 30 most significant terms for a 
specific topic (based on hovering over the circles) is highlighted in the right 
section. To understand the meaning of each topic by looking at the main terms 
in it, one must pinpoint what the most important terms are in the topic. The 
corpus-wide occurrence of a particular term and its topic-specific occurrence 
are exemplified by a pair of overlaid bars. 

Figure 58. 20 topic models in two-dimensional space 
(3, 11, 16 topic models are ‘museum’ specific topics). 
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Figure 59. 20 topic models in two-dimensional space 
(1, 2, 4, 5, 7, 9, and 17 are ‘racism’ specific topics). 

• The segments of this visualization are inter-connected. The visualization 
emphasizes the most helpful terms (on the right) for understanding the topic 
selected by the user (on the left). Additionally, the conditional distribution over 
topics (on the left) is revealed by picking a term (on the right). These capabilities 
allow for users to efficiently examine many topic-term relationships. 

Case Study 2 
YouTube is an important source of conflict data. Provide an example by showing 
how YouTube data can be used to understand a transportation safety issue. 
Solution: 
To collect the ‘bicycle hitting pedestrian’-related videos in YouTube, the following 
terms were used to develop a detailed list of keywords: “walking biking collision,” 
“biker hits ped,” “bicyclist hit pedestrian,” “pedestrian bike crash or incident 
or accident,” “pedestrian bicyclist crash or incident or accident.” “Tuber,” an 
open-source R software package, was employed to automate the data collection 
(extraction of the video information along with related comments) process. 
Another online YouTube comment scrapper has also been used. To perform this 
analysis, several open-source R software packages were used. Figure 60 shows a 
flowchart of data collection and analysis. 

Table 17 gives the top ten most viewed video descriptive statistics. 26,122 
was the final number of comments after the removal of non-English and redundant 
comments. One video in the top ten videos had an earlier release (in 2010). The 
total views for all the videos was 6,799,938 (mean: 679,994, standard deviation: 
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1,098,276). On all videos, the number of likes was higher than dislikes (55,482 vs. 
7,670). The number of comments was 26,122 (mean: 2,612; standard deviation: 
4,901). In these videos, participants also replied to the comments. The replies to 
the comments were also collected and analyzed in this study. The corpora have 
around 2,000 replies, based on all replies. 

Table 17. Clusters of top-viewed 10 YouTube videos on ‘bicyclists hitting pedestrians’ 

Video Id Title Publish Duration Views Likes Dislikes Comments 
Date (min.) 

zR4Okh23Zlo Cyclist hits 
pedestrian 

11-Aug
13 

2:06 3,099,255 31,000 2,700 14,737 

sYWPHHo0fPU Pedestrian 
gets hit, 
cyclists talk, 
cops 

26-Oct-16 6:33 2,255,886 12,000 4,300 7,939 

Wq6rpVMcyas Cyclist 
crashes into 

12-Nov
17 

0:59 748,883 8,300 187 1,424 

man full 
video 

G4K8AjNIVPA Angry 
pedestrian 
blocks cyclist 
as he races 

28-Sep-16 0:27 401,683 2,500 146 1,429 

through zebra 
crossing 

0Lm9TPym9A4 Man gets hit 
by bike 

14-Aug
10 

0:37 250,312 1,500 288 371 

5Qurlf05YYI Pedestrian 
and bicycle 
accident on 

1-Apr-13 0:39 20,050 58 15 77 

Venice Beach 

dnkErN9N8KY Pedestrian 
hit by bicycle 
in San 

15-Mar
17 

1:44 9,989 51 7 41 

Francisco 

uRoU826ywjw Cyclist hits 
pedestrian 

18-May
15 

0:44 6,138 25 23 55 

dXpmxmFW164 Accident on 
the bicycle 
lane 

6-Apr-15 1:50 4,585 26 6` 23 

s-PuD8fSI-I Pedestrian 
almost hit by 
cyclist 

15-Jul-14 0:34 3,157 22 4 26 
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Figure 60. Flowchart of data collection and analysis. 

Methodology 
Term Frequency-Inverse Document Frequency 
Rather than utilizing the frequencies of a word or word group, we can look at 
the inverse document frequency (IDF) of a term. This concept was introduced 
by Spark Jones in 1972. One comment for a video id can be considered as a 
document. A compilation of comments based on video ids or any other specific 
clusters can be considered as a corpus. It considers the database term distribution 
and the database size; for frequently used words, it decreases the weight, and for 
words that are not commonly used, it increases the weight. For any given term, 
the IDF is given as: 

⎛
N
⎞
 
DF(term) = ln (9)
⎜

⎝
 
⎟
⎠
di 

Where, 
The total number of documents in the database is N 
The number of documents in the database containing the word i is di 

This is joined with the term frequency to compute a term’s TF – IDF (which 
are the two quantities multiplied together, TF × IDF). This parameter is usually 
used to identify the significant words within each document’s content. It does so 
by minimizing the weight of words that are often used and increasing the weight 
of not frequently used words in a corpus of the document. Calculating TF – IDF 
aims to discover words that are significant in a text but not very frequent in all 
documents. The final parameter weight, wi, for TF – IDF is written as: 

⎛
N
⎞
 
TF – IDF(wi) = fi ×
log
 (10)
⎜

⎝
 
⎟
⎠
di 

Where, 
fi = the word i’s frequency in the document. 
Table 18 displays the TF – IDF values for the two categories based on 

interaction types. All comments or replies for each of these videos are combined 
by video ids for determining TF – IDF measures. As unigrams are not suitable 
in explaining the intent of the topics, bigrams are considered in this analysis. A 
threshold of 200 counts is considered as the baseline for comment corpora. For 
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the reply corpora, this threshold was 20. The majority of the bigrams overlap in 
both categories. Intersection, signal phases, bike lanes, and lighting conditions 
are the most common bigrams in both categories. The bigrams ‘the crosswalk’ 
and ‘parents’ fault’ are present in the comment category analysis. In the reply 
categories, two unique bigrams are ‘walk on’ and ‘walk in.’ 

Table 18. TF-IDF of the top bigrams from comment and reply corpora 
VID Bigram TF IDF TF-IDF 

Comments 
sYWPHHo0fPU the light 0.00331 1.20397 0.00398 
zR4Okh23Zlo bike lane 0.00567 0.69315 0.00393 
sYWPHHo0fPU the intersection 0.00197 1.60944 0.00317 
sYWPHHo0fPU yellow light 0.00124 2.30259 0.00286 
sYWPHHo0fPU red light 0.00232 1.20397 0.00279 
sYWPHHo0fPU light was 0.00152 1.60944 0.00245 
zR4Okh23Zlo bike path 0.00218 0.91629 0.002 
zR4Okh23Zlo parents fault 0.0007 2.30259 0.00162 
sYWPHHo0fPU the crosswalk 0.00146 0.91629 0.00134 
sYWPHHo0fPU slow down 0.00177 0.69315 0.00123 
Replies 
sYWPHHo0fPU the light 0.004216 1.504077 0.006342 
zR4Okh23Zlo walk on 0.001681 2.197225 0.003694 
zR4Okh23Zlo bike path 0.001639 2.197225 0.003602 
sYWPHHo0fPU the intersection 0.00233 1.504077 0.003505 
sYWPHHo0fPU light was 0.001498 2.197225 0.003291 
sYWPHHo0fPU was red 0.001387 2.197225 0.003047 
zR4Okh23Zlo cycle lane 0.001303 2.197225 0.002863 
sYWPHHo0fPU red light 0.002441 1.098612 0.002682 
zR4Okh23Zlo walk in 0.001177 2.197225 0.002586 
sYWPHHo0fPU slow down 0.002164 1.098612 0.002377 

Sentiment Analysis 

Subjective text mining on texts that contain opinions or sentiments allows us to 
comprehend the perception towards a product. Essentially, the aim of sentiment 
analysis is to figure out which sentences and words express which feelings, 
opinions, and sentiments. The sentiment score can be easily calculated by 
using the number of positive words or sentences minus the number of negative 
words or sentences. This case study used ‘udpipe’ inbuilt functions to determine 
the sentiment scores. Boxplot boxes (shown in Figure 61) represent the 25th 

percentile, the median, and the 75th percentile. Boxplot whiskers represent the 
5th percentile and the 95th percentile. The individual sentiment scores are overlaid 
on the boxplot as the dot-plot format. The values show that the median of the 
majority of the video comment groups is below zero, which indicates the nature 
of higher negative sentiments in these videos. 
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Figure 61. Boxplot of individual sentiment scores by video id. 

The descriptive statistics of the sentiment scores by the video ids are shown 
in Table 19. Each video identification number (VID) is listed with the minimum, 
maximum, mean, and standard deviation of each comment and reply. The video 
with the highest comment average is dnkErN9N8KY (Pedestrian hit by a bicycle 
in San Francisco) with 0.39. It also has the highest maximum, minimum, and 
standard deviation. 

Table 19. Descriptive statistics of sentiment scores by videos 
VID Max Min Mean STD 

Comment Reply Comment Reply Comment Reply Comment Reply 
0Lm9TPym9A4 4.10 0.80 –6.00 –2.65 –0.43 –0.71 1.22 0.88 
5Qurlf05YYI 2.25 2.80 –3.25 –0.75 –0.41 0.75 1.01 1.20 
dnkErN9N8KY 5.85 5.85 –1.50 –2.50 0.39 –0.03 1.53 1.72 
dXpmxmFW164 1.05 0.80 –1.00 –1.00 0.26 –0.07 0.75 0.90 
G4K8AjNIVPA 3.10 3.10 –8.60 –4.85 –0.28 –0.30 1.13 1.22 
s-PuD8fSI-I 1.40 1.40 –1.75 –1.40 –0.13 –0.04 0.84 0.89 
sYWPHHo0fPU 7.60 – –7.15 – –0.37 – 1.06  – 
uRoU826ywjw 2.80 4.80 –0.75 –7.15 0.68 –0.32 1.15 1.27 
Wq6rpVMcyas 3.00 1.00 –4.50 –4.10 -0.33 –0.38 0.85 0.84 
zR4Okh23Zlo 5.30 5.30 –10.00 –6.45 –0.49 –0.42 1.15 1.32 

Emotion Mining 
For the emotion mining tasks, this study considers eight major emotion types 
and their negations. The trends of the emotions are shown at the sentence level 
(shown in Figure 62). This method uses sentiment lexicons to find emotion-
related words and then computes the emotion propensity per sentence (34). The 
x-axis indicates the number of documents in percentage form. For example, if the 
analysis is conducted on 100 documents, 25% will indicate the 25th document, 
and if the vertical line is drawn on 25%, the intersecting points will be the 
emotion propensity score for that particular sentence. This visualization helps in 
understanding the overall trends of the emotions expressed by the participants. 
The general finding is that the negated terms are less in propensity scores than the 



186 Artificial Intelligence in Highway Safety  

 

  

 

main emotion-related words. Sadness and anger are the top two emotions in the 
‘comment’ category. For the ‘reply’ category, anger shows the highest propensity. 
Sadness shows a declining trend over the duration of the sentences. 

Figure 62. Individual tf-idf for texts categorized by content type. 

Valence Shift Word Graphs 
Dodds and Danforth (2009) provided the importance of the ‘Valence Shift Word 
Graph.’ Take into consideration two texts Tref (for reference) and Tcomp (for 

(ref ) (comp)comparison) with sentiment scores smean and smean . Comparison of Tcomp relative 
to Tref can be expressed as: 

N 
ref ( )  ⎡⎣
pi 

(comp) ⎤⎦
 (11)
 ref −
(comp) ( )−
 s w( )i pis
 smean = 
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∑
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i 1
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∑
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where, 
pi = the i –th unique word’s normalized occurrence frequency and which one 

interprets as a probability, and 

Σi
N ref (ref ) (ref ) N (ref )⎡⎣


⎤⎦

⎡⎣


⎤⎦
 
( ) (comp) (comp)−
 Σ
 −
s
 pi pi s
 pi pi =
 imean 

ref( )= smean ( − ) = , (12)1 1  0 

wi denotes the word i in comparison text, and pi denotes the percentage of 
word i in the comparison text. 

(ref )By introducing the term ,  the contribution of the ith word to the −smean 
(comp) (ref )difference s − s  can be clear. Two major pieces in determining the sign mean mean 

of the ith word’s contribution to the sentiment score are considered: 
ith• Whether the word is, on average, more positive than text Tref’s 

(ref )average, smean. 
• Whether the ith word is relatively more abundant in text Tcomp than in text Tref. 

A word’s sentiment is signified relative to text Tref by + (positive sentiment) and – 
(negative sentiment), and its relative abundance in text Tcomp versus text Tref with 
↑ (more prevalent) and ↓ (less prevalent). The combination of these two binary 
possibilities leads to four cases: 

• +↑: Increased use of relatively positive words– if a word is happier than text 
Tref (+) and appears relatively more often in text Tcomp (↑), then the contribution 

(comp) (ref )to the difference s − s is positive.mean mean 
• –↓: Decreased use of relatively negative words– if a word is less happy than text 

Tref (–) and appears relatively less often in text Tcomp (↓), then the contribution 
(comp) (ref )to the difference s − s is also positive.mean mean 

• +↓: Decreased use of relatively positive words– if a word is happier than text 
Tref (+) and appears relatively less often in text Tcomp (↓), then the contribution 

(comp) (ref )to the difference s − s is negative.mean mean 
• –↑: Increased use of relatively negative words– if a word is less happy than text 

Tref (–) and appears relatively more often in text Tcomp (↑), then the contribution 
(comp) (ref )to the difference s − s is also negative.mean mean 

The normalization of Equation 12 and the conversion to percentages becomes: 

100 (ref ) (commp) (ref )⎡ ( )  ⎤ ⎡ ⎤Smean wi − smean ⎦  + −/ pi − pi , / (13)
↑ ↓δsmean,i = ⎣ ⎣ ⎦(comp) (ref )s − smean mean 

Where ∑i δsmean,i = ± 100, depending on the sign of the difference in sentiment 
(comp) (ref )between the two texts, s − s , and the terms to which the symbols +/–mean mean 

and ↑/↓ apply have been indicated. The δsmean,i is referred to as the per word 
sentiment shift of the ith word. Figure 63 is interpreted as follows: 

=1 mean =1 
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• A greater frequency of positive emotions is shown by words on the right. 
• Negative emotions being used less is denoted by a yellow bar with a down 

arrow on the right. 
• Positive emotion being used more is denoted by a purple bar with an up arrow 

on the right. 
• A decrease in position emotions in the corpus is denoted by words on the left. 
• Negative emotions being used more is denoted by a yellow bar with an up 

arrow on the left. 
• Positive emotions being used less is denoted by a purple bar with a down arrow 

on the left. 

The word shift plots are not significantly different between the corpora (plural of 
corpus) developed for comments and replies. However, the degree of negative 
emotions is less used in the replies. Some of the terms, such as bike, are considered 
as positive emotions due to the use of conventional sentiment lexicons. There is a 
need to develop a highway safety-related sentiment-lexicon to precisely capture 
the domain-specific sentiments and emotions, which is outside the parameters of 
the present study. 

Figure 63. Valence shift word graphs based on comments and replies. 
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Co-occurrence of Negative Terms 
The majority of the sentiment analysis and emotion mining studies perform only 
n-gram related studies to determine the sentiments and emotions over the corpus, 
document, or sentence level. One area that is less explored is the investigation 
on determining the relation of other words with the negative sentiments and 
emotions. This approach will help answer what is causing a negative sentiment 
or negative emotion. The Stanford Dependencies (SD) representation was 
initially created as an applied representation of English syntax, directed at natural 
language understanding (NLU) applications. This is deeply associated with 
grammatical relation-based syntactic concepts. The dependency relationship 
output of ‘udpipe’ was used to figure out which words are linked to negative 
words from the ‘udpipe’ sentiment dictionary. Out of several parameters, this 
study used mainly the parameters associated with adjectives that modify a noun. 
Before conducting the dependency parsing, this study used the conventional NLP 
annotation (tokenization, lemmatization, and parts of speech tagging). The lemma 
values of the negative words and the lemma values of the parent word are used 
to calculate the co-occurrence. The words’ co-occurrence relationships for the 
datasets of comments and replies are shown in Figure 64. 

Figure 64. Co-occurrences of the negative terms. 
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Case Study 3 
State transportation agencies use their official accounts to inform their followers 
about traffic crash or road closure information. Show how this data can be 
collected and used to understand the information shared by the agencies. 
Solution: 
More general scientific research known as knowledge discovery or data mining 
has led to the applied method of text mining. Knowledge discovery is the non
trivial process of recognizing useful, valid, and easy to interpret patterns in 
data. Text mining, or knowledge discovery in the text (KDT), is considered a 
multi-stage process that makes up all activities, including document collection 
and knowledge extraction, and that utilizes approaches like supervised and 
unsupervised machine learning, information retrieval, data mining, and natural 
language processing (NLP). Identifying contributing factors in associated tasks 
can aid in the extraction of quick and useful information from data resources 
through pattern recognition. Massive collections of unstructured textual data can 
be handled by text mining algorithms. A flowchart of text mining from select 
Twitter handles is shown in Figure 65. 

Figure 65. Flowchart of text mining. 

In information retrieval approaches, it is presumed that keywords denote 
condensed information from the documents. Keyword extraction utilizes a NLP 
method to recognize particular words or terms; this method is combined with 
supervised or unsupervised machine learning algorithms. Moreover, calculations 
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on the co-occurrence of certain terms and phrases would be a point of interest in 
various research. As an example, a high frequency of ‘congestion,’ without any 
co-occurrence, wouldn’t always suggest the nature of the document’s particular 
interest. If the use of the term ‘congestion’ with another term ‘minimal’ is high, it 
would signify a different nature of the document. Corpus denotes a collection of 
text documents in text mining; it is an abstract concept, and several applications 
can exist in parallel. After developing a corpus, users are able to easily modify 
the documents in it: stemming, stop word removal, numbers, particular parts 
of speech, and redundant words are all examples of this. Figure 65 shows the 
flowchart of the developed Twitter mining approach. 

Twitter is a comparatively new social media that is used for microblogging. 
The ‘tweets’ (posts of the user) don’t exceed 140 characters; it reflects opinions in 
real-time and disseminates information. In various aspects, some of the information 
and unfiltered opinions can be very sensitive. A large amount of textual content is 
generated daily by Twitter. Text mining, natural language processing, information 
retrieval, and other methods can be used to study textual content. There is an open 
debate that if Twitter stratifies the necessary representative sample data for the 
outside world, important insights may be provided by giving context to the social 
media data through appropriate means. Several factors, like target specification, 
appropriate algorithm, and responsiveness of the post, impact the keys to the 
success of Twitter mining. The terms used in Twitter are briefly described below: 

•		Tweet: A short message from a Twitter account holder, spanning a maximum 
of 140 characters. A Twitter handle is the account holder’s name. 

•		Reply: Replies help in responding to a tweet. This syntax automatically inserts 
the originator’s user name. 

•		Hashtag: Represented by a ‘#’ symbol followed by a word or phrase (e.g., 
#NOLA_Traffic). Users use this in front of a keyword or phrase (with no 
spaces in between) in tweets to classify them so they can appear more readily 
in Twitter Search. 

•		Mention: Mentions acknowledge a user with the ‘@’ symbol without replying 
to a specific tweet feature (e.g. @NOLA_Traffic). 

•		Retweet: Retweeting forwards a tweet from users to their own followers. 

Methodology 
Three different text analytic approaches were used to study the contents of the 
official tweets of the government transportation agencies of two major cities 
in Louisiana: a cluster of the contents by topic modeling, content exploratory 
analysis by text mining, and perception of the public on different countermeasures 
by sentimental analysis. 

Official Twitter Accounts of DOTD 
Sixteen official Twitter accounts are maintained by Louisiana DOTD. The most 
dominant ones in the number of tweets and followers among them are the Twitter 
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handles for Baton Rouge and New Orleans (see Table 20). Tweets were collected 
from both these Twitter handles (NOLA_Traffic and BR_Traffic). January 2009 
was when both official accounts were created. The number of official tweets and 
followers of these official Twitter handles in two different time periods (before: 
July 2015, after: July 2016) are listed in Table 20. The percentage increase 
of tweets ranges from 25% to 101%, and the range of percentage increase in 
followers is 25% to 184%. The average growth of followers is nearly 48% for 
the official Twitter handles in two major cities (Baton Rouge and New Orleans) 
of Louisiana, indicating that these two Twitter handles are giving followers 
helpful updates. 

Table 20. Official Twitter accounts of DOTD 

Official July, July, Percentage 
City Twitter 2015 2016 Increase 

Handle Tweets Followers Tweets Followers Tweets Followers 
New NOLA_Traffic 34,700 21,300 45,451 29,445 31% 38% 
Orleans 
Baton BR_Traffic 26,200 27,900 32,859 43,272 25% 55% 
Rouge 
Shreveport Shreveport_ 5,389 2,464 6,883 3,108 28% 26% 

Traf 
North NS_Traffic 3,340 1,657 5,222 2,802 56% 69% 
Shore 
Houma Houma_Traffic 2,568 1,776 3,260 2,220 27% 25% 
Lafayette Laf_Traffic 1,862 1,292 3,058 2,718 64% 110% 
Lake LC_Traffic 1,385 373 2,788 1063 101% 185% 
Charles 
Monroe Monroe_Traffic 432 264 867 469 101% 78% 
Alexandria Alex_Traffic 117 178 187 398 60% 124% 

Total 75,993 57,204 100,575 85,495 32% 49% 

Data Collection 
The newest version of Twitter currently has two types of authentications, both of 
which leverage open standards for authorizations (OAuth) still. The two forms 
are application-user authentication, the most frequently used form of resource 
authentication in Twitter's OAuth 1.0A implementation to date, and application-
only, a form of authentication wherein user application makes API requests 
without a user context on its own behalf. The one-time tweet extraction limit from 
a Twitter handle is 3,200. 

The authors used popular data mining R packages “twitteR” and “tm” 
to extract tweets from the user timeline of two official DOTD Twitter handles 
and semantic analysis respectively. The total number of tweets analyzed in this 
research is nearly nine thousand. The official tweets were retweeted by their 
followers nearly 36,500 times. Figure 66 shows the tweets and retweets generated 
from these accounts. In terms of the number of retweets, the followers of 
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NOLA_Traffic retweeted nearly twice that of the BR_Traffic followers. The 
peak of the retweets from both handles is visible on January 25, 2014, when the 
interstates were closed due to severe icy conditions. Both of the Twitter handles 
shared the most recent status by tweeting real-time information. The followers 
retweeted those tweets to inform their own followers. This event clearly shows 
the necessity of using Twitter for information dissemination and sharing by the 
transportation authorities. Spatial and temporal (in hours) distribution of the 
tweets and retweets would provide more insight on the circulation of emergency 
transportation information, which is not done in the current study. Figure 66 
shows examples of results. 

Figure 66. Examples of results. 

Text Mining 
Two major strategies were taken to make the corpus: month wise and hour wise. 
At first, the tweets were divided into twelve different documents or corpora 
per Twitter handle based on the months. Figure 67 shows the heat map of the 
frequency of the terms in different months. Both of the Twitter handles exhibit high 
frequency in similar terms (lane closure information, congestion, and blockage). 

Another division was done based on the hours of the day. The division was 
based on the time stamp hour of the tweets: 12AM-6AM, 6AM-12PM, 12PM
6PM, and 6PM-12AM. Both of the Twitter handles exhibit high frequency in 
similar terms (lane closure information, congestion, and blockage), as shown 
in Figure 68. It is also inevitable that more tweets were posted in the daytime 
than nighttime. 

Additional statistics on both handles are listed in Table 21. The final analysis 
was performed on the hourly-based tweets. There were 570 unique terms used in 
the tweets on average. It is required to eliminate sparse terms (terms occurring 
only in very few documents) as term-document matrices typically become big 
enough for normal-sized data sets. 
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Figure 67. Frequency of terms per month. 

Figure 68. Frequency of terms per hour. 
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The threshold of relative document frequency for a term is referred to as 
sparsity. The term will be removed from analysis if it is above this threshold; the 
sparsity of the terms generated from all tweets was nearly 50 percent. The matrix 
is reduced dramatically by removing the sparse terms while preserving significant 
relations that are inherent to the matrix. To make the document noiseless, 25% 
of sparse elements were removed. The sparsity of the document was reduced to 
0% after removing the sparse terms. The highest frequency terms are selected, 
excluding the redundant terms (combined frequency lower than 100, numbers, 
specific parts of speech, names of the streets, article and more). In NOLA_Traffic, 
the top five highly frequent terms are lane/lanes, congestion, open, blocked, and 
minimal (it refers to minimum congestion on roadways). In BR_Traffic, the top 
five highly frequent terms are lane/lanes, congestion, blocked, open, accident/ 
accidents. 

Table 21. Descriptive statistics 

Baton Rouge New Orleans 
Official Twitter Handle BR_Traffic NOLA_Traffic 
Analyzed Tweets 3304 5605 

Hour of the Day 
12AM- 6AM 15.56% 13.95% 
6AM-12PM 13.01% 17.47% 
12PM-6PM 35.71% 38.93% 
6PM- 12AM 35.71% 29.65% 

All Tweets 
Terms 569 571 
Sparsity 49% 48% 
Maximal Term length 21 21 

After Removing Sparse Terms (0.25) 
Terms 109 116 
Sparsity 0% 0% 
Maximal Term length 12 16 

Table 22 lists findings obtained from the tweet content analysis. The presence 
of a particular term will be more intuitive if one knows what most correlated 
terms it comes with. It lists the correlation ratio for the terms associated with 
three important terms, ‘congestion,’ ‘blocked,’ and ‘accident.’ This study uses the 
least correlation factor of 0.97. When ‘congestion’ is associated with ‘minimal,’ 
it implies a less congested phase. The term ‘minimal’ is highly correlated 
with ‘congestion’ in the NOLA_Traffic handle, while it is less correlated with 
‘congestion’ in the BR_Traffic handle. This particular case implies the congestion 
situations for both of the cities. 
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Table 22. Correlations between terms 

Baton Rouge New Orleans 
Congestion Congestion 

Lane 
Open 
Vehicle 
Blocked 
Lanes 
Blocked 

1.00 
1.00 
1.00 
0.99 
0.99 

Blocked 
Connection 
Lane 
Veterans 
City 
Blocked 

1.00 
1.00 
1.00 
1.00 
0.99 

Port 
Vehicle 
Congestion 
Hwy 
Accident 

1.00 
1.00 
0.99 
0.99 

Congestion 
Connection 
Lane 
Center 
Accident 

1.00 
1.00 
1.00 
0.99 

Clear 
Overpass 
Vehicle 
Blocked 
Center 
Current 

1.00 
1.00 
0.99 
0.98 
0.98 
0.97 

Remains 
Causeway 
Shoulder 
Split 
Vehicle 
Through 

1.00 
0.99 
0.99 
0.99 
0.99 
0.97 

The findings from the text mining part of this study are: 
• Government transportation information through tweets is getting popular. 
• Social media helps in improving public service during bad weather. Real-

time information on roadway blockage and other travel problems would be 
economically beneficial to the traveling public. 

• Text mining shows that most of the tweets were associated with terms like 
‘congestion,’ ‘blocked,’ ‘accidents,’ ‘lane/lanes,’ and ‘open.’ Real-time 
utilization of these terms would lessen highway mileage and would be 
environmentally and economically beneficial. The current research will help 
in future research on building a transportation information-related real-time 
Twitterbot. 

• The hour-based heat map implies the percentage of terms present used in 
different documents. The findings are similar to the research analyzing peak-
hour traffics. 

• The tweets related to Baton Rouge Traffic inform more about congestion, while 
it  is highly associated with the term ‘minimal’ in the tweets of New Orleans 
traffic. 

The limitation of this study is the usage of limited data (one year of Twitter data). 
The complete analysis of the tweets since January 2009 is a potential analytic 
approach to extract knowledge from the data. 



 

 

  

   

  

  

Natural Language Processing 197 

Topic Modeling 
Latent Dirichlet Allocation (LDA) 
LDA is the most popular topic model used for extracting trends of topics from 
textual data. A detailed introduction of LDA can be found in the Blei et al. (2003) 
study. A very short introduction of LDA is described here. Suppose there is a 
group of documents D = {d(1), d(2), …, d(N}. A particular topic t is a discrete 
distribution over words with vector ϕt. A Dirichlet prior can be placed over Φ = 
{ϕ1, …ϕT}. This prior is assumed to be symmetric with parameter β: 

β 
−1β DP( )Φ ∏t Dir (φ ) = ∏t

r( )  
∏d φd t/ τ(Σd φd / t −1) (14)t; βς  ⎛ β ⎞Π rd ⎜ ⎟

⎝ D ⎠

Here, it is considered that each document, indexed by n, has a document-
specific distribution over topics θn. The prior over Θ = {θ1, … θN } is also assumed 
to be a symmetric Dirichlet, with parameter α. The tokens in each document d(k) = 

Kn Kn( )( )n n{dk } are associated with corresponding topic assignments y(k) = {yk }
k = 1 k =1 

and are drawn from the topics’ distributions over words Φ: 
n n( )P y  | θn ) = Πk θyk | n (15)( 

( )n n ( )  n( )  n ( )P d  | y φ = Πk φd | k (16)( , )  y
k 

The authors used textual data from both Baton Rouge and New Orleans to 
develop topic models for each dataset. Table 23 lists the top five topic models 
developed from these two datasets. By exploring the terms in the top five topics in 
both Twitter handles, it is found that most of the tweets are related to congestion, 
crash, roadway blockage, and after crash/incident status. Real-time alerts based 
on these tweets would be beneficial for roadway users. 

Table 23. Topic models form Twitter handles of two major cities 

Topic Models from Tweets from BR_Traffic 
Topic 1: congestion, lane, blocked, open, accident 
Topic 2: delays, blocked, accident, normal, open 
Topic 3: congestion, lane, closed, open, river 
Topic 4: accident, incident, delay, blocked, open 
Topic 5: congestion, bridge, open, Mississippi, blocked 
Topic Models from Tweets from NOLA_Traffic 
Topic 1: congestion, lane, open, lane, bridge 
Topic 2: minimal, congestion, accident, blocked, lane 
Topic 3: congestion, lane, blocked, minimal, open 
Topic 4: accident, delay, incident, blocked, lane 
Topic 5: congestion, bridge, blocked, lane, disabled 
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8.6.1. Sentiment Analysis 
Sentiments are necessary for most activities and they influence human behaviors. 
Most beliefs and perceptions of humankind depend on how the world is seen and 
evaluated by others. Because of this, in order to make better decisions, humans 
tend to seek out the sentiments of others. This is true for various organizations and 
programs, not just individuals. Sentiment analysis studies sentiments, attitudes, 
evaluations, opinions, and emotions. Sentiment analysis of specific tweets gives 
opportunities to the authorities to understand people’s opinions quickly compared 
to conventional survey methods. 

It is essential to note that there are domain-specific sentiment values for the 
sentiment lexicons. Subsequently, the sentiment classification performance of a 
given text may differ according to the calculation process of its sentiment. To 
assist in the identification of negative and positive annotations in the mining-ready 
texts, assorted sentiment lexicons with different formats and research focuses have 
been created. Both diversification and similarity were observed while comparing 
the listed words along with their ratings. To address the classification challenge of 
sentiment analysis it is necessary to develop a domain-specific sentiment lexicon. 
Researchers are currently creating a sentiment lexicon that is appropriate for 
transportation-related tweets, and this area is still a potential research topic. A list 
of negative and positive sentiment words in English were used in this study to 
complete the sentiment analysis on the tweets. 

For example, mining the Twitter data related to “@NOLA_Traffic” and 
“#NOLA_Traffic” will provide interesting insights into the sentiment of the New 
Orleans roadway users. A sentiment score function was developed to mine each 
tweet with the negative and positive word lexicons and calculated a score that is 
negative, positive, or zero. A tweet that has a “+2” score means that the tweet has 
two positive words by hashtagging or mentioning “NOLA_Traffic.” A tweet with 
a negative score designates that negative words were used. 

This case study collected tweets related to four search terms: workzone, 
redlight camera, seatbelt, and pavement marks. The terms workzone and pavement 
marks show higher trends in positive scores while terms like redlight camera and 
seatbelt process more inclination towards negative scores. Figure 69 illustrates 
these scores. 

The results demonstrate very positive reactions to the DOTD workzone and 
pavement markers and negative reactions to automatic red-light enforcement 
and seatbelt, which is not entirely surprising. Louisiana is one of the states with 
the lowest seatbelt usage in the country and had some bad publicity over red-
light camera usage in a few locations. To improve seatbelt usage and promote 
automatic red-light safety programs, it is important to change public perceptions 
of these programs through effective actions. 
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Figure 69. Sentiment scores of four countermeasures. 

Example Problem 1 
Develop reproducible Python scripts for Topic Model Word clouds. 
Solution: 
The data is collected from the Motorcycle Crash Causation Study (MCCS). 
Figure 70 shows eight topic model-based word clouds. The coding to answer the 
question is shown in the following code chunk. The code results are not shown 
(few major plots are shown to explain the results). 

Example Problem 1 (Code Chunk 1) (Python Code) 
import os 
import codecs 
import pandas as pd 
import numpy as np 
from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer 
from sklearn.decomposition import NMF, LatentDirichletAllocation
 
import matplotlib.pyplot as plt
 
import math
 
import wordcloud
 
%matplotlib inline
 

import string
 
printable = set(string.printable)
 
def clean_sentence(s):


 return ''.join(filter(lambda x: x in printable, s)) 
(Contd.) 
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n_topics = 8
 
n_top_words = 50
 
data = pd.read_csv('~folder_location/MCSS_CrashNarr_02132019FatalNarr.csv', 

encoding="ISO-8859-1")
 
data = data.dropna(subset=['text'])
 
sentences = data.text.apply(clean_sentence)
 

from sklearn.feature_extraction import text
 
my_words=set(['trbam', 'trb2010', 'nasemtrb', 'trb2011', 'trb2012', 'trbofna','10', 'http', 

'ly', 'rt', 'bit', 'trb', 'meeting',
 

'20', 'annual', 'ow', '30', '2011', '2012', 'com', 'transport', 'transportation', '.com', 
'twitter', 'trb2013',
           'trb2014', 'trb2015', 'trb2016', 'trb2017', 'trb2018', 'trb2019', 'trb2020', 
'transportgooru', 'register', 
              'registration', 'shana', 'johnson', 'year', 'www', 'pic', '2015', '2016', '2017', '2018', 
'2019', '2020', '2013', 
             '2014', 'dc', 'shana_johnson', 'org', '.org', 'meetings', 'pdf', 'en', '000', 'crash', 
'crashes', 'rider', 'road',

 'vehicle', 'vehicles', 'car', 'cars', 'roadway','roadways']) 
my_stop_words=text.ENGLISH_STOP_WORDS.union(my_words) 
tf_vectorizer = CountVectorizer(input='content', 
¬¬stop_words=set(my_stop_words)) 
tf = tf_vectorizer.fit_transform(sentences) 

lda = LatentDirichletAllocation(n_components = n_topics, max_iter=5,
 learning_method='online',
 learning_offset=50.,
 random_state=0) 

lda.fit(tf) 
tf_feature_names = tf_vectorizer.get_feature_names()
 

import os
 
os.chdir("~folder location")
 

import re
 
a = plt.figure(figsize=(20,16)) 
regex = re.compile("[A-Za-z0-9]+") 


import csv
 
f = open('aFatalNarr.csv', 'w', newline='') #new added rows
 
writer = csv.writer(f)
 
writer.writerow(['topic','word', 'count'])
 

for i in range (0, n_topics):
 print(lda.components_[i])

   termsInTopic = lda.components_[i].argsort()[:-50-1:-1] 
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    print(termsInTopic)

 termsAndCounts = {}


    title_str = 'Topic{}'.format(i+1)

    for term in termsInTopic:


 if (str(tf_feature_names[term].strip()) == 'https'): # remove https from the plot
 continue 

# if not bool(re.fullmatch(regex, str(tf_feature_names[term].strip()))):# remove 
illegal characters 
# continue
        termsAndCounts[str(tf_feature_names[term].strip())] = math.ceil(lda.components_ 
[i][term]*1000)
        writer.writerow([i+1,tf_feature_names[term], termsAndCounts[str(tf_feature_ 
names[term].strip())]])## new added code

 print(termsAndCounts)
    cloud = wordcloud.WordCloud(background_color="white")

 cloud.generate_from_frequencies(termsAndCounts)
 plt.subplot(5, 4, i+1)
 plt.imshow(cloud, interpolation='bilinear')
 plt.axis("off")
 plt.title(title_str) 

a.savefig('aFatalNarr.png', dpi=300, bbox_inches='tight') 

Figure 70. Topic model-based word clouds. 

Example Problem 2 
Show a reproducible example of ‘Structural Topic Model.’ 
Solution: 
The data is collected from the TRID (https://trid.trb.org/). Figure 71 shows the 
trends of the developed topic models. The following code chunk shows the coding 
to answer the question. The code results are not shown (few major plots are shown 
to explain the results). 

Example Problem 2 (Code Chunk 1) (Structural topic model) 
## Please check my RPUBS for additional codes: https://rpubs.com/subasish 

setwd("~folder name") 
(Contd.) 

https://www.rpubs.com
https://www.trid.trb.org


202 Artificial Intelligence in Highway Safety  

setwd("~folder name")
 

library(readxl)
 
dat <- read_excel("ALL_TRR1.xlsx", sheet="JournalArticle2")
 
names(dat)
 
dat$ID1 <- 1:nrow(dat)
 
dat$ID <- paste0("A","_", dat$ID1)
 
names(dat)
 

companyRDF <- data.frame(Doc.id = unique(dat$`Publication Year`), 

                         textdata = tapply(dat$Title, dat$`Publication Year`, paste, collapse = ' ')) 
str(companyRDF) 
str(companyRDF) 
dim(companyRDF) 

library("quanteda")
 
library("stm")
 

uncorpus.dfm <- dfm(companyRDF$textdata, remove_numbers = TRUE, remove_
 
punct = TRUE, remove_symbols = TRUE, remove = stopwords("english"))
 
uncorpus.dfm
 
uncorpus.dfm.trim <- dfm_trim(uncorpus.dfm, min_docfreq = 0.090, max_docfreq = 

0.90, docfreq_type = "prop") # min 7.5% / max 95%
 
uncorpus.dfm.trim
 

topic.count <- 12
 
dfm2stm <- convert(uncorpus.dfm.trim, to = "stm", docvars =companyRDF)
 
model.stm <- stm(dfm2stm$documents, dfm2stm$vocab, K = topic.count, data = 

dfm2stm$meta, init.type = "Spectral") 

data.frame(t(labelTopics(model.stm, n = 20)$prob))
 
#plot(model.stm, type = "summary", text.cex = 0.5)
 
#plot(model.stm, type = "hist", topics = sample(1:topic.count, size = 12))
 

model.stm.labels <- labelTopics(model.stm, 1:topic.count)
 
dfm2stm$meta$datum <- as.numeric(dfm2stm$meta$Doc.id)
 
model.stm.ee <- estimateEffect(1:topic.count ~ s(Doc.id), model.stm, meta = 
dfm2stm$meta) 

par(mfrow=c(3,3)) 

for (i in seq_along(sample(1:topic.count, size = 6))) 
{
  plot(model.stm.ee, "Doc.id", method = "continuous", topics = i, main = paste0(model. 
stm.labels$prob[i,1:4], collapse = ", "), printlegend = F) 
} 
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Figure 71. Trends of the topic models. 

Chapter Conclusion 
This chapter provides some required information on NLP. Topics such as text 
mining, topic modeling, sentence centrality, centroid-based summarization, 
centrality-based sentence salience, and NLP-based highway safety studies are 
covered. Several case studies and example problems are also provided at the end 
of this chapter. 
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9 

Explainable AI 

9.1. Introduction 
Neural networks are an example of explicit AI models, as their deep variants lead 
areas of computer vision along with other fields and sub-fields. Although these 
models are very effective in making precise predictions, they are limited in their 
interpretability and explainability. So, their current practice as models lack the 
ability to say much about: 
• Interpretability: how does the model structure explain its functioning? 
• Explainability: what is the rationale behind the decision made? 

If one hopes to advance learning machines and incorporate them into decision 
support systems that involve human supervision, explainability/interpretability 
capabilities are necessary, despite the fact that a good performance is a crucial 
requirement for learning machines. To mitigate the crucial gap in interpretation 
and causality determination, the explainability of the AI models has turned 
into a robust research trend within the machine learning and computer vision 
communities. In fact, many recent works have recently been committed to defining 
interpretability and explainability in the context of models and how to assess these 
factors. Researchers have been developing innovative mechanisms for explaining 
suggested models and their structures. 

Interpretation means to present or explain in comprehensible terms. One 
emphasizes providing an explanation to humans in the context of AI systems; that 
is, to present or explain to a human in understandable terms. One must still answer 
what an explanation is, even if it is a more intuitive term than interpretability. 
People look at psychology to answer this, since a formal definition of an 
explanation is still unknown. 

How does the algorithm create the model? 
How a model is learned from the data by the algorithm and what kind of 
relationships it is able to learn is referred to as algorithm transparency. One 
is able to explain that using convolutional neural networks to classify images 
is an explanation of how the algorithm works, as opposed to how individual 
predictions are made or how the algorithm learns filters and edge detectors on 
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the lowest layers. Only knowledge of the algorithm rather than of the learned 
model or the data is necessary for algorithm transparency. Here, model 
interpretability rather than algorithm transparency is focused on. Algorithms 
like the least squares method for linear models are understood well and 
subsequently have higher transparency. Deep learning methods are not as well 
understood, and ongoing research is concentrated on the inner workings, so they 
subsequently are considered to be less transparent. 

How does the trained model make predictions? 
If one is able to understand the entire model at once, the model can be considered to 
be interpretable. To describe the global model output, knowledge of the algorithm, 
the trained model, and the data is necessary. This interpretability level is about 
understanding how, based off of a comprehensive look at its characteristics and 
learned elements (such as other parameters, weights, and structures), decisions 
are made by the model. What kind of interactions take place between features and 
which of these are important? Understanding the distribution of target outcomes 
based on the characteristics is aided by global model interpretability, but is in 
practice incredibly difficult to carry out. A model that surpasses several weights 
or parameters is not likely to fit into an average human’s short-term memory. 
A person is not capable of imagining a linear model that has five features, as it 
would necessitate a mental image of the estimated hyperplane in a 5-dimensional 
space, and humans are unable to comprehend any feature space that has more than 
three dimensions. People usually consider only parts of a model when they try to 
comprehend it, like the weights in linear models. 

9.1.1. Partial Dependence Plot (PDP) 
The marginal effects of one or two features on the predicted measures of an AI 
algorithm-based model can be described by the partial dependence plot (PDP or 
PD plot for short). A PDP is able to show that the association between the target 
and a characteristic is monotonic, linear, or more complex. As an example, partial 
dependence plots always display a linear relationship when applied to a linear 
regression model. 

To compute PDPs, the partial dependence function at a given feature value 
depicts the average prediction, if one forces all data points to assume that 
feature value. The idea of PDPs typically is quickly understood by lay people. 
If the feature that the PDP is being computed for is not correlated with the other 
features, then how the prediction on average is influenced by the feature is 
perfectly represented by the PDP. The interpretation is clear in the uncorrelated 
case: the partial dependence plot shows how the average prediction in a dataset 
changes when the j-th feature is changed. When features are correlated, it is more 
complicated (see also drawbacks). 

Two is the maximum credible number of characteristics in a partial 
dependence function, due to its 2-dimensional representation and people’s 
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discomfort in envisioning more than 3 dimensions. Feature distribution is not 
shown in some PD plots. It can be misleading to omit the distribution, because 
regions that have almost no data may be over interpreted. This problem can be 
resolved by displaying a histogram or a rug (indicators for data points on the 
x-axis). The largest problem with PD plots is the assumption of independence. It 
is assumed that other features are not correlated with the features that the partial 
dependence is calculated for. 

9.1.2. Individual Conditional Expectation (ICE) 
How the prediction of the instance alters when a feature is altered is shown through 
Individual Conditional Expectation (ICE) plots. These show one line per instance. 

The average effect of a feature’s partial dependence plot is a universal 
method due to the fact that it focuses on an overall average rather than specific 
instances. Individual conditional expectation (ICE) plots are parallel to a PDP for 
individual data instances; they separately display the dependence of the prediction 
on a feature for each case, which results in one line per case, as opposed to the 
partial dependence plots that show one line overall (which is an average of the 
ICE plot’s lines). By keeping all other features constant and making these newly 
generated instances’ predictions with the black box model along with variations 
of this occurrence by substituting the feature’s value with values from a grid, the 
values for a line are computed. This results in a set of points for an occurrence 
with the respective predictions and the feature value from the grid. 

Compared to partial dependence plots, ICE curves are naturally easier to 
understand due to the fact that the inferences for one instance are represented by 
one line if the feature of interest is varied. ICE curves can uncover heterogeneous 
relationships, unlike partial dependence plots. 

Due to the fact that two features would necessitate creating several overlaying 
surfaces, it would be impossible to understand anything in the plot, since ICE 
curves are only able to meaningfully display one feature. According to the joint 
feature distribution, some of the lines’ points could be invalid if the feature of 
interest is associated with the other features. The plot can get overcrowded if too 
many ICE curves are drawn, meaning that one will be unable to see anything. It 
may not be easy to see the average in ICE plots. 

9.1.3. Accumulated Local Effects (ALE) Plot 
Accumulated local effects (ALE) are able to explain how the prediction of a 
machine learning model on average is influenced by the features. In comparison 
to PDPs, ALE plots are unbiased and faster. ALE plots still work when features are 
correlated (as they are unbiased). Since partial dependence plots marginalize over 
impossible or unlikely combinations of feature values, they fail in this scenario. 
ALE plots are quicker to calculate than PDPs. 

With a large number of intervals,ALE plots sometimes end up having multiple 
minor issues. The estimate becomes more stable with a reduction in the number 
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of intervals, but it also smooths out and conceals some of the true complexity of 
the predicted model. There is no perfect solution for picking the interval number: 
if the number is too high, the curve can become shaky, and if too small, the ALE 
plots could be inaccurate. 

9.1.4. Local Surrogate (LIME) 
Individual estimates of black box machine learning models can be described by 
local surrogate models. A definite implementation of local surrogate models can be 
narrated as local interpretable model-agnostic explanations (LIME). The estimates 
of the underlying black box model are approximated by surrogate models that 
were trained for this purpose. LIME emphasizes training local surrogate models 
to justify individual predictions instead of training a global surrogate model. 

The idea of LIME is instinctive. First, one forgets about the training data 
and imagines that it has only the black box model in which it can input data 
points and gets the prediction measures of the model. One is able to utilize the 
box as often as wanted. The goal is to comprehend why a certain prediction is 
made by the machine learning model. LIME tests what occurs to the estimates 
when variations of data are given to the machine learning model, and it then 
creates a new dataset that consists of perturbed samples and the corresponding 
predictions of the black box model, wherein an interpretable model weighted by 
the proximity of the instance of interest to the sampled instances is then trained. 
The learned model doesn’t have to be a good global estimation, but it ought to be 
a good approximation of the machine learning model predictions locally. 

9.1.5. Shapley Value 
A feature’s contribution to the payout, weighted and summed over all possible 
feature value combinations, is the Shapley value of a feature value. It is the only 
attribution method that fulfills the properties of symmetry, dummy, efficiency, and 
additivity, which can be thought of together as a definition of a fair payout. 

The efficiency property of Shapley values differentiates the Shapley value 
from other methods such as LIME. It is the difference between the prediction 
and the average prediction which is distributed fairly among the feature values 
of the instance. Since the Shapley value may be the only method that delivers a 
complete explanation, it may be the only proper compliant method in situations 
wherein explainability is required by the law that a solid theory is its basis and it 
distributes the effects fairly. 

A lot of computing time is necessary for the Shapley value; only the 
approximate solution is feasible in real-world problems 99.9% of the time. Due to 
the fact that there are 2 potential combinations of the feature values and random 
instances must be drawn to replicate the “absence” of a feature (increasing the 
variance for the estimate of the Shapley values estimation), an exact calculation 
of the Shapley value is computationally expensive. An exponential number 
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of coalitions is handled by the limitation of the number of iterations of M and 
sampling coalitions. Decreasing M lowers the time needed for computing, but 
it increases variance. There is no perfect rule for the number of iterations M; it 
ought to be small enough to conduct the calculation in reasonable time, but large 
enough to estimate the Shapley values accurately. It ought to be possible to use 
Chernoff bounds to choose M, but there is a lack of papers evidencing that fact. 

9.1.6. SHAP (SHapley Additive exPlanations) 
A method to describe individual predictions based on the game theory optimal 
Shapley Values is called SHAP (SHapley Additive exPlanations). SHAP is not a 
part of Shapley values, partially because SHAP comes with a multitude of global 
interpretation methods based on combinations of Shapley values. Secondly, two 
SHAP values, TreeSHAP (an efficient estimation approach for tree-based models) 
and KernelSHAP (an alternative, kernel-based estimation approach for Shapley 
values that was inspired by local surrogate models), were suggested in this method. 

SHAP has a solid theoretical foundation in game theory. The prediction 
is fairly distributed among the feature values, and one gets contrastive 
explanations that compare the average prediction with the prediction. 

SHAP correlates with both LIME and Shapley values. It additionally aids 
in unifying the field of interpretable machine learning. One of the reasons for 
SHAP’s popularity is that it has a fast implementation for tree-based models. 
Computing Shapley values for multiple instances is necessary for all global SHAP 
methods, like SHAP feature importance. However, if features are dependent 
(e.g., correlated), too much weight may be placed on unlikely data points. The 
TreeSHAP algorithm resolves this issue by modeling the conditional expected 
prediction explicitly so unintuitive feature attributions can be produced by 
TreeSHAP. TreeSHAP also has limitations; it alters the value function by relying 
on the conditional expected prediction. 

Resources 
Christoph Molnar’s book ‘Interpretable Machine Learning: A Guide for Making 

Black Box Models Explainable’ is an excellent resource for XAI:
	
https://christophm.github.io/interpretable-ml-book/
	
Readers can explore the following curable list of XAI:
	
https://github.com/wangyongjie-ntu/Awesome-explainable-AI
	

Example Problem 1 

Show a step-by-step method of using explainable AI in crash severity analysis. 
Solution: For this analysis, e-scooter-related crash data from Louisiana is 
collected. The following code chunks are reproducible. 

https://www.github.com
https://www.christophm.github.io
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Example Problem 1 (Code Chunk 1) 
## Please check my RPUBS for additional codes: https://rpubs.com/subasish
	

library("Numero")
	
library("DALEX")
	
library("ranger")
	
library(data.table)
	

setwd("~folder location")
	
it01 <- read.csv("EScotter_Fin2.csv", header=T, na.strings=c("","NA"))
	
names(it01) 
str(it01) 
mn01 <- it01[, c("SEVERITY_CD", "DAY_OF_WK", "LIGHTING_CD", "HWY_ 
TYPE_CD", "WEATHER_CD", "CR_HOUR", 
"NUM_VEH")] 

mn02= mn01[complete.cases(mn01),] 
dim(mn02) 
head(mn02) 
mn02$SEVERITY_CD= as.factor(mn02$SEVERITY_CD) 
# prepare model 
library("randomForest")
	
model_titanic_rf <- randomForest(SEVERITY_CD == "A" ~ ., data = mn02)
	
model_titanic_rf
	

explain_titanic_rf <- explain(model_titanic_rf, 

data = mn02[,-1],


 y = mn02$SEVERITY_CD == "A", 

label = "Random Forest v7",


 colorize = FALSE)
	
vi_rf <- variable_importance(explain_titanic_rf)
	
head(vi_rf)
	
plot(vi_rf)
	

vr_age <- variable_effect(explain_titanic_rf, variables = "CR_HOUR")
	
head(vr_age)
	
plot(vr_age)
	

vr_class <- variable_effect(explain_titanic_rf, variables = "DAY_OF_WK")
	
plot(vr_class)
	

vr_fare <- variable_effect(explain_titanic_rf, variables = "NUM_VEH")
	
plot(vr_fare)
	

library("rms")
	
model_titanic_lmr <- lrm(SEVERITY_CD == "A" ~ ., data = mn02)
	
explain_titanic_lmr <- explain(model_titanic_lmr, data = mn02, 

y = mn02$SEVERITY_CD == "A",
	

predict_function = function(m,x) predict(m, x, type="fitted"),
	
(Contd.) 

https://www.rpubs.com
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 label = "Logistic regression")
	

library("gbm")
	
model_titanic_gbm <- gbm(SEVERITY_CD == "A" ~ ., data = mn02, n.trees = 1500)
	
explain_titanic_gbm <- explain(model_titanic_gbm, data = mn02, 

y = mn02$SEVERITY_CD == "A",


 predict_function = function(m,x) predict(m, x, n.trees = 15000, type = "response"),

 label = "Generalized Boosted Models",

 colorize = FALSE)
	
library("e1071")
	
model_titanic_svm <- svm(SEVERITY_CD == "A" ~ ., data = mn02, 

 type = "C-classification", probability = TRUE)
	
explain_titanic_svm <- explain(model_titanic_svm, data = mn02, 

y = mn02$SEVERITY_CD == "A",


 label = "Support Vector Machines",

 colorize = FALSE)
	

vi_rf <- variable_importance(explain_titanic_rf)
	
vi_lmr <- variable_importance(explain_titanic_lmr)
	
vi_svm <- variable_importance(explain_titanic_svm)
	

plot(vi_rf, vi_lmr, vi_svm, bar_width = 4)
	

vr_age_rf <- variable_effect(explain_titanic_rf, variables = "CR_HOUR")
	
vr_age_lmr <- variable_effect(explain_titanic_lmr, variables = "CR_HOUR")
	
vr_age_svm <- variable_effect(explain_titanic_svm, variables = "CR_HOUR")
	
plot(vr_age_rf, vr_age_lmr, vr_age_svm)
	

Figure 72 goes over the drop-out loss for random forest v7, logistic regression, 
and support vector machines. Logistic regression is shown to have the highest 

Figure 72. Drop-out loss for three algorithms. 
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amount of drop-out loss, and support vector machines are shown to have the 
lowest. Figure 73 illustrates predictions for a particular variable of these three 
algorithms. Logistic regression has the highest average prediction. 

Figure 73. Prediction for a particular variable measure for three algorithms. 

Example Problem 2 

It is anticipated that racism is a critical issue in tourism-related reviews. Apply 
NLP tools to identify trends and patterns from these reviews.
	
Solution: The following code chunks show the coding to answer the question. 

The code results are not shown (few major plots are shown to explain the results).
	

Example problem 2 (Code Chunk 1) 
# load the required packages 

library("Numero") 
library("DALEX") 
library("ranger") 
library(data.table) 
library("DALEX") 
library("h2o") 
setwd("~folder location") 

it01 <- fread("IT_aadtMaster.csv") 
mn= subset(it01, State=="MN") 
dim(mn) 
## [1] 11498 86
	
mn01 <- mn[, c("Default_AADT", "FC_RU", "HU", "Pop", "WAC", "RAC", "Agg_
	
Inc", "Agg_Veh", "Empl")]
	
mn02= na.omit(mn01)
	

(Contd.) 
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custom_predict <- function(model, newdata) {
 newdata_h2o <- as.h2o(newdata)
 res <- as.data.frame(h2o.predict(model, newdata_h2o))
 return(as.numeric(res$predict)) 
} 

h2o.init()
	
h2o.no_progress()
	

apartments_hf <- as.h2o(mn02)
	
model_h2o_glm <- h2o.glm(y = "Default_AADT", training_frame = apartments_hf)
	
model_h2o_gbm <- h2o.gbm(y = "Default_AADT", training_frame = apartments_hf)
	
###model_h2o_automl <- h2o.automl(y = "Default_AADT", training_frame = 

apartments_hf, max_models = 10)
	

explainer_h2o_glm <- explain(model = model_h2o_glm, 

data = mn02[,2:8], 


 y = mn02$Default_AADT,

 predict_function = custom_predict,

 label = "h2o glm",

 colorize = FALSE)
	

explainer_h2o_gbm <- explain(model = model_h2o_gbm, 

data = mn02[,2:8], 


 y = mn02$Default_AADT,

 predict_function = custom_predict,

 label = "h2o gbm",

 colorize = FALSE)
	

mp_h2o_glm <- model_performance(explainer_h2o_glm)
	
mp_h2o_gbm <- model_performance(explainer_h2o_gbm)
	
plot(mp_h2o_glm, mp_h2o_gbm)
	
plot(mp_h2o_glm, mp_h2o_gbm, geom = "boxplot")
	

vi_h2o_glm <- variable_importance(explainer_h2o_glm)
	
vi_h2o_gbm <- variable_importance(explainer_h2o_gbm)
	
plot(vi_h2o_glm, vi_h2o_gbm)
	

pdp_h2o_glm <- variable_effect(explainer_h2o_glm, variable = "WAC")
	
pdp_h2o_gbm <- variable_effect(explainer_h2o_gbm, variable = "WAC")
	
plot(pdp_h2o_glm, pdp_h2o_gbm)
	

Figure 74 shows drop-out loss measures for GLM and BGM using H2O, and 
Figure 75 shows predictions for a particular variable measure for three algorithms. 
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Example Problem 3 

Show a reproducible example of SHAP value usage using crash count data. 
Solution: The following code chunks show the coding to answer the question. 
The code results are not shown (few major plots are shown to explain the results). 

Figure 74. Drop-out loss measures for GLM and GBM using H20. 

Figure 75. Prediction for a particular variable measure for three algorithms. 
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Example problem 3 (Code Chunk 1) 
## Please check my RPUBS for additional codes: https://rpubs.com/subasish 

setwd("~your folder") 
dat= read.csv("TAHIR_rwd1.csv") 
table(dat$HwyClass) 
head(dat) 

dat= subset(dat, HwyClass=="Rural Two-Lane") 
dim(dat) 

## 75% of the sample size
	
smp_size <- floor(0.75 * nrow(dat))
	

## set the seed to make your partition reproducible
	
set.seed(123)
	
train_ind <- sample(seq_len(nrow(dat)), size = smp_size)
	

train <- dat[train_ind, ]
	
test <- dat[-train_ind, ]
	

dim(train) 
dim(test) 

train_df= train[, c(4, 5, 7:11)] 
test_df= test[, c(4, 5, 7:11)] 

library(keras) 
library(tfdatasets) 
library(tensorflow) 
library(tidyverse) 
library(dplyr) 
require(xgboost) 
require(Matrix) 
require(data.table) 
require(vcd) 

germanvar<-train_df[,1:6]
	
label <- as.numeric(train_df$Total_Crash) 

data <- as.matrix(germanvar) 

mode(data) <- 'double' 


param_dart <- list(objective = "reg:linear", 

nrounds = 366,


 eta = 0.018,
	
max_depth = 10,

 gamma = 0.009,
	

https://www.rpubs.com
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subsample = 0.98,

 colsample_bytree = 0.86)
 

mod <- xgboost(data = data, label = label,

 xgb_param = param_dart, nrounds = param_dart$nrounds,

 verbose = FALSE, nthread = parallel::detectCores() - 2,

 early_stopping_rounds = 8)
 

library("SHAPforxgboost")
 
shap_values <- shap.values(xgb_model = mod, X_train = data)
 
shap_values$mean_shap_score
 

shap_long <- shap.prep(xgb_model = mod, X_train = data)
 
# is the same as: using given shap_contrib
 
shap_long <- shap.prep(shap_contrib = shap_values$shap_score, X_train = data)
 

shap.plot.summary(shap_long)
 

Figure 76 shows SHAP values for the key variables, and Figure 77 shows 
feature values for the key variables. 

Example Problem 3 (Code Chunk 2) 
shap.plot.dependence(data_long = shap_long, x= "AADT", 
color_feature = "MinPSL") 

Example Problem 3 (Code Chunk 3) 
fig_list = lapply(names(shap_values$mean_shap_score)[1:6], shap.plot.dependence, 
data_long = shap_long, dilute = 5) 

gridExtra::grid.arrange(grobs = fig_list, ncol = 2) 

Figure 76. SHAP values for the key variables. 
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Figure 77. Feature value for two variables. 

Figure 78 shows dependence plots. AADT and length both have upward 
slopes, whereas the others have more variable slopes. ShWidth has a large decline 
and then increases. 

Figure 78. Dependence plots. 



 

 

  

219 Explainable AI 

Example Problem 3 (Code Chunk 4) 
plot_data <- shap.prep.stack.data(shap_contrib = shap_values$shap_score, 
top_n = 4, n_groups = 6) 

shap.plot.force_plot(plot_data, zoom_in_location = 500, y_parent_limit = c(-1,1)) 
shap.plot.force_plot_bygroup(plot_data) 

Figure 79 shows the first six observations of AADT, length, curve, ShWidth, 
and rest_variables. 

Figure 79. First six observations. 

Chapter Conclusion 
This chapter provides a brief introduction of explainable AI and its application in 
highway safety studies. Some of the key topics included in this chapter are partial 
dependence plots, individual conditional expectation plots, accumulated local 
effects plots, local surrogates, Shapley values, and SHAP values. A few example 
problems are provided at the end of this chapter. 
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10 

Disruptive and Emerging 
Technologies in Highway Safety 

10.1. Introduction 
Everyday life relies on the transportation of people and goods. Behaviors and the 
expectations of transportation customers, stakeholders, partners, and employees 
worldwide are being changed by the arrival of the 4th industrial revolution and the 
rapid development and fusion of multiple emerging and disruptive technologies, 
such as artificial intelligence, big data and digitization, next generation wireless 
technologies (5G), the Internet of Things (IoT), connected and automated 
vehicles (CAV) technologies, Mobility as a Service (MaaS)/Mobility on Demand 
(MOD), on-demand ride-sharing services, additive manufacturing, and others. A 
technological revolution that is already altering the way people work, live, and 
relate to one another is being brought about by the fusion of these technologies. 
The transformation is outpacing governmental entities in its scope, scale, and 

Figure 80. Impact analysis of emerging and disruptive technologies. 
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complexity. To build an adaptable and competent workforce, there is a need to 
continually train the transportation workforce for new technologies. The rapid 
advancement and rise in technologies, along with the increased demand for 
technical personnel in data-related fields, calls for an increasing emphasis on 
multi-disciplinary technical skills and core competencies related to emergency 
and disruptive technologies. 

Emerging technologies bring about several possible challenges to state 
Departments of Transportation (DOTs) and other agencies that the existing 
infrastructure is owned/managed by. Uncertainty about changes that could be 
probable and where the most significant impacts could be is substantial and 
hampers an effective national alignment in approach and policy. The risks related 
to the emerging and disruptive technologies can include those to the agency (e.g., 
budget, workforce, data governance, tort liability, and changes in mission or role) 
and the public (e.g., privacy, safety, inclusion, security, mobility, equity, public 
health, and acceptance). Figure 80 shows the impact of these technologies. 

The production of a guidance document for state Departments of 
Transportation (DOTs) and other transportation planning agencies in order to help 
them respond to and manage the potential risks associated with the disruptive 
and emerging technologies on their organizational performance is this study’s 
objective. Empirical research is necessary to identify proactive practices and 
strategies for mitigating risks. 

10.2. Risks Associated with Emerging and 
Disruptive Technologies 

The current project is limited to four broad emerging and disruptive technologies, 
such as CAVs, EVs, MaaS/MOD, and AAM. This section provides some highlights 
on the key risks associated with each of the four major emerging and disruptive 
technologies. 

10.2.1. Connected and Autonomous Vehicles 
Connected and autonomous vehicles (CAVs) are approaching their market release 
soon and are one of the most disruptive and emerging technologies. CAVs affect 
their environments and vice versa, increasing the risk of exploitation of security 
vulnerabilities by malicious actors and the size of the cyberattack surface. 

10.2.2. Electric Vehicles 
The use of CAVs and electromobility is promoted by the proliferation of next-
generation mobility. It makes novel attack surfaces for high impact cyberattacks that 
affect society. A multi-faceted and proactive approach that combines techniques 
arising from various domains of Information and Communications Technology 
(ICT) is necessary to address the risk-associated challenges introduced by electric 
vehicles. New potential risk issues and challenges in the next generation mobility 
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ecosystem are introduced by emerging technologies such as LiDAR, 5G, novel 
in-vehicle and roadside sensors, and smart charging, which electric cars utilize. 

10.2.3. Mobility as a Service/Mobility on Demand 
There is an increasing demand for smart mobility solutions to lower negative 
environmental, social, and economic externalities of private automobile travel. 
Mobility-as-a-Service (MaaS) is an integrated system that allows commuters to 
use a single online interface to book, plan, and pay for trips with a range of mobility 
providers. MaaS uniquely provides a system wherein traditional transportation 
modes can be integrated with new service options, making it a possible alternative 
for private vehicle ownership and a way to overcome some negative externalities 
of automobile dependency. Many cities have implemented—or are working on 
implementing—MaaS trials to understand better how this service will function 
in cities, in order to realize this potential. A systematic literature review was 
utilized to extract insights and develop a conceptual framework to detect risks 
and barriers related to MaaS adoption in cities. Supply strongly impacts transport 
demand, especially with shared transport services where availability is frequently 
limited. Since observed demand can’t be higher than available supply, historical 
transport data generally shows a biased, or censored, version of the actual 
underlying demand pattern. The paradigm of Mobility on Demand (MOD) has 
been emerging with good potential for providing convenient individual mobility. 
Increasing the occupancy rate of MOD by ridesharing (companies such as 
Uber, Lyft, Ridecell, Bird, Lime, Capital Bikeshare) is considered a necessary 
prerequisite for sustainable future mobility. However, both MaaS and MOD have 
risks and vulnerabilities, such as security issues, privacy distortion, and roadway 
safety issues (i.e., child-seat usage during Uber or Lyft rides). 

10.2.4. Advanced Air Mobility 
Advanced air mobility (AAM) seeks to renovate everyday commute and is 
expected to operate in the near future. It is in the form of a taxi service and functions 
as an aerial on-demand transport for either a small group of riders or a single 
passenger. This unfamiliar area is expected to allow consumers to bypass urban 
road network’s traffic congestion. AAM could operate from sky ports retrofitted 
onto building rooftops by implementing an electric vertical takeoff and landing 
concept (eVTOL), subsequently gaining an advantage from an implementation 
standpoint. 

10.3. Studies on Emerging and Disruptive 
Technologies 

Table 24 lists computer vision-based highway safety studies, Table 25 lists 
robotics-based highway safety studies, Table 26 lists CAV-related highway safety 
studies, Table 27 provides a list of EV-related transportation studies, Table 28 
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Table 24. Computer vision-based highway safety studies 

Algorithm 
YOLO 

Research Area 
Incident Detection 
Pedestrian Safety 

Truck Safety 
Pipeline Safety 
Railroad Safety 

Studies 
C. Wang et al. (2020) 
Kohli and Chadha (2020); 
G. Li et al. (2020) 
Alsanad et al. (2020) 
Meng et al. (2020) 
Guo et al. (2021) 

Temporal-Spatial-
Semantic Analysis 

Incident Detection Zhu et al. (2019) 

Scene Segmentation Children Road User Safety 
Pedestrian Safety 
Real-time Risk Assessment 

Kwon and Cho (2020) 
Bustos et al. (2021) 
Li et al. (2021) 

Face Detection Driver Behavior 
Railroad Safety 

Alshaqaqi et al. (2013) 
Avizzano et al. (2021) 

DFF-Net 
Object Detection 

Railroad Safety 
Maritime Safety 

Ye et al. (2021) 
Prasad et al. (2020) 

Table 25. Robotics-based highway safety studies 

Algorithm Research Area Studies 
UAV Bridge Defect Inspection Potenza et al. (2020) 

Mobile Robotics 
Platform 

Bridge Defect Inspection McLaughlin et al. (2020) 

Underwater Robotics Maritime Technology Casalino et al. (2016); Vukić 
and Mišković+ (2016) 

Design Schemata Off-road Robotics Design Schafer et al. (2013) 

Table 26. CAV related highway safety studies 

Algorithm Research Area Studies 
LSTM Trajectory Prediction Lin et al. (2021) 
Deep RL Path Tracking Chen and Chan (2021) 

Security and Safety Rasheed et al. (2020) 
Lane Keeping Assistant Q. Wang et al. (2020) 

Gaussian Process Vehicle Control Su et al. (2018) 
CNN Intersection Safety Hu et al. (2020) 
SVM Vehicle Reidentification Miao et al. (2018) 
RF Aggressive Driving Identification Jahangiri et al. (2018) 
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Table 27. EV related highway safety studies 

Algorithm Research Area Studies 

NN	 Driving Cycle Recognition Krithika and Subramani (2021) 

Probabilistic Routing Basso et al. (2021) 
Bayesian ML 

RL	 Ride Hailing Shi et al. (2020) 

Energy Management	 Xu et al. (2020); Mittal et al. 
(2020); Wang and Northrop 
(2020); Li et al. (2019); Xu et al. 
(2019); Chiş et al. (2017) 

SVM	 Driver Behavior Lee and Wu (2019) 

Energy Management Goebel and Plötz (2019) 

Driving Cycle Recognition Shi et al. (2018) 

LSTM Transportation System Khan and Byun (2020) 

Transfer Learning Energy Management Fukushima et al. (2018) 

SOM Driver Behavior Yang et al. (2018) 

Q-Learning Energy Management Qi et al. (2015) 

Table 28. Air mobility related highway safety studies 

Algorithm Research Area	  Studies 

Heuristic Algorithms Network Design Willey and Salmon (2021) 

Table 29. Ridesharing related highway safety studies 

Algorithm Research Area Studies 

Bayesian Supervised 
Learning 

Ridesharing Pattern 
Analysis 

Zhu et al. (2021) 

P-PPM Ridesharing Group 
Recommendation 

Tang et al. (2021) 

Transit-Based 
Ridesharing Matching 
Algorithm 

Ridesharing Scheduling Kumar and Khani (2021) 

Path-Based Equilibrium 
Model 

Ridesharing Matching Li et al. (2020) 

Doubly Dynamical 
Approach 

Ridesharing Modelling Wei et al. (2020) 



226 Artificial Intelligence in Highway Safety  

  

     

  

  

lists air mobility-related highway safety studies, and Table 29 provides a list of 
ridesharing-related highway safety studies. 

Resources 
1. It is worthy to follow Gartner’s Hype Chart to understand the emerging and 

disruptive technologies: 
https://www.gartner.com/smarterwithgartner/5-trends-drive-the-gartner
hype-cycle-for-emerging-technologies-2020/ 

2. An ongoing project NCHRP 23-15 (Guidance on Risks Related to Emerging 
and Disruptive Transportation Technologies) will be a good resource for 
emerging and disruptive transportation technologies and associated risks: 
https://apps.trb.org/cmsfeed/TRBNetProjectDisplay.asp?ProjectID=5000 

Chapter Conclusion 
This chapter provides a brief overview of emerging and disruptive technologies 
in transportation safety-related issues. Additionally, some state-of-the-art applied 
algorithms and their applications are briefly introduced. 

Further Reading 
Anderson, J.M., Nidhi, K., Stanley, K.D., Sorensen, P., Samaras, C. and Oluwatola, O.A., 

2014. Autonomous Vehicle Technology: A Guide for Policymakers. Rand Corporation. 
Armstrong, P., 2017. Disruptive Technologies: Understand, Evaluate, Respond. Kogan 

Page Publishers. 
Baba, N., Baba, N., Jain, L.C. and Handa, H., 2007. Advanced Intelligent Paradigms in 

Computer Games, 1st ed. Springer Publishing Company, Incorporated. 
Bartoletti, I., Leslie, A. and Millie, S.M., 2020. The AI Book: The Artificial Intelligence 

Handbook for Investors, Entrepreneurs and FinTech Visionaries. John Wiley & Sons. 
Brownlee, J., 2019. Deep Learning for Computer Vision: Image Classification, Object 

Detection, and Face Recognition in Python. Machine Learning Mastery. 
Coletta, C., Evans, L., Heaphy, L. and Kitchin, R., 2018. Creating Smart Cities. Routledge. 
Coppola, P. and Esztergár-Kiss, D., 2019. Autonomous Vehicles and Future Mobility. 

Elsevier. 
Géron, A., 2019. Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: 

Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc. 
Hennig, N., 2017. Keeping Up with Emerging Technologies: Best Practices for Information 

Professionals. ABC-CLIO. 
Howse, J., 2013. OpenCV Computer Vision with Python. Packt Publishing Ltd. 
Hutter, F., Kotthoff, L. and Vanschoren, J., 2019. Automated Machine Learning: Methods, 

Systems, Challenges. Springer. 
Jerald, J., 2015. The VR Book: Human-Centered Design for Virtual Reality. Association 

for Computing Machinery and Morgan & Claypool. 

https://www.apps.trb.org
https://www.gartner.com


 

 

227 Disruptive and Emerging Technologies in Highway Safety 

Kaehler, A. and Bradski, G., 2016. Learning OpenCV 3: Computer Vision in C++ with the 
OpenCV Library. O’Reilly Media, Inc. 

Larminie, J. and Lowry, J., 2012. Electric Vehicle Technology Explained. John Wiley & 
Sons. 

Lian, Y., Zhang, G., Lee, J. and Huang, H., 2020. Review on big data applications in safety 
research of intelligent transportation systems and connected/automated vehicles, 
Accident Analysis & Prevention. 

Mao, W. and Wang, F.-Y., 2012. Advances in Intelligence and Security Informatics, 1st ed. 
Academic Press, Inc., USA. 

Marchant, G.E., Abbot, K.W. and Allenby, B., 2013. Innovative Governance Models for 
Emerging Technologies. Edward Elgar Publishing. 

Martin, J., 2000. After the Internet: Alien Intelligence. Regnery Publishing, Inc., An Eagle 
Publishing Company. 

Maurer, M., Gerdes, J.C., Lenz, B. and Winner, H., 2016. Autonomous Driving: Technical, 
Legal and Social Aspects. Springer. 

Minker, W., Weber, M., Hagras, H., Callagan, V. and Kameas, A.D., 2009. Advanced 
Intelligent Environments, 1st ed. Springer Publishing Company, Incorporated. 

Murty, M.N. and Biswas, A., 2019. Centrality and Diversity in Search: Roles in A.I., 
Machine Learning, Social Networks, and Pattern Recognition. Springer. 

Nanaki, E.A., 2020. Electric Vehicles for Smart Cities: Trends, Challenges, and 
Opportunities. Elsevier. 

Pistoia, G., 2010. Electric and Hybrid Vehicles: Power Sources, Models, Sustainability, 
Infrastructure and the Market. Elsevier. 

Pohl, K., Broy, M., Daembkes, H. and Hönninger, H., 2016. Advanced Model-Based 
Engineering of Embedded Systems: Extensions of the SPES 2020 Methodology. 
Springer. 

Prince, S.J.D., 2012. Computer Vision: Models, Learning, and Inference. Cambridge 
University Press. 

Song, H., Srinivasan, R., Sookoor, T. and Jeschke, S., 2017. Smart Cities: Foundations, 
Principles, and Applications. John Wiley & Sons. 

Szeliski, R., 2010. Computer Vision: Algorithms and Applications. Springer Science & 
Business Media. 

Townsend, A.M., 2013. Smart Cities: Big Data, Civic Hackers, and the Quest for a New 
Utopia. W.W. Norton & Company. 

Tsapakis, I., Das, S., Khodadi,  A., Lord, D. and Li, E., et al., 2021. Use of Disruptive 
Technologies to Support Safety Analysis and Meet New Federal Requirements. 
Safe-D Project Report 04-113. 

Turner, S., Martin, M., Griffin, G., Le, M., Das, S., et al., 2020. Exploring Crowdsourced 
Monitoring Data for Safety. Safety through Disruption University Transportation 
Center, Texas A&M Transportation Institute, Office of the Assistant Secretary for 
Research and Technology. 

References 
Alsanad, H.R., Ucan, O.N., Ilyas, M., Khan, A.U.R., Bayat, O., et al., 2020. Real-time fuel 

truck detection algorithm based on deep convolutional neural network. IEEE Access, 
pp. 8. 



228 Artificial Intelligence in Highway Safety  

 

 

Alshaqaqi, B., Baquhaizel, A.S., Ouis, M.E.A., Boumehed, M., Ouamri, A., et al., 2013. 
Vision Based System for Driver Drowsiness Detection. In: 11th International 
Symposium I of Programming and Systems (ISPS). pp. 103–108. 

Avizzano, C.A., Tripicchio, P., Ruffaldi, E., Filippeschi, A., Jacinto-Villegas, J.M., et 
al., 2021. Real-time embedded vision system for the watchfulness analysis of train 
drivers. IEEE Transactions on Intelligent Transportation Systems, 22, pp. 208–218. 

Basso, R., Kulcsár, B. and Sanchez-Diaz, I., 2021. Electric vehicle routing problem 
with machine learning for energy prediction. Transportation Research Part B: 
Methodological, 145, 24–55. 

Bustos, C., Rhoads, D., Solé-Ribalta, A., Masip, D., Arenas, et al., 2021. Explainable, 
automated urban interventions to improve pedestrian and vehicle safety. Transportation 
Research Part C: Emerging Technologies, 125, 103018. 

Casalino, G., Caccia, M., Caselli, S., Melchiorri, C., Antonelli, G., et al., 2016. Underwater 
Intervention Robotics: An Outline of the Italian National Project MARIS. Marine 
Technology Society Journal, 50, pp. 98–107. 

Chen, I.-M. and Chan, C.-Y., 2021. Deep reinforcement learning based path tracking 
controller for autonomous vehicle. Proceedings of the Institution of Mechanical 
Engineers, Part D: Journal of Automobile Engineering, 235, pp. 541–551. 

Chiş, A., Lundén, J. and Koivunen, V., 2017. Reinforcement learning-based plug-in electric 
vehicle charging with forecasted price. IEEE Transactions on Vehicular Technology, 
66, pp. 3674–3684. 

Das, S., 2021. Autonomous vehicle safety: Understanding perceptions of pedestrians and 
bicyclists. Transportation Research Part F: Traffic Psychology and Behaviour, 81, pp. 
41–54. 

Das, S., 2022. Impact of COVID-19 on Industries. COVID-19 in the Environment Impact, 
Concerns, and Management of Coronavirus, Elsevier, Washington. 

Das, S., 2022. Challenges and Opportunities of Electric Vehicles: A Short Review. Preprint. 
Das, S., Dutta, A., Lindheimer, T., Jalayer, M. and Elgart, Z., 2019. YouTube as a source 

of information in understanding autonomous vehicle consumers: Natural language 
processing study. Transportation Research Record: Journal of the Transportation 
Research Board, 2673, pp. 242–253. 

Das, S., Dutta, A. and Tsapakis, I., 2020e. Automated vehicle collisions in California: 
Applying Bayesian latent class model. IATSS Research, 44, pp. 300–308. 

Fukushima, A., Yano, T., Imahara, S., Aisu, H., Shimokawa, Y., et al., 2018. Prediction 
of energy consumption for new electric vehicle models by machine learning. IET 
Intelligent Transport Systems, 12, pp. 1174–1180. 

Goebel, D. and Plötz, P., 2019. Machine learning estimates of plug-in hybrid electric 
vehicle utility factors. Transportation Research Part D: Transport and Environment, 
72, pp. 36–46. 

Guo, F., Qian, Y. and Shi, Y., 2021. Real-time railroad track components inspection based 
on the improved YOLOv4 framework. Automation in Construction, 125, 103596. 

Hu, J., Huang, M.-C. and Yu, X., 2020. Efficient mapping of crash risk at intersections with 
connected vehicle data and deep learning models. Accident Analysis & Prevention, 
144, pp. 105665. 

Jahangiri, A., Berardi, V.J. and Ghanipoor Machiani, S., 2018. Application of real field 
connected vehicle data for aggressive driving identification on horizontal curves. 
IEEE Transactions on Intelligent Transportation Systems, 19, pp. 2316–2324. 



 

 

229 Disruptive and Emerging Technologies in Highway Safety 

Jalayer, M., O’Connell, M., Zhou, H., Szary, P. and Das, S., 2019a. Application of 
unmanned aerial vehicles to inspect and inventory interchange assets to mitigate 
wrong-way entries. ITE Journal, 89, pp. 36–42. 

Khan, P.W. and Byun, Y.-C., 2020. Smart contract centric inference engine for intelligent 
electric vehicle transportation system. Sensors, 20, 4252. 

Kohli, P. and Chadha, A., 2020. Enabling pedestrian safety using computer vision 
techniques: A case study of the 2018 Uber Inc. Self-driving Car Crash. In: Arai, K. 
and Bhatia, R. (Eds.), Advances in Information and Communication. Lecture Notes in 
Networks and Systems. Presented at the Advances in Information and Communication, 
Cham, pp. 261–279. 

Krithika, V. and Subramani, C., 2021. Neural network based drive cycle analysis for 
parallel hybrid electric vehicle. J. Test. Eval., 49, 20200233. 

Kumar, P. and Khani, A., 2021. An algorithm for integrating peer-to-peer ridesharing and 
schedule-based transit system for first mile/last mile access. Transportation Research 
Part C: Emerging Technologies, 122, 102891. 

Kutela, B., Das, S. and Dadashova, B., 2021. Mining patterns of autonomous vehicle 
crashes involving vulnerable road users to understand the associated factors. Accident 
Analysis & Prevention, 106473. 

Kwon, J.-H. and Cho, G.-H., 2020. An examination of the intersection environment 
associated with perceived crash risk among school-aged children: Using street-level 
imagery and computer vision. Accident Analysis & Prevention, 146, 105716. 

Lee, C.-H. and Wu, C.-H., 2019. Learning to recognize driving patterns for collectively 
characterizing electric vehicle driving behaviors. Int. J Automot. Technol., 20, pp. 
1263–1276. 

Li, G., Yang, Y. and Qu, X., 2020. Deep learning approaches on pedestrian detection in 
hazy weather. IEEE Transactions on Industrial Electronics, 67, pp. 8889–8899. 

Li, Y., He, H., Peng, J. and Wang, H., 2019. Deep reinforcement learning-based energy 
management for a series hybrid electric vehicle enabled by history cumulative trip 
information. IEEE Transactions on Vehicular Technology, 68, pp. 7416–7430. 

Li, Y., Karim, M.M., Qin, R., Sun, Z., Wang, Z., et al., 2021. Crash report data analysis 
for creating scenario-wise, spatio-temporal attention guidance to support computer 
vision-based perception of fatal crash risks. Accident Analysis & Prevention, 151, 
105962. 

Li, Y., Liu, Y. and Xie, J., 2020. A path-based equilibrium model for ridesharing matching. 
Transportation Research Part B: Methodological, 138, pp. 373–405. 

Lin, L., Gong, S., Peeta, S. and Wu, X., 2021. Long short-term memory-based human-
driven vehicle longitudinal trajectory prediction in a connected and autonomous 
vehicle environment. Transportation Research Record 0361198121993471. 

McLaughlin, E., Charron, N. and Narasimhan, S., 2020. Automated defect quantification 
in concrete bridges using robotics and deep learning. Journal of Computing in Civil 
Engineering, 34, 04020029. 

Meng, L., Peng, Z., Zhou, J., Zhang, J., Lu, Z., et al., 2020. Real-time detection of ground 
objects based on unmanned aerial vehicle remote sensing with deep learning: 
Application in excavator detection for pipeline safety. Remote Sensing, 12, pp. 182. 

Miao, Z., Head, K.L. and Beak, B., 2018. Vehicle reidentification in a connected vehicle 
environment using machine learning algorithms. Transportation Research Record, 
2672, pp. 160–172. 



230 Artificial Intelligence in Highway Safety  

 

 
 

 

 

Mittal, N., Pundlikrao Bhagat, A., Bhide, S., Acharya, B., Xu, B., et al., 2020. Optimization 
of Energy Management Strategy for Range-Extended Electric Vehicle Using 
Reinforcement Learning and Neural Network. Presented at the WCX SAE World 
Congress Experience, 2020-01–1190. 

Potenza, F., Rinaldi, C., Ottaviano, E. and Gattulli, V., 2020. A robotics and computer-
aided procedure for defect evaluation in bridge inspection. J. Civil Struct. Health 
Monit, 10, pp. 471–484. 

Prasad, D.K., Dong, H., Rajan, D. and Quek, C., 2020. Are object detection assessment 
criteria ready for maritime computer vision? IEEE Transactions on Intelligent 
Transportation Systems, 21, pp. 5295–5304. 

Qi, X., Wu, G., Boriboonsomsin, K. and Barth, M.J., 2015. Anovel blended real-time energy 
management strategy for plug-in hybrid electric vehicle commute trips. In: 2015 IEEE 
18th International Conference on Intelligent Transportation Systems. Presented at the 
2015 IEEE 18th International Conference on Intelligent Transportation Systems, pp. 
1002–1007. 

Rahman, M.T., Dey, K., Das, S. and Sherfinski, M., 2021. Sharing the road with autonomous 
vehicles: A qualitative analysis of the perceptions of pedestrians and bicyclists. 
Transportation Research Part F: Traffic Psychology and Behaviour, 78, pp. 433–445. 

Rasheed, I., Hu, F. and Zhang, L., 2020. Deep reinforcement learning approach for 
autonomous vehicle systems for maintaining security and safety using LSTM-GAN. 
Vehicular Communications, 26, 100266. 

Schafer, B.-H., Armbrust, C., Fohst, T. and Berns, K., 2013. The application of design 
schemata in off-road robotics. IEEE Intelligent Transportation Systems Magazine, 5, 
pp. 4–27. 

Shi, J., Gao, Y., Wang, W., Yu, N. and Ioannou, P.A., 2020. Operating Electric Vehicle 
Fleet for Ride-Hailing Services with Reinforcement Learning. IEEE Transactions on 
Intelligent Transportation Systems, 21, pp. 4822–4834. 

Shi, Q., Qiu, D., He, L., Wu, B., Li, Y., et al., 2018. Support vector machine–based 
driving cycle recognition for dynamic equivalent fuel consumption minimization 
strategy with hybrid electric vehicle. Advances in Mechanical Engineering, 10, 
1687814018811020. 

Su, J., Wu, J., Cheng, P. and Chen, J., 2018. Autonomous vehicle control through the 
dynamics and controller learning. IEEE Transactions on Vehicular Technology, 67, 
pp. 5650–5657. 

Tang, L., Duan, Z., Zhu, Y., Ma, J., Liu, Z., et al., 2021. Recommendation for ridesharing 
groups through destination prediction on trajectory data. IEEE Transactions on 
Intelligent Transportation Systems, 22, pp. 1320–1333. 

Tsapakis, I., Das, S., Khodadadi, A., Lord, D., Morris, J. and Li, E., 2020. Use of Disruptive 
Technologies to Support Safety Analysis and Meet New Federal Requirements. SafeD 
UTC Project Report, Washington DC. 

Vukić, Z. and Mišković, N., 2016. State and Perspectives of Underwater Robotics – Role 
of Laboratory for Underwater Systems and Technologies. Pomorski Zbornik Special 
edition, pp. 15–27. 

Wang, C., Dai, Y., Zhou, W. and Geng, Y., 2020. A vision-based video crash detection 
framework for mixed traffic flow environment considering low-visibility condition. 
Journal of Advanced Transportation, 2020, pp. 1–11. 

Wang, P. and Northrop, W., 2020. Data-driven framework for fuel efficiency 
improvement in extended range electric vehicle used in package delivery applications. 
Presented at the WCX SAE World Congress Experience, 2020-01–0589. 



 

 

231 Disruptive and Emerging Technologies in Highway Safety 

Wang, Q., Zhuang, W., Wang, L. and Ju, F., 2020. Lane keeping assist for an autonomous 
vehicle based on deep reinforcement learning. Presented at the WCX SAE World 
Congress Experience, 2020-01–0728. 

Wei, B., Saberi, M., Zhang, F., Liu, W., Waller, S.T., et al., 2020. Modeling and managing 
ridesharing in a multi-modal network with an aggregate traffic representation: A 
doubly dynamical approach. Transportation Research Part C: Emerging Technologies 
117, 102670. 

Willey, L.C. and Salmon, J.L., 2021. A method for urban air mobility network design using 
hub location and subgraph isomorphism. Transportation Research Part C: Emerging 
Technologies, 125, 102997. 

Xu, B., Hu, X., Tang, X., Lin, X., Li, H., Rathod, et al., 2020. Ensemble reinforcement 
learning-based supervisory control of hybrid electric vehicle for fuel economy 
improvement. IEEE Transactions on Transportation electrification 6, pp. 717–727. 

Xu, B., Malmir, F., Rathod, D., Filipi, Z., et al., 2019. Real-time reinforcement learning 
optimized energy management for a 48v mild hybrid electric vehicle. Presented at the 
WCX SAE World Congress Experience, 2019-01–1208. 

Yang, J., Dong, J., Zhang, Q., Liu, Z., Wang, W., et al., 2018. An investigation of battery 
electric vehicle driving and charging behaviors using vehicle usage data collected in 
Shanghai, China. Transportation Research Record, 2672, pp. 20–30. 

Ye, T., Zhang, X., Zhang, Y. and Liu, J., 2021. Railway traffic object detection using 
differential feature fusion convolution neural network. IEEE Transactions on 
Intelligent Transportation Systems, 22, pp. 1375–1387. 

Zhu, R., Fang, J., Xu, H. and Xue, J., 2019. Progressive temporal-spatial-semantic analysis 
of driving anomaly detection and recounting. Sensors, 19, 5098. 

Zhu, Z., Sun, L., Chen, X. and Yang, H., 2021. Integrating probabilistic tensor factorization 
with Bayesian supervised learning for dynamic ridesharing pattern analysis. 
Transportation Research Part C: Emerging Technologies, 124, 102916. 



 

 

 

 

chapter 

11 

Conclusions and Future Needs 

11.1. Introduction 
With the rise of AI applications, more and more research has begun to apply 
AI techniques to address highway safety problems. Traditional ways of solving 
highway safety-related problems always involve statistical and mathematical 
models. However, in order to perform an unbiased analysis, a large amount of 
data is needed from various sources. Moreover, when it is difficult to collect 
traffic data, video data can serve as an alternative. As such, traditional methods 
cannot address the needs of these data. Compared to traditional methods, AI can 
perform analyses on big data more efficiently and provide more accurate results. 
Moreover, computer vision (CV) techniques can help to analyze video footage, 
which traditional methods are unable to do. 

11.2. Highway Safety AI 101 
There is an urgent need for the Highway Safety AI 101 framework. The framework 
will provide a big picture overview of the existing AI applications in highway 
safety, potential precise solutions, adaptability in emerging and disruptive 
technologies, and justifiable contexts of ethical issues. 

11.3. Ethics in Highway Safety AI 
AI has many benefits. However, the everyday application of artificial intelligence 
in different emerging and disruptive technologies raises ethical concerns. Here 
is an example. Should automated vehicles have in-built ethical thresholds? If so, 
what are these thresholds, and how should they be determined? If an automated 
vehicle gets into a situation where it must choose between driving into a child 
or an animal or a fixed object to save lives who are outside of the vehicle, what 
decision will it make? Who is controlling these decisions? And what are the 
consequences or responsibilities of these events? If the decision-making process 
and the algorithm are not bias-free, AI can thus increase bias and discrimination. 
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11.3.1. Ethics and Regulation 
Given the ethical problems with AI, there is a need for regulation. In today’s 
world, most AI policy initiatives include AI ethics. It is important to note that a 
straightforward regulation is not available and there is a need to determine what 
precise course of action should be taken. For example, many agencies do not 
know how to deal with transparency of bias given the technologies, as there is 
existing bias in society and divergent views on justice and fairness. Figure 81 
shows a diagram of ethics in AI, including bias & fairness, interpretability, and 
robustness & security. 

Figure 81. Ethics in AI. 

11.3.2. Bias, Fairness, Interpretability, Robustness, 
and Security 

The need for ethical AI is recognized by many companies; Google, for instance, 
has published ethical principles for AI, such as avoiding creating or reinforcing 
unfair bias, enforcing safety, maintaining accountability, promoting scientific 
excellence, providing social benefit, maintaining privacy design, and limiting 
potentially abusive or harmful applications (i.e., weapons/technologies that 
violate international law and human rights). These ethics of AI are about changes 
in technology and how it impacts human lives, but it is also about changes in 
the economy and society. A goal shared by many policymakers is that AI has 
societal “Explainable AI,” which is indicated by the issues of discrimination and 
bias that already exist. Something going wrong is always a risk. Should safety 
ethics become a matter of trade-offs? Security is another issue that existed before 
AI, but now deserves even more attention; every electronic software or device 



234 Artificial Intelligence in Highway Safety  

 

 

   

   

   

 

can be invaded, hacked, and manipulated by people with malicious intentions 
while in a networked world. While some people are more vulnerable to issues 
than others, all are vulnerable due to technologies such as AI, because as their 
agency increases and more tasks are delegated to them, humanity becomes more 
dependent on them. 

11.3.3. Governance 
Responsible innovation necessitates taking the opinions and interests of 
stakeholders into account, not simply embedding ethics into the design. Public 
debate, broad stakeholder involvement, and early societal intervention in 
innovation and research are entailed in inclusive governance. The applied ethics 
of most policy documents (which are typically more abstract and top-down) are 
in conflict with this more bottom-up responsible innovation approach. Policies are 
often created, without the input of stakeholders, by experts, and even principles 
that are endorsed, such as ethics by design, tend to be too vague when it comes to 
the meaning of the implications of their application in practice. It remains a huge 
challenge to build a bridge between the practices of technology development and 
their use in particular contexts, the technologies, and the voices of those who are 
part of these practices and work in these contexts and high-level ethical and legal, 
abstract principles in order to make AI work. Covering this bridging work is left to 
the addressees of these proposals. At the earlier stage of policymaking, should/can 
more be done? More work on the “how” is at least required alongside the “what”: 
the procedures, methods, and institutions necessary for making AI ethics work in 
practice. More attention must be paid to this process. 

11.4. AI based Highway Safety Guidances 
The first version and the upcoming second version of the HSM are more focused 
on statistical modeling techniques. There is a need for a future AI Highway Safety 
Manual (AiHSM) which will incorporate AI solutions in solving highway safety 
problems. There are three ongoing national or National Cooperative Highway 
Research Program (NCHRP) projects which have focused on the potential of AI 
in solving transportation research problems. These projects are: 

• NCHRP 17-100: Leveraging Big Data and Artificial Intelligence to Streamline 
Safety Data Analyses 

• NCHRP 23-12: Artificial Intelligence Opportunities for State and Local DOTs 
– A Research Roadmap 

• NCHRP 23-16: Implementing and Leveraging Machine Learning at State 
Departments of Transportation 

These projects indicate that the interest in ‘AI in Highway Safety’ has 
increased significantly in recent years. The newly adopted Safe System Approach 
(SSA) by the USDOT will gain significant interest from the researchers throughout 
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the world. Inclusion of AI in SSA can initiate a new domain like AI-based SSA 
(AiSSA). Approaches such as the Artificial Intelligence Road Assessment Program 
(AiRAP) have been gaining advancement in data fusion using data from LIDAR, 
telematics, cell phone, probe, and other data sources to deliver AI analytic-based 
critical information for road safety improvement. Wider and real-life usage of 
AI tools will show the importance of AiHSM, AiSSA, and AiRAP in the 
upcoming days. 

Chapter Conclusion 
This chapter provides conclusions and future needs. It reviews highway safety and 
AI, ethics in highway safety AI, and the need for AI based tools such as AiRAP, 
AiSSA, and AiHSM. 
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Appendix A 

Case Study of Exploratory Data 
Analysis 

Problem Statement 
Exploratory data analysis is a critical part of analyzing data. This case study 
shows the steps of an exploratory data analysis by exploring the differences of 
crash characteristics by different generations. 

Data Description 
This case study collected traffic fatality data from FARS covering 2010-2018 
(nine years). All three levels of data (crash, vehicle, and person) were merged 
together at the person level. The person age variables have been converted into 
seven generations based on the birth year calculated from the person age data and 
year of fatality occurrences. There are a limited number of cases with missing 
information about the person age. These entries were removed. Table 30 shows 
the frequencies of traffic fatalities by year and generation. The counts clearly show 
that Gen X, Millennial, and Gen Z are the three generations with a large number 
of traffic fatalities. Millennial is the generation that has the highest number of 
traffic fatalities (98,810 fatalities in nine years). 

Before starting the analysis of generation-based information, it is important 
to show the overall fatality rates of the states in the U.S. Figure 82 represents 
traffic fatalities by year for every state. The number of fatalities is represented by 
a color gradient for easy visual interpretation. Overall, states like California (CA), 
Texas (TX), and Florida (FL) have large numbers of traffic fatalities relative to 
other states. California and Texas are the top states with the highest number of 
traffic fatalities every year. From 2010 to 2018, the trends of traffic fatalities are 
usually in decreasing order for all the states except for a few, such as New York 
and Pennsylvania. 
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Table 30. Traffic fatalities by American generations
	

Year Greatest Silent Boomers Gen X Millennial Gen Z Post-Z Yearly 
Total 

2010 1,402  4,122  8,632  7,465 10,269  1,063  0  32,953 

2011 1,120  3,998  8,446  7,213 10,511  1,139  0  32,427 

2012  952  4,014  8,806  7,450 11,138  1,372  0  33,732 

2013  791  3,924  8,483  7,264 10,741  1,578  57  32,838 

2014  683  3,770  8,389  6,925 10,837  1,940    119  32,663 

2015  599  3,827  8,993  7,685 11,404  2,665  231  35,404 

2016  547  3,989  9,299  8,054 11,927  3,549  321  37,686 

2017  387  4,019  9,023  8,187 11,258  4,072  404  37,350 

2018  288   3,711  8,846  7,951 10,725  4,491  416  36,428 

Generation 6,769 35,374 78,917 68,194 98,810 21,869 1,548 311,481 
Total 

Figure 82. Traffic fatalities by state (2010-2018). 

Exploratory Data Analysis 
Figure 83 represents traffic fatalities by American generations for every state. 
The frequencies are denoted by a color gradient with dark indicative of a more 
populous state and light of a lower population. Overall, states like California 
(CA), Texas (TX), and Florida (FL) have large fatality counts relative to other 
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states. Since Florida is known to be the “retirement” state, the presence of Silent 
and Boomer populations, along with the number of fatality counts, is higher than 
other American generations. The trends of fatalities by generation are similar for 
Texas except for the Greatest generation. Similarly, the trends are slightly low for 
Post-Z in Florida and California. For the northern states, the fatalities of the Silent 
and Boomer generations are slightly higher. 

Figure 84 displays the population and traffic fatalities by American 
generations. The graph on the left represents the population of each categorized 

Figure 83. Traffic fatalities in the U.S. states by generations. 

Figure 84. Population and fatalities by American generations. 
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generation. The graph on the right represents the fatalities from 2010-2018 with 
the number of fatalities from each categorized generation. In comparison to the 
population, there is a significantly lower proportional number of fatalities for Gen 
Z and Post-Z populations. This is mostly due to the smaller number of drivers in 
these two groups. A majority of these fatalities are associated with either occupants 
or non-motorists. Gen X and Boomers show a slight decrease in proportional 
fatalities. There are slight increases in proportional fatalities for the Millennial 
and Silent generations. 

Race is another critical aspect that requires more attention. Table 31 lists 
the traffic fatalities in nine years by American generations and their races. White 
Americans are disproportionately high in traffic fatalities (62%) compared to 
African Americans and Hispanics in terms of total fatality counts. It is important 
to know that White Americans represent 73% of the U.S. population (according 
to the U.S. Census). The fatalities of African Americans and Hispanics are 
12.8% and 12.9%, respectively. African Americans make up 13.4% of the U.S. 
population, and Hispanics represent 18.5%. Based on the population-fatality 
percentage distribution, African Americans are represented disproportionately 
high in traffic fatalities. 

Table 31. Fatality counts by generation and race 

Race Greatest Silent Boomers Gen X Millennial Gen Z Post-Z 

White Alone 5320 26164 53423 40979 54964 11368 626 

Black Alone 250 2274 9224 9856 14361 3555 379 

Hispanic 291 2222 6838 9283 16980 4246 332 

Asian Alone 170 1091 1651 1142 1847 406 36 

American Indian 19 238 950 1296 2080 436 44 

Two or More Races 717 3361 6759 5546 8386 1811 129 

Native Hawaiian 
Alone 1 19 52 59 119 39 2 

Guamanian/ 
Samoan 1 5 20 33 73 8 0 

Crash and fatality data are complex in nature. Crash data has a significant 
amount of categorical information. Alluvial plots are great data visualization tools 
to show complex interactions between multiple categories in a two-dimensional 
space. The black bars indicate the ratios of the categories in each variable. These 
bars are sorted in descending order of the proportions in each variable. The 
width of the links between the variables indicates the in between proportions. 
Figure 85 shows alluvial plots by considering several key factors in two groups: 
1) generation, person type, drinking, and drug, and 2) generation, race, gender, 
and work injury. These two plots can be explained in detail. Currently, only a 
few observations are described here. In pedestrian and bicyclist groups, Boomers 
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are higher in frequencies than other generations. Drivers and pedestrians are the 
two groups that show high alcohol impairment compared to other person types. 
Compared to the Greatest and Silent generations, the fatalities among non-
Americans are higher in other generations. Males are disproportionately higher 
in fatalities compared to females. The majority of the fatalities are not work-
related. Males are represented disproportionately higher in work-related injuries 
compared to females. Findings from this section answer research question 1. 

(a) Generation, person type, drinking, and drug 

(b) Generation, race, gender, and work-related injury 

Figure 85. Alluvial plots on factor interactions. 
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Results and Discussions 
Statistical analyses were performed using R (version 3.6.0) with the package 
‘compareGroups’ for descriptive tables. This study defined statistical significance 
as p-value < 0.05. Table 32 lists the comparisons of person fatalities by five 
American generations. Eight key person-level variables (sex or gender, person type, 
race, alcohol impairment, drug impairment, seat-belt usage, location of death, and 
work-related injury) were considered for analysis. These person-level variables 
were selected based on their variable importance measures. The generations 
used in this table include Silent, Boomers, Gen X, Millennial, and Gen Z. In the 
United States, males played a major role in traffic fatalities in all five American 
generations (Boomers=72.8%, Gen X=73.7%, Gen Z=62.4%, Millennial=73.5%, 
and Silent=61.6%). In Silent and Gen Z generations, females are represented 
disproportionately higher compared to the other three generations. The fatalities of 
the White Americans show a downward trend from the Silent generation to Gen Z. 
The opposite is visible for African Americans. The proportions show that drivers 
are the most likely of all person types to be involved in a traffic fatality except in 
Gen Z, which is obvious. Passengers are the most likely to be involved in traffic 
fatalities for Gen Z, with 47.5%. As Gen Z are the youngest among these five 
generations, the majority of the Gen Z population are occupants or passengers. In 
seat-belt usage, the Silent generation shows disproportionately high proportions 
in both lap and shoulder belt usage. To compute the count and percentages of 
variable categories by groups (i.e., five generations in this case), it is important 
to test whether the distribution of the variables differs between groups. As all the 
variables of interest in this group are categorical in nature, a Chi-square test was 
performed. As this study design contains more than two groups, there is a need 
for performing overall association assessment, as well as pairwise comparisons. 
This study conducted pairwise tests and displayed p-values. From Table 32, all the 
variables significantly differ by generations. 

As Baby Boomers, Millennials, and Gen X represent a high number of 
fatalities, it is intuitive to make comparisons between these generations. As Baby 
Boomers are an aging group among these three generations, the comparisons were 
done with this group: Baby Boomers vs Millennials and Baby Boomers vs Gen 
X. Table 33 lists the comparisons of person fatalities between Baby Boomers and 
Millennials. Consider for a given data matrix with the response and predictor 
variables that the mean parameter vector is β . Using the odds of the combination 

( )  x′βx, Odd  ( )βx = 
π β x 

= e(  )  . The odds ratio (OR) can be expressed as: 
1 π β x− ( )  

Odd  β x( )  
11 (x′ β − x2 ′ β )OR (β x x  ) = = e (1)1 2  Odd  β x2( )  

Male, drivers, White Americans, no alcohol impairment, no drug impairment, 
shoulder and lap belt usage, death at scene, and non-work-related injury are 
the dominant categories in the listed variables of interest for both groups. The 
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Table 32. Comparison between fi ve generations

Variable Categories  Silent Baby Boomers Gen X Millennial Gen Z p-value 
N=35,374 N=78,917 N=68,194 N=98,810 N=21,869 

SEX (Gender) 0.000*
 Female 13,561 (38.3%) 21,470 (27.2%) 17,932 (26.3%) 26,113 (26.4%) 8,220 (37.6%)
 Male 21,807 (61.6%) 57,430 (72.8%) 50,248 (73.7%) 72,670 (73.5%) 13,642 (62.4%)
 Not reported 6 (0.02%) 17 (0.02%) 14 (0.02%) 27 (0.03%) 7(0.03%) 
PER_TYP (Person Type) 0.000*
 Driver 22,041 (62.3%) 51,989 (65.9%) 46,739 (68.5%) 65,820 (66.6%) 7,308 (33.4%)
 Passenger 6,507 (18.4%) 8,840 (11.2%) 8,799 (12.9%) 20,064 (20.3%) 10,377 (47.5%)
 Pedestrian 5,898 (16.7%) 14,838 (18.8%) 10,770 (15.8%) 10,937 (11.1%) 3,072 (14.0%)
 Bicyclist 579 (1.64%) 2,588 (3.28%) 1,510 (2.21%) 1,339 (1.36%) 717 (3.28%)
 Occupant non-motor 12 (0.03%) 39 (0.05%) 26 (0.04%) 37 (0.04%) 43 (0.20%)
 Occupant not in transport 31 (0.09%) 101 (0.13%) 75 (0.11%) 91 (0.09%) 38 (0.17%)
 Not reported 306 (0.87%) 522 (0.66%) 275 (0.40%) 522 (0.53%) 314 (1.44%) 
RACE (Race) 0.000* 
White Alone 26,164 (74.0%) 53,423 (67.7%) 40,979 (60.1%) 54,964 (55.6%) 11,368 (52.0%)
 Black Alone 2,274 (6.43%) 9,224 (11.7%) 9,856 (14.5%) 14,361 (14.5%) 3,555 (16.3%)
 Hispanic 2,222 (6.28%) 6,838 (8.66%) 9,283 (13.6%) 16,980 (17.2%) 4,246 (19.4%) 
Asian Alone 1,091 (3.08%) 1,651 (2.09%) 1,142 (1.67%) 1,847 (1.87%) 406 (1.86%) 
Two or More Races 3,361 (9.50%) 6,759 (8.56%) 5,546 (8.13%) 8,386 (8.49%) 1,811 (8.28%) 



 

 

 

 

American Indian 238 (0.67%) 950 (1.20%) 1,296 (1.90%) 2,080 (2.11%) 436 (1.99%)
 Native Hawaiian Alone 19 (0.05%) 52 (0.07%) 59 (0.09%) 119 (0.12%) 39 (0.18%)
 Samoan/Guamanian 5 (0.01%) 20 (0.03%) 33 (0.05%) 73 (0.07%) 8 (0.04%) 
DRINKING (Alcohol 0.000*
Impairment)
No 18,554 (52.5%) 32,291 (40.9%) 22,105 (32.4%) 29,623 (30.0%) 7,884 (36.1%) 
Yes 1,250 (3.53%) 11,751 (14.9%) 15,177 (22.3%) 21,354 (21.6%) 1,148 (5.25%)
 Not reported 15,570 (44.0%) 34,875 (44.2%) 30,912 (45.3%) 47,833 (48.4%) 12,837 (58.7%) 
DRUGS (Drug Impairment) 0.000*
 No 15,724 (44.5%) 30,912 (39.2%) 23,203 (34.0%) 30,977 (31.4%) 7,008 (32.0%) 
Yes 609 (1.72%) 4,671 (5.92%) 6,164 (9.04%) 9,095 (9.20%) 917 (4.19%)
 Not reported 19,041 (53.8%) 43,334 (54.9%) 38,827 (56.9%) 58,738 (59.4%) 13,944 (63.8%) 
REST_USE (Seat-belt Usage) 0.000*
 Lap and shoulder belt 16,685 (47.2%) 23,068 (29.2%) 16,433 (24.1%) 24,818 (25.1%) 5,676 (26.0%)
 Lap belt only 234 (0.66%) 358 (0.45%) 249 (0.37%) 362 (0.37%) 261 (1.19%)
 Shoulder belt only 94 (0.27%) 176 (0.22%) 163 (0.24%) 230 (0.23%) 38 (0.17%)
 Child/Booster 0 (0.00%) 0 (0.00%) 0 (0.00%) 0 (0.00%) 1,257 (5.75%)
 Helmet 843 (2.38%) 4,995 (6.33%) 4,315 (6.33%) 5,614 (5.68%) 375 (1.71%)
 No helmet 692 (1.96%) 6,458 (8.18%) 6,062 (8.89%) 5,480 (5.55%) 654 (2.99%) 

(Contd.) 
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Table 32. (Contd.) 

Variable Categories  Silent Baby Boomers Gen X Millennial Gen Z p-value 
N=35,374 N=78,917 N=68,194 N=98,810 N=21,869 

Restraint unknown 317 (0.90%) 338 (0.43%) 266 (0.39%) 357 (0.36%) 167 (0.76%)
 None 5,931 (16.8%) 14,538 (18.4%) 16,751 (24.6%) 29,746 (30.1%) 4,116 (18.8%)
 Not reported 10,578 (29.9%) 28,986 (36.7%) 23,955 (35.1%) 32,203 (32.6%) 9,325 (42.6%) 
DOA (Death Location) 0.000*
 Died at scene 13,419 (37.9%) 41,885 (53.1%) 41,864 (61.4%) 62,845 (63.6%) 11,918 (54.5%)
 Died en route 370 (1.05%) 921 (1.17%) 804 (1.18%) 1,035 (1.05%) 216 (0.99%)
 Not applicable 21,559 (60.9%) 36,056 (45.7%) 25,477 (37.4%) 34,848 (35.3%) 9,715 (44.4%)
 Not reported 26 (0.07%) 55 (0.07%) 49 (0.07%) 82 (0.08%) 20 (0.09%) 
WORK_INJ (Work related 0.000*
Injury)
No 32,601 (92.2%) 70,550 (89.4%) 61,111 (89.6%) 91,050 (92.1%) 20,789 (95.1%) 
Yes 528 (1.49%) 3,208 (4.07%) 2,626 (3.85%) 1,694 (1.71%) 82 (0.37%)
 Not reported 2,245 (6.35%) 5,159 (6.54%) 4,457 (6.54%) 6,066 (6.14%) 998 (4.56%) 

Note: Post Z is omitted due to low sample size. 



 

 

 

Table 33. Comparison between baby boomers and millennials

Variable Categories Baby Boomers N=78,917 Millennials N=98,810  OR p-ratio p-value 

SEX 0.001*

 Female 21,470 (27.2%) 26,113 (26.4%) Ref. Ref.

 Male 57,430 (72.8%) 72,670 (73.5%) 1.04 [1.02;1.06] <0.001

 Not reported 17 (0.02%) 27 (0.03%) 1.30 [0.71;2.44] 0.394 

PER_TYP 0.000*

 Bicyclist 2,588 (3.28%) 1,339 (1.36%) Ref. Ref.

 Driver 51,989 (65.9%) 65,820 (66.6%) 2.45 [2.29;2.62] 0.000

 Passenger 8,840 (11.2%) 20,064 (20.3%) 4.39 [4.09;4.71] 0.000

 Pedestrian 14,838 (18.8%) 10,937 (11.1%) 1.42 [1.33;1.53] 0.000

 Occupant non-motor 39 (0.05%) 37 (0.04%) 1.83 [1.16;2.90] 0.010

 Occupant not in transport 101 (0.13%) 91 (0.09%) 1.74 [1.30;2.33] <0.001

 Not reported 522 (0.66%) 522 (0.53%) 1.93 [1.68;2.22] 0.000 

RACE 0.000* 
American Indian 950 (1.20%) 2080 (2.11%) Ref. Ref. 

White Alone 53,423 (67.7%) 54,964 (55.6%) 0.47 [0.43;0.51] 0.000

 Black Alone 9,224 (11.7%) 14,361 (14.5%) 0.71 [0.66;0.77] 0.000

 Hispanic 6,838 (8.66%) 16,980 (17.2%) 1.13 [1.04;1.23] 0.003 
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Table 33. (Contd.) 

Variable Categories Baby Boomers N=78,917 Millennials N=98,810  OR p-ratio p-value 

Asian Alone 1,651 (2.09%) 1,847 (1.87%) 0.51 [0.46;0.57] 0.000 

Two or More Races 6,759 (8.56%) 8,386 (8.49%) 0.57 [0.52;0.62] 0.000

 Native Hawaiian Alone 52 (0.07%) 119 (0.12%) 1.04 [0.75;1.47] 0.803

 Samoan/Guamanian 20 (0.03%) 73 (0.07%) 1.66 [1.02;2.81] 0.040 

DRINKING 0.000*

 No 32,291 (40.9%) 29,623 (30.0%) Ref. Ref. 

Yes 11,751 (14.9%) 21,354 (21.6%) 1.98 [1.93;2.04] 0.000

 Not reported 34,875 (44.2%) 47,833 (48.4%) 1.50 [1.46;1.53] 0.000 

DRUGS 0.000*

 No 30,912 (39.2%) 30,977 (31.4%) Ref. Ref. 

Yes 4,671 (5.92%) 9,095 (9.20%) 1.94 [1.87;2.02] 0.000

 Not reported 43,334 (54.9%) 58,738 (59.4%) 1.35 [1.33;1.38] 0.000 

REST_USE 0.000*

 Helmet 4,995 (6.33%) 5,614 (5.68%) Ref. Ref.

 No helmet 6,458 (8.18%) 5,480 (5.55%) 0.76 [0.72;0.80] 0.000

 Lap and shoulder belt 23,068 (29.2%) 24,818 (25.1%) 0.96 [0.92;1.00] 0.042

 Lap belt only 358 (0.45%) 362 (0.37%) 0.90 [0.77;1.05] 0.170 
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 Shoulder belt only 176 (0.22%) 230 (0.23%) 1.16 [0.95;1.42] 0.139

 Restraint unknown 338 (0.43%) 357 (0.36%) 0.94 [0.81;1.10] 0.428

 None 1,4538 (18.4%) 29,746 (30.1%) 1.82 [1.74;1.90] 0.000

 Not reported 28,986 (36.7%) 32,203 (32.6%) 0.99 [0.95;1.03] 0.583 

DOA 0.000*

 Died at scene 41,885 (53.1%) 62,845 (63.6%) Ref. Ref.

 Died en route 921 (1.17%) 1,035 (1.05%) 0.75 [0.68;0.82] <0.001

 Not applicable 36,056 (45.7%) 34,848 (35.3%) 0.64 [0.63;0.66] 0.000

 Not reported 55 (0.07%) 82 (0.08%) 0.99 [0.71;1.40] 0.966 

WORK_INJ <0.001*

 No 70,550 (89.4%) 91,050 (92.1%) Ref. Ref. 

Yes 3,208 (4.07%) 1,694 (1.71%) 0.41 [0.39;0.43] 0.000

 Not reported 5,159 (6.54%) 6,066 (6.14%) 0.91 [0.88;0.95] <0.001 
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difference of all variables between these two generations is statistically significant 
(see Table 33). For each of the variables, the first category is considered as the 
‘reference’ category. Male Millennials have higher odds for traffic fatalities (Odds 
Ratio or OR=1.04, 95% C.I.=1.02-1.06). Compared to the bicyclists, other person 
types show higher odds for the Millennials. For alcohol and drug impairment-
related traffic fatalities, odds are higher for the Millennials. For lap and shoulder 
belt usage, odds measures are not statistically significant. For shoulder belt only 
and unknown restraint type, the odds are not statistically significant. For work-
related injuries, Millennials show lower odds. For Baby Boomers, the higher odds 
are associated with some of the key attributes such as no helmet, lap and shoulder 
belt, lap belt only, died en route, and work-related injuries. The ‘no helmet’ 
issue clearly indicates that aging motorcyclists and bicyclists are vulnerable to 
collisions. The seat belt issues indicate that proper seat belts are also not sufficient 
when the aging population is involved in crashes. The ‘died en route’ scenario also 
indicates the vulnerability of this aging group. Work-related fatalities indicate that 
the aging population is mostly associated with work-related trips, which may end 
up in crashes and related consequences. 

Table 34 lists the comparisons of person fatalities between Baby Boomers 
and Gen X. Work-related injury is a not factor for the high likelihood of Gen X 
traffic fatalities. The odds of three-person types (occupant non-motor, occupant 
not in transport, and unknown person type) are not statistically significant between 
Baby Boomers and Gen X. Similarly, the odds of three races (Hispanic, Native 
Hawaiian Alone, and Samoan/Guamanian) are not statistically significant between 
Baby Boomers and Gen X. For lap and shoulder belt usage, Gen X show lowers 
odds (OR: 0.82, 95% C.I.: 0.79- 0.86). For alcohol and drug impairment-related 
traffic fatalities, odds are higher for Gen X. For Baby Boomers, the higher odds 
are associated with some of the key attributes such as no helmet, lap and shoulder 
belt, lap belt only, died en route, and work-related injuries. The interpretations are 
similar to the previous section. The findings from this section answer the second 
research question (RQ2). 

Table 34. Comparison between baby boomers and Gen X 

Baby Boomers Gen X OR p-ratio p-value N=78917 N=68194 
GENDER <0.001*

 Female 21,470 (27.2%) 17,932 (26.3%) Ref. Ref.

 Male 57,430 (72.8%) 50,248 (73.7%) 1.05 [1.02;1.07] <0.001

 Not reported 17 (0.02%) 14 (0.02%) 0.99 [0.48;2.01] 0.974 

PER_TYP <0.001*

 Bicyclist 2,588 (3.28%) 1,510 (2.21%) Ref. Ref.

 Driver 51,989 (65.9%) 46,739 (68.5%) 1.54 [1.44;1.64] 0.000 
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Passenger 8,840 (11.2%) 8,799 (12.9%) 1.71 [1.59;1.83] 0.000

 Pedestrian 14,838 (18.8%) 10,770 (15.8%) 1.24 [1.16;1.33] <0.001
 Occupant 39 (0.05%) 26 (0.04%) 1.14 [0.69;1.88] 0.599non-motor 
Occupant not in 101 (0.13%) 75 (0.11%) 1.27 [0.94;1.73] 0.124transport 
Not reported 522 (0.66%) 275 (0.40%) 0.90 [0.77;1.06] 0.208 

RACE 0.000* 

American Indian 950 (1.20%) 1,296 (1.90%) Ref. Ref. 

White Alone 53,423 (67.7%) 40,979 (60.1%) 0.56 [0.52;0.61] 0.000

 Black Alone 9,224 (11.7%) 9,856 (14.5%) 0.78 [0.72;0.86] <0.001

 Hispanic 6,838 (8.66%) 9,283 (13.6%) 1.00 [0.91;1.09] 0.915 

Asian Alone 1,651 (2.09%) 1,142 (1.67%) 0.51 [0.45;0.57] 0.000 
Two or More 6,759 (8.56%) 5,546 (8.13%) 0.60 [0.55;0.66] 0.000Races 
Native Hawaiian 52 (0.07%) 59 (0.09%) 0.83 [0.57;1.22] 0.346Alone 
Samoan/ 20 (0.03%) 33 (0.05%) 1.21 [0.69;2.15] 0.513Guamanian
	

REST_USE <0.001*


 Helmet 4,995 (6.33%) 4,315 (6.33%) Ref. Ref.


 No helmet 6,458 (8.18%) 6,062 (8.89%) 1.09 [1.03;1.15] 0.002


 Lap and shoulder 
 23,068 (29.2%) 16,433 (24.1%) 0.82 [0.79;0.86] 0.000belt 
Lap belt only 358 (0.45%) 249 (0.37%) 0.81 [0.68;0.95] 0.011

 Shoulder belt 176 (0.22%) 163 (0.24%) 1.07 [0.86;1.33] 0.530only 
Restraint 338 (0.43%) 266 (0.39%) 0.91 [0.77;1.08] 0.271unknown
	

None 1,4538 (18.4%) 1,6751 (24.6%) 1.33 [1.27;1.40] 0.000


 Not reported 28,986 (36.7%) 23,955 (35.1%) 0.96 [0.92;1.00] 0.050
	

DRINKING 0.000*


 No 32,291 (40.9%) 22,105 (32.4%) Ref. Ref.
	

Yes 11,751 (14.9%) 15,177 (22.3%) 1.89 [1.83;1.94] 0.000


 Not reported 34,875 (44.2%) 30,912 (45.3%) 1.29 [1.27;1.32] 0.000
	

DRUGS <0.001*


 No 30,912 (39.2%) 23,203 (34.0%) Ref. Ref.
	
(Contd.)
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Table 34. (Contd.) 

Baby Boomers Gen X OR p-ratio p-value N=78917 N=68194 

Yes 4,671 (5.92%) 6,164 (9.04%) 1.76 [1.69;1.83] 0.000

 Not reported 43,334 (54.9%) 38,827 (56.9%) 1.19 [1.17;1.22] 0.000 

DOA <0.001*

 Died at scene 41,885 (53.1%) 41,864 (61.4%) Ref. Ref.

 Died en route 921 (1.17%) 804 (1.18%) 0.87 [0.79;0.96] 0.005

 Not applicable 36,056 (45.7%) 25,477 (37.4%) 0.71 [0.69;0.72] 0.000

 Not reported 55 (0.07%) 49 (0.07%) 0.89 [0.60;1.31] 0.560 

WORK_INJ 0.109

 No 70,550 (89.4%) 61,111 (89.6%) Ref. Ref. 

Yes 3,208 (4.07%) 2,626 (3.85%) 0.94 [0.90;1.00] 0.035

 Not reported 5,159 (6.54%) 4,457 (6.54%) 1.00 [0.96;1.04] 0.901 



 

Appendix B 

Steps of Big Data Analysis in 
Highway Safety 

Problem Statement 
By the year 2035, Texas is expected to grow from its present population of 
26 million to 40 million people according to the Texas State Data Center (see 
Figure 86). More congestion will occur in urban areas, meaning that road and 
bridge stress will increase, and greater demand will be placed on rural highways 
to support travel connections and freight movement between farms, ranches, 
homes, jobs, and markets due to the population and job growth. These demands 
keep growing faster than the roadway capacity that is necessary to handle this 
growth. Exploration of big data and big data management are the future needs 
for transportation safety professionals. This case study shows the step-by-step 
methods of big data analysis in highway safety and mobility analysis. 

Enterprise Data Analytics Platform 
In analyzing big data analysis, there is a need for advanced enterprise cloud data 
platforms. Figure 87 shows how enterprise data platforms can seamlessly perform 
data sharing, preparation, analysis, and visualization. 

Site Selection 
An image of Texas growth and gridlock prior to the occurrence of the COVID-19 
pandemic is offered in the 2020 ranking of Texas’ most congested roadways. 
For example, Interstate Highway (IH)-35 through downtown Austin overtook 
Houston’s West Loop (IH-610) as the most gridlocked corridor in the state. 
Houston’s Southwest Freeway (IH-69), Dallas’ Woodall Rodgers Freeway (SS-
366), and the Eastex Freeway (IH-69) in Houston make up the rest of the top five. 
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Figure 86. Most congested roadways in Texas. 

Figure 87. Enterprise data layer. 

Identify Commercial Datasets 
Travel Time Data 
The NPMRDS, the recently released Performance Network from Federal Highway 
Way Administration (FHWA), and INRIX’s XD network (see Figure 88) provide 
disaggregate level operating speed data. The NPMRDS dataset, procured by 
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FHWA, is free to state DOT’s and Metropolitan Planning Organizations (MPOs) 
for research. The FHWA Performance Network is a conflation of NPMRDS data 
back onto states’ HPMS submissions. While the NPMRDS and Performance 
Network data are free, these are limited to covering only the National Highway 
System (NHS) portion of the state roadway network. Figure 88 shows the 
difference in coverage between the NPMRDS/ Performance Network and INRIX 
XD conflated to the Texas roadway network. 

Since July 2013, the 
FHWA has used NPMRDS 
(including probe vehicle-
based travel time data for both 
freight and passenger vehicles 
for all NHS facilities at 
5-minute intervals) in order to 
support its Urban Congestion 
Report and its Freight 
Performance Measurement 
(FPM) programs (Lomax, 
2004). The data is supplied 
by a combination of the 
American Trucking Research 
Institute (ATRI) and HERE 
(the company once known as Traffic.com and later known as NAVTEC). HERE 
gives the data needed to estimate ‘car’ vehicle travel times, and ATRI gives the 
data for ‘truck’ travel times. HERE formulates the data from these two datasets 
into one travel time statistic meant to be an estimate of ‘average vehicle travel 
time’ for both trucks and cars. NPMRDS travel time is reported based on TMC 
segments with link length varying from under a mile to multiple miles. NPMRDS 
is meant for state agencies to measure system performance in reaching new federal 
performance management requirements. The first version of the NPMRDS is 
known as “Version 1’ or ‘HERE NPMRDS,’ and the recent version is known as 
‘Version 2’ or ‘INRIX NPMRDS,’ which gives data from January 1, 2017. 

Other Data Sources 
Some examples of big enterprise datasets are: 

• Vehicle trajectory data or waypoint data: INRIX, Wejo 
• Bike volume data: Strava 
• Event data: Wejo, WayCare 
• Hourly traffic volume: StreetLight Data Inc. 
• 1.70 million cases (2016–2019) (every 90 seconds): MapQuest Traffic API 
• 0.54 million cases (2016–2019) (every 90 seconds): Bing Map Traffic API 
• Uber movement data 
• Online social network (OSN) data 

Figure 88. Texas NPMRDS network. 

http://www.Traffic.com
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For example, Lonestar has a robust Data Archiving Application (DAA). The 
DAA archives near-real-time data (defined as collected within the last 24 hours) 
and historical data (defined as older than 24 hours). Within the DAA, the data 
elements below are known to be archived. Examples of some of the critical data 
elements are listed below: 

• Speed, volume, occupancy data in various temporal archive levels 
• Vehicle classification data 
• Lane Closures 
• Dynamic Message Sign (DMS) status update messages 

Identify Existing Datasets 
Granular Level Traffic Volume Data: TMAS 
State highway and transportation agencies sustain the TMAS, which is a system of 
traffic count stations that watch roadway usage by gathering vehicle class, volume, 
and weight information, with traffic monitoring stations that can be permanent or 
temporarily implemented. Permanent traffic count stations continuously function 
throughout the year and are called continuous count stations, whereas the short 
duration, or temporary count stations, are locations where traffic counting is not 
covered through the entire year. Typically, the short duration portable count time 
is either 48 or 72 hours. 

Roadway Inventory Data: RHiNO 
The Texas Department of Transportation (TxDOT) maintains the RHiNO, which 
is a database with a variety of roadway characteristics and that mainly offers 
road characteristic information, such as the estimated traffic volume and corridor 
length, for every road that is known in Texas. 

Crash Data: CRIS 
CRIS data elements are split into three main groups: crash event, primary person, 
and vehicle (unit) characteristics. CRIS has over 150 fields that contain data about 
spatial and temporal characteristics (including, but not limited to, time, date, and 
geodesic coordinates), roadway characteristics, contributing factors (including, 
but not limited to, weather, lighting, pavement conditions), manner of collision 
(including, but not limited to, head-on, rear-end, sideswipe), crash severity, 
vehicle type, driver characteristics, and passenger characteristics, among others. 

Demographic Data: U.S. Census and LEHD 
The U.S. Census provides demographic information on various spatial units. 
This study used the Census block group level demographic data due to its higher 
relevance to the modeling outcomes. The American Community Survey (ACS) 
(performed by the U.S. Census Bureau) is a continuous national survey of U.S. 
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households done to gather a large assortment of information such as a primary 
travel mode from home to work, and it is an essential tool for tracking travel 
patterns. The ACS gives estimates for different levels: one (1)-year estimates, 
three (3)-year estimates, and five (5)-year estimates. Using three (3)-year or five 
(5)-year ACS estimates is helpful due to the large sample size relative to one (1)-
year estimates. The multi-year estimates have benefits of statistical reliability for 
small population subgroups and less populated areas. 

Longitudinal Employer-Household Dynamics (LEHD) data is a part of 
the Center for Economic Studies at the U.S. Census Bureau, which creates 
new, public-use, cost-effective, information that combines state, federal, and 
Census Bureau data on employees and employers with the Local Employment 
Dynamics Partnership. Additionally, states agree to share with the Census Bureau 
the Quarterly Census of Employment and Wages data and the unemployment 
insurance earnings data. The LEHD data provides both home and work Census 
block data. Home level data is known as Residence Area Characteristic (RAC) 
data files, and work level data is known as Workplace Area Characteristic (WAC) 
data files. These files are released at the state level and are totaled by the home 
Census block and the work Census block, respectively. 

Weather Data: NOAA 
Normal climate is broadly used to reference a full suite of products issued by 
the National Oceanic and Atmospheric Administration (NOAA) that explains 
climatological conditions with 30-year averages and other statistics. Due to its 
large size, Texas has ten distinct climate regions. This means that weather patterns 
vary tremendously across the state on any given day. The majority of the state’s 
precipitation happens in the form of rainfall, with little amounts of ice and snow 
occurring more frequently in the north and west, further away from the moderating 
effects of the Gulf of Mexico. Figure 89 shows the average precipitation measures 
across the state over a thirty-year period (1981-2010). 

Perform Data Fusion 
There is a need to establish a data warehouse to archive selected data elements 
to be used later for testing different AI techniques and for the development of 
performance metrics. It is important to set up relational databases and utilize 
secured Cloud services including, but not limited to, Microsoft Azure or Amazon 
Web Services. There are also a number of data issues including, but not limited to, 
negative speeds, unreliable zero speeds, and presence of volumes without speed 
data. Thus, an efficient relational database is necessary to perform high-level data 
quality checks such as the ones outlined in FHWA’s Using Archived Operations 
Data for Reliability and Mobility Measurement Report. 

Figure 90 illustrates the research framework. The data cleaning from the 
multisource data, the computational framework, and the AI framework will 
overlap in several places. Large amounts of data on transportation infrastructure 
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 Figure 89. Average monthly precipitation (in.) (1981-2010 NOAA Normal Dataset). 

assets are continuously collected at the network level due to advancements in 
technology and in response to data-driven processes. Advancements in technology 
have increased the amount of data and data coverage along highway corridors. 
These vast amounts of new data, combined with existing data, leave practitioners 
searching for ways to share information intelligently. The transition from data to 
information identifies underlying causes of poor network health. The data analytics 
and decision support tool (with dashboard) can provide congestion scenarios on 
the freeways with the potential design parameters and performance probabilities. 

Figure 90. Example data fusion and analysis framework. 
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Referenced Links 
https://npmrds.ritis.org/analytics/help/#npmrds
 
https://www.fhwa.dot.gov/policyinformation/tables/performancenetwork/
 
https://www.fhwa.dot.gov/policyinformation/tables/performancenetwork/
 
https://mobility.tamu.edu/texas-most-congested-roadways/
 
https://www.mapquest.com/
 
https://www.bingmapsportal.com/
 

Further Reading 
Lomax, T. et al., Monitoring Urban Roadways in 2002: Using Archived Operations Data 

for Reliability and Mobility Measurement, FHWA-HOP-04-011, March 2004. 

https://www.bingmapsportal.com
https://www.mapquest.com
https://www.mobility.tamu.edu
https://www.fhwa.dot.gov
https://www.fhwa.dot.gov
https://www.npmrds.ritis.org


 

Appendix C 

ML Interpretability and Model 
Selection 

Problem Statement 
AI models are often tagged as black box models due to having fewer 
interpretability issues. In recent years, explainable AI has gained much attraction 
in the research community. The following replicable case study shows the steps to 
perform crash severity modeling using AI and explains the models with the help 
of different explainable AI metrics. 

Code Chunk 1 
## Please check my RPUBS for additional codes: https://rpubs.com/subasish
 

setwd("~your folder")
 
library(readxl)
 
aa1= read_excel("Bicycle_10_16a.xlsx", sheet= "Main")
 
names(aa1)
 

aa2= aa1[, -c(1, 2, 3, 4, 24)]
 
names(aa2)
 
library(tidyverse)
 
aa2 <- aa2 %>% mutate_if(is.character, as.factor)
 

detach("package:tidyverse", unload=TRUE)
 
library(fairmodels)
 
library(DALEX)
 
library(ranger)
 

# train
 
rf_compas <- ranger(SEVERITY ~., data = aa2, probability = TRUE)
 

# numeric target values
 
y_numeric <- as.numeric(aa2$SEVERITY)-1
 

https://www.rpubs.com
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# explainer 
rf_explainer <- DALEX::explain(rf_compas, data = aa2[,-c(18)], 

y = y_numeric, colorize = FALSE) 

fobject <- fairness_check(rf_explainer, # explainer 
protected = aa2$LIGHTING, # protected variable as factor 
privileged = "Daylight", # level in protected variable, potentially 

more privileged 
cutoff = 0.5, # cutoff - optional, default = 0.5 
colorize = FALSE) 

print(fobject, colorize = FALSE) 
plot(fobject) 

Figure 91 shows a fairness check using an accuracy equality ratio, an equal 
opportunity ratio, a predictive equality ration, a predictive parity ratio, and a 
statistical parity ratio. 

Figure 91. Fairness check. 

Code Chunk 2 

plot_density(fobject) 

Figure 92 shows a density plot with different protective variables. 

Code Chunk 3 

plot(metric_scores(fobject)) 
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Figure 92. Density plot with probability vs. protected variables. 

Figure 93 shows a metric scores plot created with ranger, with some of the 
protective variables mentioned in Figure 92. 

Figure 93. Metric scores plot. 

Code Chunk 4 
library(gbm)
 
rf_compas_1 <- ranger(SEVERITY
 
~DR_COND+TRAFF_CNTL+VIOLATIONS+MAN_COLL+LIGHTING, 


data = aa2,
 
probability = TRUE)
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lr_compas_1 <- glm(SEVERITY ~., data = aa2, 
family=binomial(link="logit")) 

rf_compas_2 <- ranger(SEVERITY ~DR_COND+TRAFF_
 
CNTL+VIOLATIONS+MAN_COLL+LIGHTING+WEATHER, data = aa2, probability 

= TRUE) 

rf_compas_3 <- ranger(SEVERITY ~DR_COND+PRIOR_MOVEMENT+TRAFF_
 
CNTL+MAN_COLL+LIGHTING, data = aa2,

 probability = TRUE)
 

df <- aa2
 
df$SEVERITY <- as.numeric(aa2$SEVERITY)-1
 
gbm_compas_1<- gbm(SEVERITY ~., data = df) 


explainer_1 <- DALEX::explain(rf_compas_1, 
data = aa2[-18], y = y_numeric) 

explainer_2 <- DALEX::explain(lr_compas_1, data = aa2[,-18], 
y = y_numeric) 

explainer_3 <- DALEX::explain(rf_compas_2, data = aa2[-18], 

y = y_numeric, label = "ranger_2")
 

explainer_4 <- DALEX::explain(rf_compas_3, data= aa2[-18], 

y = y_numeric, label = "ranger_3")
 

explainer_5 <- DALEX::explain(gbm_compas_1, data = aa2[,-18], y = y_numeric) 

fobject <- fairness_check(explainer_1, explainer_2, 
explainer_3, explainer_4, 
explainer_5,
 protected = aa2$LIGHTING, # protected variable as factor 
privileged = "Daylight", 
verbose = FALSE) 

fobject$parity_loss_metric_data
 
fobject$cutoff$ranger
 
sm <- stack_metrics(fobject)
 
###plot(sm)
 
fair_pca <- fairness_pca(fobject)
 
plot(fair_pca)
 

Figure 94 shows a fairness PCA plot for PC1 and PC2. 

Code Chunk 5 
fheatmap <- fairness_heatmap(fobject) 
plot(fheatmap, text_size = 3) 
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Figure 94. Fairness PCA plot. 

Figure 95 shows a heatmap with dendrograms, showing measures of loss 
metrics for different models. 

Figure 95. Heatmap with dendrograms. 



 

Appendix D 

Develop an Interactive Map 

Problem Statement 
Geospatial data is one of the most used datasets by transportation safety 
professionals. Conventionally, proprietary software such as ArcGIS is used for 
spatial maps. There are many open-source web GIS products such as QGIS, 
Leaftlet, and different spatial R packages. The following replicable case study 
shows the steps to plot an interactive map in R by showing crash count differences 
before and during the COVID-19 pandemic in New York. 

Code Chunk 1 
## Please check my RPUBS for additional codes: https://rpubs.com/subasish
 

# load required packages
 
library(maptools)
 
library(rgdal)
 
library(sp)
 
library(sf)
 
library(tigris)
 
library(hrbrthemes)
 
library(tidyverse)
 
require(spatialEco)
 
library(maptools)
 
###library(GISTools)
 
library(rgdal)
 

## read crash 

setwd("~folder location")
 
march <- read.csv("NY_March_CrashesLL03.csv")
 
dim(march)
 
names(march)
 

coordinates(march)=~LONGITUDE+LATITUDE
 
proj4string(march)<- CRS("+proj=longlat +datum=WGS84")
 
march1 <-spTransform(march,CRS("+proj=longlat"))
 

(Contd.) 

https://www.rpubs.com
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### NY TaxiZone 
st_read("D:/From 
Syncplicity/Bulk_Papers/03142019/covid/NY_TrafficCrash/zones.geojson") %>% 

st_set_crs(4326) %>% 
st_transform("+proj=longlat +datum=WGS84 +no_defs") -> ny 

plot(ny)
 

pts_sf = st_as_sf(march1)
 
p_sf = st_as_sf(ny)
 

st_crs(p_sf)
 
p_sf1= st_transform(p_sf, st_crs(pts_sf))
 

##https://mgimond.github.io/Spatial/index.html
 
## https://cengel.github.io/R-spatial/spatialops.html
 
nn= p_sf1 %>% 

st_join(pts_sf) %>% 
group_by(zone, Year) %>% 
summarize(count = n()) 

nn1=subset(nn, Year==2020) 
nn2=subset(nn, Year==2019) 
colnames(nn1)[3] <- "2020 Crashes" 
p1= plot(nn1["2020 Crashes"]) 
colnames(nn2)[3] <- "2019 Crashes" 
p2= plot(nn2["2019 Crashes"]) 

#par(mfrow=c(1,2)) 
#plot(nn1["2020 Crashes"]) 
#plot(nn2["2019 Crashes"]) 

library(tmap) 

tm_shape(nn) + 
tm_polygons("count", palette = "RdYlBu") + 
tm_facets(by = "Year") 

nn1= subset(nn, Year> 2016 & Year < 2021) 

tm_shape(nn1) + 
tm_polygons("count", palette = "RdYlBu") + 
tm_facets(by = "Year") 

nn1= subset(nn, Year> 2016 & Year < 2021) 

tm_shape(nn1) + 
tm_polygons("count", palette = "RdYlBu") + 
tm_facets(by = "Year") 

https://www.cengel.github.io
https://www.mgimond.github.io
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tmap_mode("view") 
tm_basemap("Stamen.Toner") + 

tm_shape(nn1) + 
tm_polygons("count", palette = "YlOrRd") + 
tm_facets(by = "Year")+ 
tm_tiles("Stamen.TonerLabels") 

The above code is reproducible. Figure 96 shows New York traffic crashes 
from March 2017-2020. The interactive format can be found in: https://rpubs. 
com/subasish/599855. 

Figure 96. New York traffic crashes in March 2017-2020. 

https://www.rpubs


 

Appendix E 

Develop an interactive Shiny App 
for Highway Safety Analysis with AI 
Models 

Problem Statement 
Interactive tools are very useful tools for the users as they can select different drop-
down panels to select the right filter to produce a map and relevant information. 
The following case study provides the code to develop a shiny app that can show 
the roadway segments with higher crash risks. 

Code Chunk 1 
## Please check my RPUBS for additional codes: https://rpubs.com/subasish 

# Load the packages 

library(shiny)
	
library(shinydashboard)
	
library(shinyjs)
	
library(sf)
	
library(leaflet)
	
library(leaflet.extras)
	
library(dplyr)
	
library(DT)
	
library(htmltools)
	

# Read State/Counties CSV File
	
#StateCountyData = read.csv("C:/Subasish/FHWA Rural Speed Safety Project For 

USDOT SDI/app/www/US_Counties/USCounties.csv") 

StateCountyData = read.csv("www/US_Counties/USCounties.csv")
	

# Create State and Initial County List
	
StateCountyData$State <- as.character(StateCountyData$State)
	
StateCountyData$County <- as.character(StateCountyData$County)
	

https://www.rpubs.com


 

  
   

    
    
    
      
       
         
     
     
       
           

         

Appendix E 267 

### Temporarily filter for only 3 states - WA, NC, OH
	
#StateCountyData <- filter(StateCountyData, State == 'WA' | State == 'NC' | State == 

'OH')
	
StateCountyData <- filter(StateCountyData, State == 'WA' | State == 'OH')
	
StatesList <- unique(StateCountyData$State)
	
StateCountyList <- subset(StateCountyData$County, StateCountyData$State == "WA")
	
StateNameList <- data.frame(

 unique(StateCountyData[c("State","StateID")])
	
)
	

# Read WA SHP file
	
#WA_shp = st_transform(st_read("www/WA_shp/new1.shp"), 4326)
	
#WA_shp$Fatal_Injury <- WA_shp$Fatal + WA_shp$Injury
	
WA_shp = st_transform(st_read("www/WA_shp2/WA_TMC_Census.shp"), 4326)
	

# Read OH SHP file
	
OH_shp = st_transform(st_read("www/OH_shp2/OH_Fin2.shp"), 4326)
	

# Read NC SHP file
	
#NC_shp = st_transform(st_read("www/NC_shp/Final1_NC.shp"), 4326)
	

# Read Counties SHP file
	
UScounties_shp = st_transform(st_read("www/US_Counties/tl_2018_us_county.shp"), 

4326)
	

# Start Creating Dashboard layout 
header <- dashboardHeader(
 title = "Rural Speed Tool (BETA)" 
) 

body <- dashboardBody(useShinyjs(), 
tabsetPanel( 

tabPanel(HTML(paste(tags$span(style="font-size: 18px", 
"RuralSpeedSafetyX"))), id="RuralSpeedTool", 

tags$h1(tags$b("Interactive Decision Support Tool to Improve Safety")), 
fluidRow( 
column(width = 8, 

box(width = NULL, solidHeader = TRUE,
 leafletOutput("MapOut", height = 500), 
h2()  )  

),  
column(width = 3,

 box(width = NULL, status = "warning", 
selectInput("YearInput","Year",choices = list("2015" = 2015), 

selected = 2015), 
selectInput("StateInput","State",choices = StatesList,selected = 

'WA'), 

(Contd.) 
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selectInput("CountyInput","County",choices = c("All 
Counties",StateCountyList)), 

selectInput("FacilityInput","Facility",choices = 
c("All","Interstate/Freeway/Expressway","Multilane","Two-lane")), 

radioButtons("Severity", label = "Severity", choices = list("All", 
"Fatal and Injury"), inline=TRUE), 

actionButton(inputId = "RefreshMap", label = "Refresh Map", 
class = "butt"), 

tags$head(tags$style(".butt{background-color:#0000FF;} 
.butt{color: white;}")), # background color and font color

 downloadButton("downloadData",label ="Download Data") 
)  

)  

), 
 	
DT::dataTableOutput('outputDT'),
	
h2(),tags$br(),
	
h2(),tags$br()
	

) 
) 

) 

# Put them together into a dashboardPage 
ui <- dashboardPage( 

#header, 
dashboardHeader(disable = TRUE), 
dashboardSidebar(disable = TRUE), 
body 

) 

server <- function(input, output, session) { 

StateCountyList <- eventReactive(input$StateInput, { 
subset(StateCountyData$County, StateCountyData$State == input$StateInput) 

}) 
observeEvent(input$StateInput, 

updateSelectInput(session, "CountyInput","County",
	
choices = c("All Counties",
	

subset(StateCountyData$County, StateCountyData$State == 
input$StateInput))) 
) 
observeEvent(input$StateInput, 

updateSelectInput(session, "FacilityInput","Facility", 
choices = c("All","Interstate/Freeway/Expressway","Multilane","Two-

lane"))
 ) 
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output$MapOut <- renderLeaflet({ 
leaflet() %>% 

addTiles(urlTemplate = "//cartodb-basemaps-{s}.global.ssl.fastly.net/dark_all/ 
{z}/{x}/{y}{r}.png", layerId = 'Carto DB Dark Matter') %>% 

setView(lng = -95.7129, lat = 37.0902, zoom = 4) 
#setView(lng = -120.740135, lat = 47.376903, zoom = 7)

 }) 

observeEvent(input$RefreshMap, { 

STATEFPin <- switch(input$StateInput, 
"NC"= 37, 
"OH" = 39, 
"WA" = 53 
)

 COUNTYin = input$CountyInput
 if (COUNTYin != "All Counties"){ 

Countyin_Code <- select(filter(filter(StateCountyData, StateID == STATEFPin), 
(County == COUNTYin)), StateCounty) 
} else { 

Countyin_Code <- 0
 }
 FacilityIn = input$FacilityInput
 if (FacilityIn == "Interstate/Freeway/Expressway"){ 

FacilityIn_Code <- "Interstate"
 } else { 

FacilityIn_Code <- FacilityIn
 }

 ### Will need to change MapOutputData switch to include other states
 #MapOutputData <- WA_shp
 MapOutputData <- switch(input$StateInput, 

"NC"= WA_shp,
	
"OH" = OH_shp,
	
"WA" = WA_shp


 )

 if (Countyin_Code == 0){ 
MapOutputDataTempCounty <- MapOutputData 

UScounties_shp_selected <- st_as_sf(filter(as.data.frame(UScounties_shp), 
STATEFP == STATEFPin)) 

LATzoom <- switch(input$StateInput,
	
"NC"= 35.782169,
	
"OH" = 40.367474,
	
"WA" = 47.376903


 ) 

(Contd.) 
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 LONzoom <- switch(input$StateInput, 
"NC"= -80.793457, 
"OH" = -82.996216, 
"WA" = -120.740135

 ) 
zoomLevel <- 6

 } else { 
MapOutputDataTempCounty <- st_as_sf(filter(as.data.frame(MapOutputData), 

COUNTYFP == sprintf('%03d', as.integer(Countyin_Code) %% 1000))) 

UScounties_shp_selected <- st_as_sf(filter(filter(as.data.frame(UScounties_shp), 
STATEFP == STATEFPin), COUNTYFP == sprintf('%03d', as.integer(Countyin_Code) 
%% 1000))) 

LATzoomTemp <- select(as.data.frame(UScounties_shp_selected), INTPTLAT) 
LONzoomTemp <- select(as.data.frame(UScounties_shp_selected), INTPTLON) 

LATzoom <- as.numeric(as.character(unlist(LATzoomTemp[[1]])))
	
LONzoom <- as.numeric(as.character(unlist(LONzoomTemp[[1]])))
	

zoomLevel <- 8
 }

 if (FacilityIn_Code == 'All'){ 
MapOutputDataFinal <- MapOutputDataTempCounty

 } else { 
MapOutputDataFinal <- st_as_sf(filter(as.data.frame(MapOutputDataTempCounty), 

Facility == FacilityIn_Code))
 }

 DataForPal <- switch(input$Severity, 
"All" = MapOutputDataFinal$Total_Exp, 
"Fatal and Injury" = MapOutputDataFinal$FI_Exp)

 pal_Total <- colorNumeric("YlOrRd", DataForPal)
 labelOut <- as.list(paste0('TMC: ', MapOutputDataFinal$TMC, "<br>", 

'Road: ', MapOutputDataFinal$ROAD_NUMBE, "<br>", 
'State: ', input$StateInput, "<br>", 

'County: ', input$CountyInput, "<br>",
	
'Facility: ', MapOutputDataFinal$Facility, "<br>",
	
'Total Expected: ', MapOutputDataFinal$Total_Exp, "<br>",
	
'Fatal, Injury Expected: ', MapOutputDataFinal$FI_Exp, "<br>",
	
'AADT: ', round(MapOutputDataFinal$AADT, 0), "<br>",
	
#'Freeflow Speed: ', round(MapOutputDataFinal$SpdFF, 2), "<br>",
	
'Speed Variance 1: ', round(MapOutputDataFinal$SpdVarr1, 2), "<br>"


 ))
 popupOut <- paste0('TMC: ', MapOutputDataFinal$TMC, "<br>", 

'Road: ',MapOutputDataFinal$ROAD_NUMBE, "<br>", 
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'State: ', input$StateInput, "<br>",

 'County: ', input$CountyInput, "<br>",

 'Facility: ', MapOutputDataFinal$Facility, "<br>",
	

'Total Expected: ', MapOutputDataFinal$Total_Exp, "<br>",
	
'Fatal, Injury Expected: ', MapOutputDataFinal$FI_Exp, "<br>",
	
'AADT: ', round(MapOutputDataFinal$AADT, 0), "<br>",
	
#'Freeflow Speed: ', round(MapOutputDataFinal$SpdFF, 2), "<br>",
	
'Speed Variance 1: ', round(MapOutputDataFinal$SpdVarr1, 2), "<br>"


 ) 

leafletProxy("MapOut") %>% clearPopups() %>% clearGroup("Total/Fata/Injury") 
%>% clearGroup("CountiesSHP") %>% clearControls() %>% 

###setView(lng = -120.740135, lat = 47.376903, zoom = 7) %>% 
setView(lng = LONzoom, lat = LATzoom, zoom = zoomLevel) %>% 
addPolylines(data=MapOutputDataFinal, 

color=~pal_Total( 
switch(input$Severity,
	

"All" = MapOutputDataFinal$Total_Exp,
	
"Fatal and Injury" = MapOutputDataFinal$FI_Exp)
	

), 
 	
group="Total/Fata/Injury",
	
popup = popupOut,
	
label = lapply(labelOut, HTML)) %>%


 addPolylines(data=UScounties_shp_selected, 
color='green', 
group="CountiesSHP", 
weight = 1) %>%

 addLegend("bottomright", pal = pal_Total, 
values = switch(input$Severity, 

"All" = MapOutputDataFinal$Total_Exp, 
"Fatal and Injury" = MapOutputDataFinal$FI_Exp), 

title = paste0(input$Severity, " Crashes") 
) 

if (nrow(as.data.frame(MapOutputDataFinal)) > 0){ 
MapOutputDataFinalDTtemp <- cbind(input$StateInput,input$CountyInput, 

select(as.data.frame(MapOutputDataFinal), 
c('TMC', 


#'ADMIN_LE_1',
	
#'ADMIN_LE_2',
	
'ROAD_NUMBE',
	
'Facility',
	
'DISTANCE',
	
'Population',
	
'Household',
	
'AADT',
	
'NO_LANES',
	
'SPD_LIMT',
	

(Contd.)
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'OptSpd',
	
#'SpdFF',
	
'SpdVarr1',
	
'Total_Exp',
	
'FI_Exp'
	

) 
)

 ) 
MapOutputDataFinalDTtemp <- distinct(MapOutputDataFinalDTtemp, TMC, .keep_ 

all = TRUE) 
} else {
 MapOutputDataFinalDTtemp <- cbind(input$StateInput, 

input$CountyInput, 
'None', 
#'None', 
#'None', 
'None', 
'None', 
'None', 
'None', 
'None', 
'None', 
'None', 
'None', 
'None', 
'None', 
'None', 
#'None', 
'None'

 ) 

}

 MapOutputDataFinalDT <- datatable(MapOutputDataFinalDTtemp, 
class = 'cell-border stripe', 
colnames = c('State',
	

'County',
	
'TMC', 
 	
#'State',
	
#'County',
	
'Road', 
 	
'Facility',
	
'Segment Length',
	
'Population',
	
'Household',
	
'AADT', 
 	
'Number of Lanes',
	
'Speed Limit',
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'Avg. Ope. Speed - Yearly',
	
#'Freeflow Speed',
	
'Std. Dev. of Ope. Speed - Hourly',
	
'Total - Expected',
	
'Fatal and Injury - Expected'
	

) 
) 
output$outputDT = DT::renderDataTable(MapOutputDataFinalDT, options = 

list(lengthChange = FALSE)) 

outputDTdowload <- MapOutputDataFinalDTtemp 
names(outputDTdowload) <- c('State',
	

'County',
	
'TMC',
	
#'State',
	
#'County',
	
'Road',
	
'Facility',
	
'Segment Length',
	
'Population',
	
'Household',
	
'AADT',
	
'Number of Lanes',
	
'Speed Limit',
	
'Avg. Ope. Speed - Yearly',
	
#'Freeflow Speed',
	
'Std. Dev. of Ope. Speed - Hourly',
	
'Total - Expected',
	
'Fatal and Injury - Expected'


 )

 output$downloadData <- downloadHandler( 
#filename = function() {paste("test.csv")}, 
#filename = function() {gsub("" "",paste(input$StateInput,"_",input$CountyInput,"_ 

",input$YearInput,".csv"))},
 filename = function() {gsub(" ","",paste(input$StateInput,"_", 

input$CountyInput,"_", 
switch(input$FacilityInput, 

"All"= "All", 
"Interstate/Freeway/Expressway" = "IntFwayExpway", 
"Multilane" = "Multilane", 
"Two-lane" = "Twolane" 

),  
"_",input$YearInput,".csv"))},

 content = function(file) { 
write.csv(outputDTdowload,file, row.names=FALSE) 

(Contd.) 
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}) 
}) 

}
	

shinyApp(ui, server)
	

Figure 97 shows the interface of RuralSpeedSafetyX. The above code is 
reproducible. 

Figure 97. Interface of Rural Speed Safety X. 

Supportive Information 
• The Shiny Tool 

https://ruralspeedsafety.shinyapps.io/rss_sdi/ 
• Similar Tool with more functions 

https://ruralspeedsafety.shinyapps.io/0_7051Tool_v2/ 
• GitHub Page 

https://github.com/subasish/RuralSpeedSafetyX 
• Presentation 

http://subasish.github.io/pages/BigDataGoesCountry 
• USDOT Page on Rural Speed Safety Project 

http://subasish.github.io/pages/FHWA_Rural_Speed_T4_1/ 
• Feature 

https://tti.tamu.edu/researcher/big-data-goes-country-integrating-speed-and-weather-
measures-to-study-rural-roadway-safety/ 

Peer Reviewed Journal Articles 
• Das, S., S. Geedipally, and K. Fitzpatrick. Inclusion of speed and weather measures in 

safety performance functions for rural roadways. IATSS Research, 2020. 
https://www.sciencedirect.com/science/article/pii/S0386111220300583 

• Das, S. and L. White. RuralSpeedSafetyX: Interactive decision support tool to 
improve safety. SoftwareX. 2020. 
https://www.sciencedirect.com/science/article/pii/S2352711019303553 

• Das, S., and S. Geedipally. 	Rural Speed Safety Project for USDOT Safety Data 
Initiative: Findings and Outcomes. ITE Journal. September, 2020 
https://www.nxtbook.com/ygsreprints/ITE/ITE_Sept2020/index.php#/p/38 

https://www.nxtbook.com
https://www.sciencedirect.com
https://www.sciencedirect.com
https://www.tti.tamu.edu
http://www.subasish.github.io
http://www.subasish.github.io
https://www.github.com
https://www.ruralspeedsafety.shinyapps.io
https://www.ruralspeedsafety.shinyapps.io


Appendix F 

Develop an Interactive Shiny App 
with Application Programming 
Interface (API) based Queries 

Problem Statement 
For safety analysis of vulnerable roadway users (VRUs) such as pedestrians 
and bicyclists, it is important to determine the exposure measures of VRUs. The 
following code chunk shows how to develop a shiny tool by calling queries using 
U.S. Census API to acquire VRU exposure data. The live tool can be found at: 
https://subasish.shinyapps.io/ScRAM/. Figure 98 shows the interface of the tool. 

Code Chunk 1 
#install.packages("acs") 
#install.packages("DT") 
library(shiny) 
library(shinydashboard) 
library(leaflet) 
library(DT)
 
library(shinyjs)
 
# START from code_SEERTOOL.R - SD
 
require(dplyr)
 
require(maptools) # required for rgdal to work correctly
 
require(tigris)
 
require(acs)
 
require(stringr) # to pad FIPS codes
 
require(leaflet) 
library(acs)
 
# END from code_SEERTOOL.R - SD
 

# Read CSV files 
#StateCountyData = read.csv("C:/SEER_ACS_Explorer_Dashboard/Data/USCounties. 
csv") 

https://www.subasish.shinyapps.io
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#bg_land = read.csv("C:/SEER_ACS_Explorer_Dashboard/Data/BG_land.csv") 

#state_land = read.csv("C:/SEER_ACS_Explorer_Dashboard/Data/state_land.csv") 

#tract_land = read.csv("C:/SEER_ACS_Explorer_Dashboard/Data/tract_land.csv")
 
#StateNonMotorPM = read.csv("C:/SEER_ACS_Explorer/Data/State_NonMooto_
 
Performance_Measure1_GeoID.csv")
 
StateCountyData = read.csv("Data/USCounties1.csv") 

bg_land = read.csv("Data/BG_land.csv") 

state_land = read.csv("Data/state_land.csv") 

tract_land = read.csv("Data/tract_land.csv") 

StateNonMotorPM = read.csv("Data/State_NonMooto_Performance_Measure1_
 
GeoID.csv")
 

# Create State and Initial County List
 
StatesList <- unique(StateCountyData$State)
 
StateCountyList <- subset(StateCountyData$County, StateCountyData$State == "AL")
 
StateCountyData$County <- as.character(StateCountyData$County)
 
StateNameList <- data.frame(

 unique(StateCountyData[c("State","StateID")])
 
)
 

# Set land data
 
bg_land$GEOID <- substr(bg_land$GEOID_Data, 8, 19)
 
bg_L <- bg_land[c(18, 17)]
 
names(state_land)[names(state_land) == 'GEOID'] <- 'GEOIDin'
 
state_land$GEOID <- substr(state_land$GEOID_Data, 8, 9)
 
state_L <- state_land[c(20, 19)]
 
tract_land$GEOID <- substr(tract_land$GEOID_Data, 8, 18)
 
tract_L <- tract_land[c(18, 17)]
 

# Start Creating Dashboard layout 
header <- dashboardHeader(
 title = "SEER ACS Explorer" 
) 

body <- dashboardBody(useShinyjs(), 
tabsetPanel(
 tabPanel(HTML(paste(tags$span(style="font-size: 18px", "Introduction"))), 

tags$br(), 
tags$h1(tags$b("Scalable Risk Assessment Methods for Pedestrians and 

Bicyclists")), 
h2(), 
div(style = "font-size: 18px;", HTML("The FHWA Office of Safety 

has initiated the Scalable Risk Assessment project to develop approaches to estimate 
pedestrian and ", 

"bicyclist risk, as well as the associated exposure to risk, at 
several different geographic scales. 
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h2(), 
div(style = "font-size: 18px;", HTML("The <b >Scalable Non-Motorized 

Exposure Tool</b> provided here in <b >BETA VERSION </b> is intended to make it 
easy for practitioners to obtain and ", 

"summarize nationwide travel survey data to estimate pedestrian and 
bicyclist exposure to risk at ", 

"several different areawide geographic scales.")), 
h2(), 
tags$h3(tags$b("Statewide Non-Motorized Exposure - All Trips 

(BETA)")), 
h2(), 
div(style = "font-size: 18px;", HTML("The <b >Statewide</b> tab 

provides a simplified query tool to obtain statewide pedestrian and bicyclist exposure 
estimates for each year ", 

"between 2009 and 2015. Three statewide exposure measures 
are reported separately for pedestrian and bicyclist trips:")), 

h2(), 
tags$span(style="font-size: 18px", tags$ul(
 tags$li("Total estimated annual trips"),
 tags$li("Total estimated annual miles traveled"),
 tags$li("Total estimated annual hours traveled") 
) 
), 
h2(), 
div(style = "font-size: 18px;", HTML("The statewide exposure estimates 

are based on a combination of the U.S. Census Bureau’s American Community Survey 
(ACS) and FHWA’s", 

"2009 National Household Travel Survey (NHTS). The ACS 
records primary commute trips only on an annual basis, whereas NHTS records all", 

"trips about once a decade. Therefore, the NHTS total trips 
are adjusted to represent better the selected analysis year by using the", 

"more current ACS population and commute travel estimates. 
The adjustment factors account for change in both population and the number", 

"of commute trips per mode over time. The NHTS average 
trip lengths and average trip durations per state are then applied to the total", 

"trips to estimate the number of miles and hours traveled 
annually per mode for each state. The exposure estimates are graphically", 

"displayed in a color-coded map and are available for 
download in CSV format.")), 

h2(), 
tags$h3(tags$b("FHWA Rural Speed Project Decision Support Tool 

(Beta)")), 

(Contd.) 
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h2(), 
div(style = "font-size: 18px;", HTML("The <b >Scalable</b> tab offers 

more query options and provides exposure estimates at more detailed geographic scales, 
such as county, census tract,", 

"or census block group. Because these more detailed 
geographic scales are provided, the exposure estimates are based on the ACS", 

"only (i.e., the NHTS estimates are not considered 
statistically reliable at these detailed geographic scales). The query tool", 

"provides options for one-, three-, and five-year estimates 
for pedestrian and bicyclist commute trips (the recommended exposure measure), total 
commute trips, and", 

"total population. Note that this query tool does not perform 
any adjustments to the ACS trip information-it simply queries the", 

"available ACS database. The estimates are graphically 
displayed in a color-coded map and are available for download in CSV format.")), 

tags$h3(tags$b("Acknowledgments")), 
h2(), 
div(style = "font-size: 18px;", HTML("xxx")), 
h2(), 
div(style = "font-size: 18px;", HTML("xxx.")), 
h2(), 
div(style = "font-size: 18px;", HTML("xxx")), 
tags$br(), 
tags$br() 

), 
tabPanel(HTML(paste(tags$span(style="font-size: 18px", "Statewide 

(BETA)"))), id="StNmPM", 
tags$h1(tags$b("FHWA Rural Speed Project Decision Support 

Tool (Beta)")), 
fluidRow( 
column(width = 9, 

box(width = NULL, solidHeader = TRUE, 
leafletOutput("StNmPMmap", height = 600), 
h2(), 
DT::dataTableOutput('acsDTStNmPM'), 
h2(),tags$br(), 
h2(),tags$br() ) 

), 
column(width = 3, 

box(width = NULL, status = "warning", 
selectInput("YearInputStNmPM","ACS Estimate 

Years",choices = list("2015" = 2015, "2014" = 2014, "2013" = 2013, "2012" = 2012, 
"2011" = 2011, "2010" = 2010, "2009" = 2009), selected = 2015), 

radioButtons("ModeInputStNmPM", label = "Mode", 
choices = list("Bike", "Walk"), inline=TRUE), 
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h2(), 
radioButtons("MapDataSelectionStNmPM", label = 

"Map Data Selection:", choices = list('Estimated Annual Trips','Estimated Annual Miles 
Traveled', 

'Estimated Annual Hours Traveled'), 
selected = 'Estimated Annual Trips', inline=FALSE), 

h2(), 
actionButton(inputId = "RefreshMapStNmPM", label = 

"Refresh Map", class = "butt"), 
t a g s $ h e a d ( t a g s $ s t y l e ( " . b u t t { b a c k g r o u n d  -

color:#0000FF;} .butt{color: white;}")), # background color and font color 
downloadButton("downloadDataStNmPM",label 

="Download Data") 
) 

) 
), 
h2(),tags$br(), 
h2(),tags$br() 

), 
tabPanel(HTML(paste(tags$span(style="font-size: 18px", "Scalable 

(BETA)"))), id="ACSexplorer", 
tags$h1(tags$b("FHWA Rural Speed Project Decision Support 

Tool (Beta)")), 
fluidRow( 
column(width = 9, 

box(width = NULL, solidHeader = TRUE, 
leafletOutput("busmap", height = 600), 
h2(), 
DT::dataTableOutput('acsDT'), 
h2(),tags$br(), 
h2(),tags$br() 

) 
), 
column(width = 3, 

box(width = NULL, status = "warning", 
h2(), 
selectInput("YearInput","Year",choices = list("2015" = 

2015,"2016" = 2014,"2009 - 2013" = 2013, 
"2008 - 2012" = 2012,"2007 - 2011" = 2011,"2006 - 2010" = 

2010), selected = 2015), 
selectInput("StateInput","State",choices = StatesList), 
selectInput("CountyInput","County",choices = c("All 

Counties",StateCountyList)), 
radioButtons("ModeInput", label = "Severity", choices = 

list("All", "Fatal and Injury"), inline=TRUE), 
actionButton(inputId = "RefreshMap", label = "Refresh Map", 

class = "butt"), 

(Contd.) 
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tags$head(tags$style(".butt{background-color:#0000FF;} .butt{color: white;}")), # 
background color and font color 

downloadButton("downloadData",label ="Download Data") 
) 

) 

),
 
h2(),tags$br(),
 
h2(),tags$br()
 

) 
) 

) 

# Put them together into a dashboardPage 
ui <- dashboardPage( 

#header, 
dashboardHeader(disable = TRUE), 
dashboardSidebar(disable = TRUE), 
body 

)
 
server <- function(input, output, session) {


 observeEvent(input$TimeSpan, 
if(input$TimeSpan==1){ 

updateSelectInput(session, "YearInput","ACS Estimate Years",choices = 
list("2013" = 2013, "2012" = 2012), selected = 2013) 

}else{ 
if(input$TimeSpan==3){ 
updateSelectInput(session, "YearInput","ACS Estimate Years",choices = 

list("2011 - 2013" = 2013, "2010 - 2012" = 2012), selected = 2013) 
}else{ 

updateSelectInput(session, "YearInput","ACS Estimate Years",choices = 
list("2011 - 2015" = 2015,"2010 - 2014" = 2014,"2009 - 2013" = 2013, 

"2008 - 2012" = 2012,"2007 - 2011" = 2011,"2006 - 2010" = 
2010), selected = 2015) 

} 
}

 ) 
 observeEvent(input$TimeSpan, 

if(input$TimeSpan==1){ 
updateSelectInput(session, "StateInput","State",choices = "All States") 

}else{ 
if(input$TimeSpan==3){ 

updateSelectInput(session, "StateInput","State",choices = "All States") 
}else{ 

updateSelectInput(session, "StateInput","State",choices = StatesList) 
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} 
}

 ) 
 observeEvent(input$TimeSpan, 

if(input$TimeSpan==1){
 
disable("CountyInput")
 

}else{
 
if(input$TimeSpan==3){
 

disable("CountyInput")
 
}else{
 

enable("CountyInput") 
} 

}
 ) 

observeEvent(input$StateInput, 
 StateCountyList <- as.character(subset(StateCountyData$County, 
StateCountyData$State == input$StateInput))
 ) 
observeEvent(input$StateInput, 

if(input$StateInput=="All States"){ 
updateSelectInput(session, "CountyInput","County",choices = "") 

}else{ 
updateSelectInput(session, "CountyInput","County", 

choices = c("All Counties", 
subset(StateCountyData$County, StateCountyData$State == 

input$StateInput))) 
}

 ) 
 observeEvent(input$TimeSpan, 

if(input$TimeSpan==1){ 
disable("StateInput")
 

}else{
 
if(input$TimeSpan==3){
 

disable("StateInput")
 
}else{
 

enable("StateInput")
 
}
 

}
 ) 
observeEvent(input$CountyInput, 

if(input$CountyInput==""){ 
updateRadioButtons(session, "SpatialInput", label = "Spatial", choices = 

list("State")) 
}else{ 
if(input$CountyInput=="All Counties"){ 

updateRadioButtons(session, "SpatialInput", label = "Spatial", choices = 
list("Tract")) 

(Contd.) 
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}else{
 updateRadioButtons(session, "SpatialInput", label = "Spatial", choices = 

list("Block Group")) 
} 

}
 ) 

output$ACSinfoMessage <- renderUI({ 
HTML("Note: Selection of 5-year ACS is statistically reliable for small spatial units 

(tract and block group level). 
Selection of 3-year ACS or 1-year ACS is beneficial for larger spatial units (state).")

 })

 output$busmap <- renderLeaflet({

 leaflet() %>% 
addProviderTiles("CartoDB.Positron") %>% 
setView(-98.35, 39.7, zoom = 4)

 })

 observeEvent(input$RefreshMap, {

 withProgress(message = 'Processing ', value = 0, { 

#StateInput <- "AR" 
#YearInput <- 2015 
TimeSpan <- input$TimeSpan 
YearInput <- input$YearInput 
StateInput <- input$StateInput 
CountyInput <- input$CountyInput 
SpatialInput <- input$SpatialInput 
ModeInput <- input$ModeInput 
CountyCode <- subset(StateCountyData$CountyID, StateCountyData$State == 

StateInput & StateCountyData$County == CountyInput) 

TimeSpanDesc <- ifelse(TimeSpan == 5,"5 Year ACS",ifelse(TimeSpan ==  3,"3 
Year ACS","1 Year ACS")) 

YearDesc <- if (TimeSpan == 5) { 

ifelse(YearInput == 2015,"2011 - 2015",ifelse(YearInput == 2014,"2010 - 2014", 
ifelse(YearInput == 2013,"2009 - 2013", 

ifelse(YearInput == 2012,"2008 - 2012", 
ifelse(YearInput == 2011, 

"2007 - 2011","2006 - 2010") 
) 

)
 )
 ) 
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 }else{ 
if (TimeSpan == 3) { 

ifelse(YearInput == 2013,"2011 - 2013","2010 - 2012")

 }else{ 

YearInput 
}

 } 

TimeYearDesc <- paste(TimeSpanDesc,": ",YearDesc)

 if(TimeSpan == 1 || TimeSpan == 3){

 incProgress(1/6, detail = paste("Retrieving Geography..."))
 states <- states(cb = TRUE)

 incProgress(2/6, detail = paste("Retrieving Data..."))
 fetched <- acs.fetch( 

geography = geo.make(state="*"), 
endyear = YearInput, span = TimeSpan,# Package only goes to 2013, so end=2012 
table.number = "B08301", # Table showing 'Income' 
key="12c55b28a8b13fd30e88db9e59bee9edd0fa8ce1", 
col.names = "pretty")

 ### names(attributes(fetched)) # see what’s available

 ### attr(fetched, "acs.colnames") # see column names

 incProgress(3/6, detail = paste("Retrieving Data..."))
 fetched1 <- acs.fetch( 

geography = geo.make(state="*"), 
endyear = YearInput, span = TimeSpan,# Package only goes to 2013, so end=2012 
table.number = "B01003", # Table showing 'Income' 
key="12c55b28a8b13fd30e88db9e59bee9edd0fa8ce1", 
col.names = "pretty")

 incProgress(4/6, detail = paste("Preparing Output..."))
 if(ModeInput == "Bike"){ 

acs_df <- data.frame( 
paste0( 
str_pad(fetched@geography$state, 2, "left", pad="0"), 
str_pad(fetched@geography$county, 3, "left", pad="0"), 
str_pad(fetched@geography$tract, 6, "left", pad="0")), 

fetched@estimate[,c("Means of Transportation to Work: Total:", 

"Means of Transportation to Work: Bicycle")], 


stringsAsFactors = FALSE)
 

(Contd.)
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acs_df <- select(acs_df, 1:3) %>% tbl_df() 
rownames(acs_df) <- 1:nrow(acs_df)
 
names(acs_df) <- c("GEOID", "total", "bike")
 
acs_df$percent <- round(100*(acs_df$bike/acs_df$total),2)
 
acs_df$percent <- replace(acs_df$percent, is.na(acs_df$percent), 0) #### to remove 


NaN 
#head(acs_df) 

acs_df1 <- data.frame( 
paste0(
 
str_pad(fetched1@geography$state, 2, "left", pad="0"), 

str_pad(fetched1@geography$county, 3, "left", pad="0"), 

str_pad(fetched1@geography$tract, 6, "left", pad="0")), 

fetched1@estimate[,c("Total Population: Total")], 

stringsAsFactors = FALSE)
 

acs_df1 <- select(acs_df1, 1:2) %>% tbl_df() 
rownames(acs_df1) <- 1:nrow(acs_df1)
 
names(acs_df1) <- c("GEOID", "popu")
 
acs_df <- merge(acs_df, acs_df1, by="GEOID")
 

df_merged <- geo_join(states, acs_df, "GEOID", "GEOID")
 
#head(df_merged)
 
df_merged <- df_merged[df_merged$ALAND>0,]
 
#head(df_merged)
 
df_merged <- df_merged[!(is.na(df_merged$percent)),] ###drop missing (NA) 

values 

#popup <- paste0(df_merged$NAME, ", GeoID: ", df_merged$GEOID, "<br>", 
"Commuters (16 Yrs and above) used Bicycle (%): ", round(df_merged$percent,2)) 

#pal <- colorNumeric(
 
# palette = "YlOrRd",
 
# domain = df_merged$percent
 
#)
 
popup <- paste0(df_merged$NAME, ", GeoID: ", df_merged$GEOID, "<br>", 


"Estimated Bike/Total Commute Trips (%) - ", round(df_merged$percent,2), 
"<br>","Estimated Total Commute Trips - ", round(df_merged$total,2),"< 

br>","Exposure: Estimated Bike Commute Trips - ", round(df_merged$bike,2)) 
pal <- colorNumeric( 
palette = "YlOrRd", 
domain = df_merged$bike 

)
 
label <- paste0(df_merged$NAME, ", GeoID: ", df_merged$GEOID)
 

acsT1 <- acs_df
 
acsT1$StateID <- as.numeric(acsT1$GEOID)
 
acsT1 <- merge(acsT1, StateNameList, by="StateID")
 
acsT1$County <- "All Counties"
 
acsT1 <- merge(acsT1, state_L, by="GEOID")
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acsT2 <- acsT1[c(7,8,1,6,9,5,3,4)] 
acsT2$percent <- round(acsT2$percent, 2) 
acsDTtemp <- datatable(cbind(TimeYearDesc,acsT2), class = 'cell-border stripe', 

colnames = c('Record No.','Time Period','State', 'County', 'GeoID (State)', 'Population 
Estimates', 

'Land Area in Square Mile', 
'Estimated Bike/Total Commute Trips (%)', 
'Estimated Total Commute Trips', 

'Exposure: Estimated Bike Commute Trips')
 

) %>% formatRound('percent', 2) 
output$acsDT = DT::renderDataTable(acsDTtemp, options = list(lengthChange 

= FALSE)) 

acsT2dowload <- cbind(TimeYearDesc,acsT2) 
names(acsT2dowload) <- c('Time Period','State', 'County', 'GeoID (State)', 

'Population Estimates', 
'Land Area in Square Mile', 
'Estimated Bike/Total Commute Trips (%)', 
'Estimated Total Commute Trips', 

'Exposure: Estimated Bike Commute Trips')
 

incProgress(5/6, detail = paste("Writing Output..."))
 }else{ 

acs_df <- data.frame( 
paste0(
 

str_pad(fetched@geography$state, 2, "left", pad="0"), 

str_pad(fetched@geography$county, 3, "left", pad="0"), 

str_pad(fetched@geography$tract, 6, "left", pad="0")), 
fetched@estimate[,c("Means of Transportation to Work: Total:", 

"Means of Transportation to Work: Walked")], 
stringsAsFactors = FALSE) 

acs_df <- select(acs_df, 1:3) %>% tbl_df() 
rownames(acs_df) <- 1:nrow(acs_df)
 
names(acs_df) <- c("GEOID", "total", "walk")
 
acs_df$percent <- round(100*(acs_df$walk/acs_df$total),2)
 
acs_df$percent <- replace(acs_df$percent, is.na(acs_df$percent), 0) #### to remove 


NaN 
### head(acs_df) 

acs_df1 <- data.frame( 
paste0(
 

str_pad(fetched1@geography$state, 2, "left", pad="0"), 

str_pad(fetched1@geography$county, 3, "left", pad="0"), 

str_pad(fetched1@geography$tract, 6, "left", pad="0")), 

fetched1@estimate[,c("Total Population: Total")], 

stringsAsFactors = FALSE)
 

(Contd.) 
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acs_df1 <- select(acs_df1, 1:2) %>% tbl_df() 
rownames(acs_df1) <- 1:nrow(acs_df1) 
names(acs_df1) <- c("GEOID", "popu") 
acs_df <- merge(acs_df, acs_df1, by="GEOID") 

df_merged <- geo_join(states, acs_df, "GEOID", "GEOID") 
#head(df_merged) 
df_merged <- df_merged[df_merged$ALAND>0,] 
#head(df_merged) 
df_merged <- df_merged[!(is.na(df_merged$percent)),] ###drop missing (NA) 

values 

#popup <- paste0(df_merged$NAME, ", GeoID: ", df_merged$GEOID, "<br>", 
"Commuters (16 Yrs and above) Walked (%): ", round(df_merged$percent,2)) 

#pal <- colorNumeric(
 
# palette = "YlOrRd",
 
# domain = df_merged$percent
 
#)
 
popup <- paste0(df_merged$NAME, ", GeoID: ", df_merged$GEOID, "<br>", 


"Estimated Walk/Total Commute Trips (%) - ", round(df_merged$percent,2), 
"<br>","Estimated Total Commute Trips - ", round(df_merged$total,2),"<br> 

","Exposure: Estimated Walk Commute Trips - ", round(df_merged$walk,2)) 
pal <- colorNumeric( 
palette = "YlOrRd", 
domain = df_merged$walk 

) 
label <- paste0(df_merged$NAME, ", GeoID: ", df_merged$GEOID) 

acsT1 <- acs_df 
acsT1$StateID <- as.numeric(acsT1$GEOID) 
acsT1 <- merge(acsT1, StateNameList, by="StateID") 
acsT1$County <- "All Counties" 
acsT1 <- merge(acsT1, state_L, by="GEOID") 
acsT2 <- acsT1[c(7,8,1,6,9,5,3,4)] 
acsT2$percent <- round(acsT2$percent, 2) 
acsDTtemp <- datatable(cbind(TimeYearDesc,acsT2), class = 'cell-border stripe', 

colnames = c('Record No.','Time Period','State', 'County', 'GeoID (State)', 'Population 
Estimates', 

'Land Area in Square Mile', 
'Estimated Walk/Total Commute Trips (%)', 
'Estimated Total Commute Trips', 

'Exposure: Estimated Walk Commute Trips')
 

) %>% formatRound('percent', 2) 
output$acsDT = DT::renderDataTable(acsDTtemp, options = list(lengthChange = 

FALSE)) 



 

 
 

      
      
      
      
 
  
 

 
 
 
 
 
 
 
 
    
    
    
    
    
 
    
    
    
    
    
    
    
    
 
   
 
 
 
 
 
   
    
     
     
     
    
        
    

Appendix F 287 

acsT2dowload <- cbind(TimeYearDesc,acsT2) 
names(acsT2dowload) <- c('Time Period','State', 'County', 'GeoID (State)', 

'Population Estimates', 
'Land Area in Square Mile', 
'Estimated Walk/Total Commute Trips (%)', 
'Estimated Total Commute Trips', 

'Exposure: Estimated Walk Commute Trips')
 

incProgress(5/6, detail = paste("Writing Output...")) 
} 

}else{
 
### TimeSpan = 5
 
if(CountyInput == "All Counties"){
 

incProgress(1/6, detail = paste("Retrieving Geography...")) 
tracts <- tracts(state = StateInput, cb=TRUE) 

incProgress(2/6, detail = paste("Retrieving Data...")) 
fetched <- acs.fetch( 

geography = geo.make(state = StateInput, county="*", tract = "*"), 
endyear = YearInput, span = TimeSpan,# Package only goes to 2013, so end=2012 
table.number = "B08301", # Table showing 'Income' 
key="12c55b28a8b13fd30e88db9e59bee9edd0fa8ce1", 
col.names = "pretty") # Gives the full column definitions 

### head(fetched) 
incProgress(3/6, detail = paste("Retrieving Data...")) 
fetched1 <- acs.fetch(
 
geography = geo.make(state = StateInput, county="*", tract = "*"),
 
endyear = YearInput, span = TimeSpan,# Package only goes to 2013, so end=2012
 
table.number = "B01003", # Table showing 'Income'
 
key="12c55b28a8b13fd30e88db9e59bee9edd0fa8ce1",
 
col.names = "pretty") # Gives the full column definitions 

### names(attributes(fetched)) # see what's available

 ### attr(fetched, "acs.colnames") # see column names

 incProgress(4/6, detail = paste("Preparing Output..."))
 if(ModeInput == "Bike"){
 

acs_df <- data.frame(
 
paste0(
 

str_pad(fetched@geography$state, 2, "left", pad="0"), 

str_pad(fetched@geography$county, 3, "left", pad="0"), 

str_pad(fetched@geography$tract, 6, "left", pad="0")), 

fetched@estimate[,c("Means of Transportation to Work: Total:", 
"Means of Transportation to Work: Bicycle")], 

stringsAsFactors = FALSE) 
(Contd.) 
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 ### head(acs_df)

 ###write.csv(acs_df, "Data2.csv")

 acs_df <- select(acs_df, 1:3) %>% tbl_df()
 rownames(acs_df) <- 1:nrow(acs_df)

 names(acs_df) <- c("GEOID", "total", "bike")

 acs_df$percent <- 100*(acs_df$bike/acs_df$total)

 acs_df$percent <- replace(acs_df$percent, is.na(acs_df$percent), 0) #### to remove 


NaN
 ### head(acs_df)

 acs_df1 <- data.frame( 
paste0(
 

str_pad(fetched1@geography$state, 2, "left", pad="0"), 

str_pad(fetched1@geography$county, 3, "left", pad="0"), 

str_pad(fetched1@geography$tract, 6, "left", pad="0")), 

fetched1@estimate[,c("Total Population: Total")], 

stringsAsFactors = FALSE)


 acs_df1 <- select(acs_df1, 1:2) %>% tbl_df()
 rownames(acs_df1) <- 1:nrow(acs_df1)

 names(acs_df1) <- c("GEOID", "popu")

 acs_df <- merge(acs_df, acs_df1, by="GEOID")
 
df_merged <- geo_join(tracts, acs_df, "GEOID", "GEOID")

 ### head(df_merged)
 

df_merged$StateCounty <- as.numeric(paste0(df_merged$STATEFP, df_ 
merged$COUNTYFP))
 # head(df_merged)

 df_merged <- merge(df_merged, StateCountyData, by="StateCounty")

 # there are some tracts with no land that we should exclude

 df_merged <- df_merged[df_merged$ALAND>0,]

 ### head(df_merged)


 #popup <- paste0(df_merged$NAME, ", GeoID: ", df_merged$GEOID, "<br>", 
"Commuters (16 Yrs and above) used Bicycle (%): ", round(df_merged$percent,2))

 #pal <- colorNumeric(

 # palette = "YlOrRd",

 # domain = df_merged$percent

 #)

 popup <- paste0(df_merged$County, ", GeoID: ", df_merged$GEOID, "<br>", 

"Estimated Bike/Total Commute Trips (%) - ", round(df_merged$percent,2),
 "<br>","Estimated Total Commute Trips - ", round(df_merged$total, 

2),"<br>","Exposure: Estimated Bike Commute Trips - ", round(df_merged$bike,2))
 pal <- colorNumeric(
 palette = "YlOrRd", 
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 domain = df_merged$bike
 
)
 
label <- paste0(df_merged$County, ", ", "GeoID: ", df_merged$GEOID)
 

acsT1 <- acs_df
 
acsT1$StateCounty <- as.numeric(substr(acsT1$GEOID, 1, 5))
 
acsT1 <- merge(acsT1, StateCountyData, by="StateCounty")
 
acsT1 <- merge(acsT1, tract_L, by="GEOID")
 
acsT2 <- acsT1[c(7,10,1,6,11,5,3,4)] 
acsT2$percent <- round(acsT2$percent, 2)
 
acsDTtemp <- datatable(cbind(TimeYearDesc,acsT2), class = 'cell-border stripe', 


colnames = c('Record No.','Time Period','State', 'County', 

'GeoID (Tract)', 'Population Estimates', 

'Land Area in Square Mile', 

'Estimated Bike/Total Commute Trips (%)', 
'Estimated Total Commute Trips', 
'Exposure: Estimated Bike Commute Trips') 

) %>% formatRound('percent', 2) 
output$acsDT = DT::renderDataTable(acsDTtemp, options = list(lengthChange = 

FALSE)) 

acsT2dowload <- cbind(TimeYearDesc,acsT2) 
names(acsT2dowload) <- c('Time Period','State', 'County', 'GeoID (Tract)', 

'Population Estimates', 'Land Area in Square Mile', 
'Estimated Bike/Total Commute Trips (%)', 
'Estimated Total Commute Trips', 
'Exposure: Estimated Bike Commute Trips') 

incProgress(5/6, detail = paste("Writing Output..."))

 }else{
 
acs_df <- data.frame(
 
paste0(
 
str_pad(fetched@geography$state, 2, "left", pad="0"), 

str_pad(fetched@geography$county, 3, "left", pad="0"), 

str_pad(fetched@geography$tract, 6, "left", pad="0")), 
fetched@estimate[,c("Means of Transportation to Work: Total:", 


"Means of Transportation to Work: Walked")], 

stringsAsFactors = FALSE)
 

### head(acs_df) 

acs_df <- select(acs_df, 1:3) %>% tbl_df() 
rownames(acs_df) <- 1:nrow(acs_df)
 
names(acs_df) <- c("GEOID", "total", "walk")
 
acs_df$percent <- 100*(acs_df$walk/acs_df$total)
 
acs_df$percent <- replace(acs_df$percent, is.na(acs_df$percent), 0) #### to remove 


NaN 

(Contd.) 
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### head(acs_df) 

acs_df1 <- data.frame(
 paste0(
 

str_pad(fetched1@geography$state, 2, "left", pad="0"), 

str_pad(fetched1@geography$county, 3, "left", pad="0"), 

str_pad(fetched1@geography$tract, 6, "left", pad="0")),

 fetched1@estimate[,c("Total Population: Total")], 

 stringsAsFactors = FALSE)

 acs_df1 <- select(acs_df1, 1:2) %>% tbl_df()
 rownames(acs_df1) <- 1:nrow(acs_df1)

 names(acs_df1) <- c("GEOID", "popu")

 acs_df <- merge(acs_df, acs_df1, by="GEOID")


 df_merged <- geo_join(tracts, acs_df, "GEOID", "GEOID")

 ### head(df_merged)


 df_merged$StateCounty <- as.numeric(paste0(df_merged$STATEFP, df_ 
merged$COUNTYFP))

 # head(df_merged)

 df_merged <- merge(df_merged, StateCountyData, by="StateCounty")

 # there are some tracts with no land that we should exclude

 df_merged <- df_merged[df_merged$ALAND>0,]

 ### head(df_merged)


 #popup <- paste0(df_merged$NAME, ", GeoID: ", df_merged$GEOID, "<br>", 
"Commuters (16 Yrs and above) Walked (%): ", round(df_merged$percent,2))

 #pal <- colorNumeric(

 # palette = "YlOrRd",

 # domain = df_merged$percent

 #)

 popup <- paste0(df_merged$County, ", GeoID: ", df_merged$GEOID, "<br>", 

"Estimated Walk/Total Commute Trips (%) - ", round(df_merged$percent,2), 
"<br>","Estimated Total Commute Trips - ", round(df_merged$total,2),"<b 

r>","Exposure: Estimated Walk Commute Trips - ", round(df_merged$walk,2))
 pal <- colorNumeric(
 palette = "YlOrRd",
 domain = df_merged$walk 
)
 
label <- paste0(df_merged$County, ", ", "GeoID: ", df_merged$GEOID)
 

acsT1 <- acs_df
 
acsT1$StateCounty <- as.numeric(substr(acsT1$GEOID, 1, 5))
 
acsT1 <- merge(acsT1, StateCountyData, by="StateCounty")
 
acsT1 <- merge(acsT1, tract_L, by="GEOID")
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acsT2 <- acsT1[c(7,10,1,6,11,5,3,4)] 
acsT2$percent <- round(acsT2$percent, 2) 
acsDTtemp <- datatable(cbind(TimeYearDesc,acsT2), class = 'cell-border stripe', 

colnames = c('Record No.','Time Period','State', 'County', 'GeoID (Tract)', 
'Population Estimates', 'Land Area in Square Mile', 
'Estimated Walk/Total Commute Trips (%)', 
'Estimated Total Commute Trips', 
'Exposure: Estimated Walk Commute Trips') 

) %>% formatRound('percent', 2) 
output$acsDT = DT::renderDataTable(acsDTtemp, options = list(lengthChange = 

FALSE)) 

acsT2dowload <- cbind(TimeYearDesc,acsT2) 
names(acsT2dowload) <- c('Time Period','State', 'County', 'GeoID (Tract)', 

'Population Estimates', 'Land Area in Square Mile', 
'Estimated Walk/Total Commute Trips (%)', 
'Estimated Total Commute Trips', 
'Exposure: Estimated Walk Commute Trips') 

incProgress(4/5, detail = paste("Writing Output...")) 

} 

}else{ 

if(ModeInput == "Bike"){ 

incProgress(1/6, detail = paste("Retrieving Geography...")) 
bg <- block_groups(StateInput, county=CountyCode, cb=TRUE) 
### head(bg) 

incProgress(2/6, detail = paste("Retrieving Data...")) 
fetched <- acs.fetch( 
geography = geo.make(state = StateInput, county=CountyCode, tract = "*", block. 

group = "*"), 
endyear = YearInput,span=TimeSpan,# Package only goes to 2013, so end=2012 
table.number = "B08301", key="12c55b28a8b13fd30e88db9e59bee9edd0fa8ce1", 
col.names = "pretty") 

### head(fetched) 

### names(attributes(fetched)) # see what's available 

### attr(fetched, "acs.colnames") # see column names 

incProgress(3/6, detail = paste("Retrieving Data...")) 

(Contd.) 
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fetched1 <- acs.fetch(
 
geography = geo.make(state = StateInput, county=CountyCode, tract = "*", block.
 

group = "*"), 
endyear = YearInput,span=TimeSpan,# Package only goes to 2013, so end=2012 
table.number = "B01003", key="12c55b28a8b13fd30e88db9e59bee9edd0fa8ce1", 
col.names = "pretty") 

incProgress(4/6, detail = paste("Preparing Output...")) 
acs_df <- data.frame(
 paste0(
 

str_pad(fetched@geography$state, 2, "left", pad="0"), 

str_pad(fetched@geography$county, 3, "left", pad="0"), 

str_pad(fetched@geography$tract, 6, "left", pad="0"), 
str_pad(fetched@geography$blockgroup, 1, "left", pad="0")),
 

fetched@estimate[,c("Means of Transportation to Work: Total:", 

"Means of Transportation to Work: Bicycle")], 


stringsAsFactors = FALSE)
 

### head(acs_df) 

acs_df <- select(acs_df, 1:3) %>% tbl_df() 
rownames(acs_df) <- 1:nrow(acs_df)
 
names(acs_df) <- c("GEOID", "total", "bike")
 
acs_df$percent <- 100*(acs_df$bike/acs_df$total) 

acs_df$percent <- replace(acs_df$percent, is.na(acs_df$percent), 0) #### to remove 


NaN 
### head(acs_df) 

###write.csv(acs_df, "Data1.csv")
 
acs_df1 <- data.frame(
 
paste0(
 

str_pad(fetched1@geography$state, 2, "left", pad="0"), 

str_pad(fetched1@geography$county, 3, "left", pad="0"), 

str_pad(fetched1@geography$tract, 6, "left", pad="0"), 
str_pad(fetched1@geography$blockgroup, 1, "left", pad="0")),
 

fetched1@estimate[,c("Total Population: Total")], 

stringsAsFactors = FALSE)
 
acs_df1 <- select(acs_df1, 1:2) %>% tbl_df() 
rownames(acs_df1) <- 1:nrow(acs_df1)
 
names(acs_df1) <- c("GEOID", "popu")
 
acs_df <- merge(acs_df, acs_df1, by="GEOID")
 

df_merged <- geo_join(bg, acs_df, "GEOID", "GEOID")
 
### head(df_merged)
 

df_merged$StateCounty <- as.numeric(paste0(df_merged$STATEFP, df_ 
merged$COUNTYFP)) 
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# head(df_merged) 
df_merged <- merge(df_merged, StateCountyData, by="StateCounty") 

##there are some tracts with no land that we should exclude 
df_merged2 <- df_merged[df_merged$ALAND>0,] 
### head(df_merged2) 

#popup <- paste0(df_merged$NAME, ", GeoID: ", df_merged$GEOID, "<br>", 
"Commuters (16 Yrs and above) used Bicycle (%): ", round(df_merged$percent,2)) 

#pal <- colorNumeric(
 
# palette = "YlOrRd",
 
# domain = df_merged$percent
 
#)
 
popup <- paste0(df_merged$County, ", GeoID: ", df_merged$GEOID, "<br>", 


"Estimated Bike/Total Commute Trips (%) - ", round(df_merged$percent,2), 
"<br>","Estimated Total Commute Trips - ", round(df_merged$total,2),"< 

br>","Exposure: Estimated Bike Commute Trips - ", round(df_merged$bike,2)) 
pal <- colorNumeric( 
palette = "YlOrRd", 
domain = df_merged$bike 
) 
label <- paste0(df_merged2$County, ", ", "GeoID: ", df_merged2$GEOID) 

acsT1 <- acs_df 
acsT1$StateCounty <- as.numeric(substr(acsT1$GEOID, 1, 5)) 
acsT1 <- merge(acsT1, StateCountyData, by="StateCounty") 
acsT1 <- merge(acsT1, bg_L, by="GEOID") 
acsT2 <- acsT1[c(7,10,1,6,11,5,3,4)] 
acsT2$percent <- round(acsT2$percent, 2) 
acsDTtemp <- datatable(cbind(TimeYearDesc,acsT2), class = 'cell-border stripe', 

colnames = c('Record No.','Time Period','State', 'County', 
'GeoID (Block Group)', 'Population Estimates', 

'Land Area in Square Mile', 
'Estimated Bike/Total Commute Trips (%)', 
'Estimated Total Commute Trips', 
'Exposure: Estimated Bike Commute Trips') 

) %>% formatRound('percent', 2) 
output$acsDT = DT::renderDataTable(acsDTtemp, options = list(lengthChange = 

FALSE)) 

acsT2dowload <- cbind(TimeYearDesc,acsT2) 
names(acsT2dowload) <- c('Time Period','State', 'County', 'GeoID (Block Group)', 

'Population Estimates', 'Land Area in Square Mile', 
'Estimated Bike/Total Commute Trips (%)', 
'Estimated Total Commute Trips', 
'Exposure: Estimated Bike Commute Trips') 

incProgress(4/6, detail = paste("Writing Output...")) 

(Contd.)
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}else{ 

incProgress(1/6, detail = paste("Retrieving Geography...")) 
bg <- block_groups(StateInput, county=CountyCode, cb=TRUE)
 
### head(bg)
 

incProgress(2/6, detail = paste("Retrieving Data...")) 
fetched <- acs.fetch(
 
geography = geo.make(state = StateInput, county=CountyCode, tract = "*", block.
 

group = "*"), 
endyear = YearInput,span=TimeSpan,# Package only goes to 2013, so end=2012 
table.number = "B08301", key="12c55b28a8b13fd30e88db9e59bee9edd0fa8ce1", 
col.names = "pretty") 

### head(fetched) 

### names(attributes(fetched)) # see what's available 

### attr(fetched, "acs.colnames") # see column names 

incProgress(3/6, detail = paste("Retrieving Data...")) 
fetched1 <- acs.fetch(
 
geography = geo.make(state = StateInput, county=CountyCode, tract = "*", block.
 

group = "*"), 
endyear = YearInput,span=TimeSpan,# Package only goes to 2013, so end=2012 
table.number = "B01003", key="12c55b28a8b13fd30e88db9e59bee9edd0fa8ce1", 
col.names = "pretty") 

incProgress(4/6, detail = paste("Preparing Output...")) 
acs_df <- data.frame( 
paste0(
 

str_pad(fetched@geography$state, 2, "left", pad="0"), 

str_pad(fetched@geography$county, 3, "left", pad="0"), 

str_pad(fetched@geography$tract, 6, "left", pad="0"), 
str_pad(fetched@geography$blockgroup, 1, "left", pad="0")),
 
fetched@estimate[,c("Means of Transportation to Work: Total:", 


"Means of Transportation to Work: Walked")], 

stringsAsFactors = FALSE)
 

### head(acs_df) 

acs_df <- select(acs_df, 1:3) %>% tbl_df() 
rownames(acs_df) <- 1:nrow(acs_df)
 
names(acs_df) <- c("GEOID", "total", "walk")
 
acs_df$percent <- 100*(acs_df$walk/acs_df$total)
 
acs_df$percent <- replace(acs_df$percent, is.na(acs_df$percent), 0) #### to 


remove NaN 
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### head(acs_df) 

acs_df1 <- data.frame(
 
paste0(
 
str_pad(fetched1@geography$state, 2, "left", pad="0"), 

str_pad(fetched1@geography$county, 3, "left", pad="0"), 

str_pad(fetched1@geography$tract, 6, "left", pad="0"), 
str_pad(fetched1@geography$blockgroup, 1, "left", pad="0")),
 
fetched1@estimate[,c("Total Population: Total")], 

stringsAsFactors = FALSE)
 
acs_df1 <- select(acs_df1, 1:2) %>% tbl_df() 
rownames(acs_df1) <- 1:nrow(acs_df1)
 
names(acs_df1) <- c("GEOID", "popu")
 
acs_df <- merge(acs_df, acs_df1, by="GEOID")
 

df_merged <- geo_join(bg, acs_df, "GEOID", "GEOID")
 
### head(df_merged)
 

df_merged$StateCounty <- as.numeric(paste0(df_merged$STATEFP, df_ 
merged$COUNTYFP)) 

# head(df_merged) 

df_merged <- merge(df_merged, StateCountyData, by="StateCounty") 

##there are some tracts with no land that we should exclude
 
df_merged2 <- df_merged[df_merged$ALAND>0,]
 
### head(df_merged2)
 

#popup <- paste0(df_merged$NAME, ", GeoID: ", df_merged$GEOID, "<br>", 
"Commuters (16 Yrs and above) Walked (%): ", round(df_merged$percent,2)) 

#pal <- colorNumeric(
 
# palette = "YlOrRd",
 
# domain = df_merged$percent
 
#)
 
popup <- paste0(df_merged$County, ", GeoID: ", df_merged$GEOID, "<br>", 


"Estimated Walk/Total Commute Trips (%) - ", round(df_merged$percent,2), 
"<br>","Estimated Total Commute Trips - ", round(df_merged$total,2),"<br>"," 

Exposure: Estimated Walk Commute Trips - ", round(df_merged$walk,2)) 
pal <- colorNumeric( 
palette = "YlOrRd", 
domain = df_merged$walk 
) 

label <- paste0(df_merged2$County, ", ", "GeoID: ", df_ 
merged2$GEOID) 

acsT1 <- acs_df
 
acsT1$StateCounty <- as.numeric(substr(acsT1$GEOID, 1, 5))
 

(Contd.)
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acsT1 <- merge(acsT1, StateCountyData, by="StateCounty")
 
acsT1 <- merge(acsT1, bg_L, by="GEOID")
 
acsT2 <- acsT1[c(7,10,1,6,11,5,3,4)] 
acsT2$percent <- round(acsT2$percent, 2)
 
acsDTtemp <- datatable(cbind(TimeYearDesc,acsT2), class = 'cell-border stripe', 


colnames = c('Record No.','Time Period','State', 'County', 
'GeoID (Block Group)', 'Population Estimates', 
'Land Area in Square Mile', 
'Estimated Walk/Total Commute Trips (%)', 
'Estimated Total Commute Trips', 

'Exposure: Estimated Walk Commute Trips')
 

) %>% formatRound('percent', 2) 
output$acsDT = DT::renderDataTable(acsDTtemp, options = list(lengthChange 

= FALSE)) 

acsT2dowload <- cbind(TimeYearDesc,acsT2) 
names(acsT2dowload) <- c('Time Period','State', 'County', 'GeoID (Block 

Group)', 'Population Estimates', 'Land Area in Square Mile', 
'Estimated Walk/Total Commute Trips (%)', 
'Estimated Total Commute Trips', 

'Exposure: Estimated Walk Commute Trips')
 

incProgress(4/5, detail = paste("Writing Output...")) 

} 
} 

} 

output$busmap <- renderLeaflet({ 

if(TimeSpan == 1 || TimeSpan == 3){
 
if(ModeInput == "Bike"){
 

leaflet() %>%
	
setView(-98.35, 39.7, zoom = 4) %>%
	
addProviderTiles(providers$CartoDB.Positron) %>%
	
addPolygons(data = df_merged, 

#fillColor = ~pal(percent), 

fillColor = ~pal(bike), 

color = "#5e6e88", # you need to use hex colors
	
fillOpacity = 0.7, 

weight = 1, 

smoothFactor = 0.30,
 
popup = popup,
 
highlightOptions = highlightOptions(color = "black", weight = 2,
 

bringToFront = TRUE), 
label = label) %>% 

addLegend(pal = pal, 

#values = df_merged$percent, 


http://www.setView(-98.35
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values = df_merged$bike, 
position = "bottomright", 
#title = "Commuters (%) Bike to Work", 
#labFormat = labelFormat(suffix = "%")) 
title = "Commuters Bike to Work") 

}else{ 
leaflet() %>% 
setView(-98.35, 39.7, zoom = 4) %>%
 addProviderTiles(providers$CartoDB.Positron) %>% 
addPolygons(data = df_merged, 

#fillColor = ~pal(percent), 
fillColor = ~pal(walk), 
color = "#5e6e88", # you need to use hex colors 
fillOpacity = 0.7, 
weight = 1, 
smoothFactor = 0.30, 
popup = popup, 
highlightOptions = highlightOptions(color = "black", weight = 2, 

bringToFront = TRUE), 
label = label) %>%

 addLegend(pal = pal, 
#values = df_merged$percent, 
values = df_merged$walk, 
position = "bottomright", 
#title = "Commuters (%) Walk to Work", 
#labFormat = labelFormat(suffix = "%")) 
title = "Commuters Walk to Work" 

) 
} 

}else{ 
### TimeSpan = 5 
if(CountyInput == "All Counties"){ 
if(ModeInput == "Bike"){
 leaflet() %>%
  addProviderTiles("CartoDB.Positron") %>%
  addPolygons(data = df_merged, 

#fillColor = ~pal(percent), 
fillColor = ~pal(bike), 
color = "#b2aeae", # you need to use hex colors 
fillOpacity = 0.7, 
weight = 1, 
smoothFactor = 0.2, 
popup = popup, 
highlightOptions = highlightOptions(color = "black", weight = 2, 

bringToFront = TRUE), 
label = label) %>%

 addLegend(pal = pal, 

(Contd.) 
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#values = df_merged$percent, 

values = df_merged$bike, 

position = "bottomright", 

#title = "Commuters (%) Bike to Work (Census Tract)", 
#labFormat = labelFormat(suffix = "%") 
title = "Commuters Bike to Work (Census Tract)" 

) 
}else{ 

leaflet() %>%
	
addProviderTiles("CartoDB.Positron") %>%
	
addPolygons(data = df_merged, 

#fillColor = ~pal(percent), 

fillColor = ~pal(walk), 

color = "#b2aeae", # you need to use hex colors 
fillOpacity = 0.7, 
weight = 1, 

smoothFactor = 0.2,
 
popup = popup,
 
highlightOptions = highlightOptions(color = "black", weight = 2,
 

bringToFront = TRUE), 
label = label) %>%

 addLegend(pal = pal, 
#values = df_merged$percent, 
values = df_merged$walk, 
position = "bottomright", 
#title = "Commuters (%) Walk to Work (Census Tract)", 
#labFormat = labelFormat(suffix = "%") 
title = "Commuters Walk to Work (Census Tract)" 

) 
} 

}else{ 

if(ModeInput == "Bike"){
 leaflet() %>%

 addProviderTiles("CartoDB.Positron") %>%

 addPolygons(data = df_merged2, 

#fillColor = ~pal(percent), 

fillColor = ~pal(bike), 

color = "#b2aeae", # you need to use hex colors 
fillOpacity = 0.7, 
weight = 1, 

smoothFactor = 0.2,
 
popup = popup,
 
highlightOptions = highlightOptions(color = "black", weight = 2,
 

bringToFront = TRUE), 
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label = label) %>%
 addLegend(pal = pal, 


#values = df_merged$percent, 

values = df_merged$bike, 

position = "bottomright", 

title = "Commuters Bike to Work (Census Block group)"
 
#title = "Commuters (%) Bike to Work (Census Block group)",
	
#labFormat = labelFormat(suffix = "%")
	

) 

}else{ 
leaflet() %>%

 addProviderTiles("CartoDB.Positron") %>%

 addPolygons(data = df_merged, 

#fillColor = ~pal(percent), 

fillColor = ~pal(walk), 

color = "#b2aeae", # you need to use hex colors 
fillOpacity = 0.7, 
weight = 1, 

smoothFactor = 0.2,
 
popup = popup,
 
highlightOptions = highlightOptions(color = "black", weight = 2,
 

bringToFront = TRUE), 
label = label) %>%

 addLegend(pal = pal, 

#values = df_merged$percent, 

values = df_merged$walk, 

position = "bottomright", 

title = "Commuters Walk to Work (Census Block group)"
 
#title = "Commuters (%) Walk to Work (Census Block group)",
	
#labFormat = labelFormat(suffix = "%")


 ) 

}
 

} 

} 

})


 incProgress(6/6, detail = paste("Finished!"))

 output$downloadData <- downloadHandler( 
#filename = function() {paste("test.csv")},
	
filename = function() {gsub(" ","",paste(StateInput,"_",CountyInput,"_",YearInput,"
	

",TimeSpan,"yr_",SpatialInput,"_", 
ModeInput,".csv"))}, 

content = function(file) {
	
write.csv(acsT2dowload,file, row.names=FALSE)
	

}) 

(Contd.) 
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})

 })

 output$StNmPMmap <- renderLeaflet({

 leaflet() %>% 
addProviderTiles("CartoDB.Positron") %>% 
setView(-98.35, 39.7, zoom = 4)

 })

 observeEvent(input$RefreshMapStNmPM, { 
withProgress(message = 'Processing ', value = 0, { 

YearInputStNmPM <- input$YearInputStNmPM 
ModeInputStNmPM <- input$ModeInputStNmPM 

incProgress(1/3, detail = paste("Retrieving Geography...")) 
StatePerMeasureData <- subset(StateNonMotorPM, StateNonMotorPM$Year == 

YearInputStNmPM ) 

StatePerMeasureData <- subset(StatePerMeasureData, 
StatePerMeasureData$Mode == ModeInputStNmPM) 

StatePerMeasureData <- StatePerMeasureData[c(1,2,6,7,12,13,14)] 
StatePerMeasureData$GEOID <- str_pad(StatePerMeasureData$GEOID, 2, pad 

= "0") 

states <- states(cb = TRUE) 
df_mergedStNmPM <- geo_join(states, StatePerMeasureData, "GEOID", 

"GEOID") 
df_mergedStNmPM$Estimated_Annual_Trips_Million <-

replace(df_mergedStNmPM$Estimated_Annual_Trips_Million, is.na(df_ 
mergedStNmPM$Estimated_Annual_Trips_Million), 0) 

df_mergedStNmPM$Estimated_Annual_MilesTraveled_Million <-
replace(df_mergedStNmPM$Estimated_Annual_MilesTraveled_Million, is.na(df_ 
mergedStNmPM$Estimated_Annual_MilesTraveled_Million), 0) 

df_mergedStNmPM$Estimated_Annual_HoursTraveled_Million <-
replace(df_mergedStNmPM$Estimated_Annual_HoursTraveled_Million, is.na(df_ 
mergedStNmPM$Estimated_Annual_HoursTraveled_Million), 0) 

df_mergedStNmPM <- subset(df_mergedStNmPM, !(is.na(df_ 
mergedStNmPM$State))) ###drop where State is NA (Samoa, etc.) 

df_mergedStNmPM <- subset(df_mergedStNmPM, df_mergedStNmPM$GEOID 
!= 72) ###drop Puerto Rico (no NHTS data) 
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popupStNmPM <- paste0(df_mergedStNmPM$State, ", GeoID: ", df_ 
mergedStNmPM$GEOID, "<br>", "Year: ", df_mergedStNmPM$Year, ", Mode: ", 
df_mergedStNmPM$Mode, "<br>", 

"Estimated Annual Trips (Million): ", df_mergedStNmPM$Estimated_ 
Annual_Trips_Million, "<br>", 

"Estimated Annual Miles Traveled (Million): ", df_ 
mergedStNmPM$Estimated_Annual_MilesTraveled_Million, "<br>", 

"Estimated Annual Hours Traveled (Million): ",df_ 
mergedStNmPM$Estimated_Annual_HoursTraveled_Million) 

labelStNmPM <- paste0(df_mergedStNmPM$State, ", GeoID: ", df_ 
mergedStNmPM$GEOID) 

palStNmPM <- colorNumeric(palette = "YlOrRd", domain = df_ 
mergedStNmPM$Estimated_Annual_Trips_Million) 

incProgress(2/3, detail = paste("Preparing Output...")) 
StatePerMeasureDataNoPuertoRico <- subset(StatePerMeasureData, 

StatePerMeasureData$GEOID != 72 ) 
acsDTtempStNmPM <- datatable(StatePerMeasureDataNoPuertoRico, class = 'cell-

border stripe', colnames = c('Record No.','State','GeoID (State)','Mode','Year','Estimate 
d Annual Trips (Million)', 

'Estimated Annual Miles Traveled (Million)','Estimated Annual Hours 
Traveled (Million)')
 ) 

names(StatePerMeasureDataNoPuertoRico) <- c('State','GeoID (State)','Mode','Yea 
r','Estimated Annual Trips (Million)', 

'Estimated Annual Miles Traveled (Million)','Estimated Annual Hours 
Traveled (Million)')

 observe({ 
if (input$MapDataSelectionStNmPM == 'Estimated Annual Trips') {
 palStNmPM <- colorNumeric(palette = "YlOrRd", domain = df_ 

mergedStNmPM$Estimated_Annual_Trips_Million) 
leafletProxy("StNmPMmap") %>%

 clearControls() %>%
 clearShapes() %>%
 addProviderTiles(providers$CartoDB.Positron) %>%
 addPolygons(data = df_mergedStNmPM, 

fillColor = ~palStNmPM(Estimated_Annual_Trips_Million), 
color = "#5e6e88", # you need to use hex colors 
fillOpacity = 0.7, 
weight = 1, 
smoothFactor = 0.30, 
popup = popupStNmPM, 
highlightOptions = highlightOptions(color = "black", weight = 2, bringToFront = 

TRUE), 
label = labelStNmPM) %>%

 addLegend(pal = palStNmPM, 

(Contd.)
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values = df_mergedStNmPM$Estimated_Annual_Trips_Million, 

position = "bottomright", 

title = "Estimated Annual Trips (Million)",
 
labFormat = labelFormat(suffix = ""))

 } else { 
if (input$MapDataSelectionStNmPM == 'Estimated Annual Miles Traveled') {
 palStNmPM <- colorNumeric(palette = "YlOrRd", domain = df_ 

mergedStNmPM$Estimated_Annual_MilesTraveled_Million) 
leafletProxy("StNmPMmap") %>%


 clearControls() %>%

 clearShapes() %>%

 addProviderTiles(providers$CartoDB.Positron) %>%

 addPolygons(data = df_mergedStNmPM, 

fillColor = ~palStNmPM(Estimated_Annual_MilesTraveled_Million), 

color = "#5e6e88", # you need to use hex colors
	
fillOpacity = 0.7, 

weight = 1, 

smoothFactor = 0.30,
 
popup = popupStNmPM,
 
highlightOptions = highlightOptions(color = "black", weight = 2, bringToFront = 


TRUE), 
label = labelStNmPM) %>% 
addLegend(pal = palStNmPM, 

values = df_mergedStNmPM$Estimated_Annual_MilesTraveled_Million, 

position = "bottomright",
 
title = "Estimated Annual Miles Traveled (Million)",
 
labFormat = labelFormat(suffix = ""))

 } else { 
palStNmPM <- colorNumeric(palette = "YlOrRd", domain = df_ 

mergedStNmPM$Estimated_Annual_HoursTraveled_Million) 
leafletProxy("StNmPMmap") %>%
	
clearControls() %>%
	
clearShapes() %>%
	
addProviderTiles(providers$CartoDB.Positron) %>%
	

addPolygons(data = df_mergedStNmPM, 
fillColor = ~palStNmPM(Estimated_Annual_HoursTraveled_Million), 

color = "#5e6e88", # you need to use hex colors
	
fillOpacity = 0.7, 

weight = 1, 

smoothFactor = 0.30,
 
popup = popupStNmPM,
 
highlightOptions = highlightOptions(color = "black", weight = 2, bringToFront = 


TRUE), 
label = labelStNmPM) %>%

 addLegend(pal = palStNmPM, 
values = df_mergedStNmPM$Estimated_Annual_HoursTraveled_Million, 
position = "bottomright", 
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title = "Estimated Annual Hours Traveled (Million)", 
labFormat = labelFormat(suffix = ""))

 } 
}

 })

 output$acsDTStNmPM = DT::renderDataTable(acsDTtempStNmPM, options = 
list(lengthChange = FALSE), 

rownames= FALSE) 

output$downloadDataStNmPM <- downloadHandler( 
filename = function() {gsub(" ","",paste("StatewideNmPerfMeas_",YearInputStNm 

PM,"_",ModeInputStNmPM,".csv"))}, 
content = function(file) {write.csv(StatePerMeasureDataNoPuertoRico,file, row. 

names=FALSE)} 
)

 incProgress(3/3, detail = paste("Finished!")) 
})

 })

 } 

shinyApp(ui, server) 
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Appendix G 

Alternative to Crash Tree Tool 

Problem Statement 
The Data Driven Safety Analysis (DDSA) Crash Tree Tool allows users to 
generate crash tree diagrams based on the NHTSA Fatality Analysis Reporting 
System (FARS) or other crash datasets. The Crash Tree Tool is considered a useful 
tool to perform systematic safety analysis. However, the tool and generated trees 
are difficult to reproduce with little or no flexibility. The following ‘Shiny Tool’ 
can be considered as an alternative. This tool has the following functionalities: 

• Updated crash level categorical data in csv format 
• Selection of multiple variables to perform the safety diagnostics 
• Interactive crash collapsible tree with percentages in each branch 

Crash Collapsible Tree Tool (CCTT) 
## Please check my RPUBS for additional codes: https://rpubs.com/subasish 

library(shiny) 
library(dplyr) 
library(collapsibleTree) 
library(data.tree) 
#UI 
ui <- navbarPage("Crash Collapsible Tree",

 tabPanel("Tree Diagram", fluidPage(
 # Application title
 titlePanel("Tree Diagram"), 
sidebarLayout( 
sidebarPanel( 

fileInput('myfileinput', label = 'Select File', 

accept = c(".csv")),
	

selectInput("hierarchy",
	
"Select variables", 

https://www.rpubs.com
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choices = 'No choices here yet', 
multiple = TRUE 
),

 tags$style(type="text/css", 
".shiny-output-error { visibility: hidden; }", 
".shiny-output-error:before { visibility: hidden; }"

 ), width=2),
 # Show a tree diagram with the selected root node
 mainPanel( 

collapsibleTreeOutput("plot", height = "800px", width="1200px")
 )))

 ),
 tabPanel("Table", fluidPage( 

DT::dataTableOutput("mytable")))) 

#Server
 
server <- function(input, output, session) {
 

observeEvent(input$myfileinput, { 

mytable <- read.csv(input$myfileinput$datapath) 
mytable <- mutate_if(mytable, is.character, as.factor)

 updateSelectInput(session, "hierarchy", 
label = "Select variables", 
choices = colnames(mytable))

 output$mytable = DT::renderDataTable({
 mytable}) 

output$plot <- renderCollapsibleTree({ 
mytable %>% 

group_by(across(all_of(input$hierarchy))) %>% 
summarize(`Count` = n(), `Percentage`=`Count`/nrow(mytable)*100) %>% 

collapsibleTreeSummary( 
attribute= "Percentage", fontSize=16, 
hierarchy = as.character(input$hierarchy))}) 

})

 } 

shinyApp(ui = ui, server = server) 

The above code is reproducible. Figure 99 shows the interface of the CCTT. The 
shiny tool is available here: https://subasish.shinyapps.io/CrashCollapsibleTree/ 

https://www.subasish.shinyapps.io
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Appendix H 

Example of Quick Bibliographic 
Search 

Problem Statement 
Researchers need to generate a literature review for many of their ongoing studies. 
There are many referencing servers such as Web of Science, Scopus, and TRID 
(https://trid.trb.org/). TRID is sometimes considered to be a better search engine 
for transportation research due to its backend, which is based on transportation 
research only. The following example shows how to perform a TRID-based 
literature search, which can provide some additional bibliometric information. 
For this work, NLP-based keywords are used to identify the relevant studies. 

Code Chunk 1 
## Please check my RPUBS for additional codes: https://rpubs.com/subasish
 
library(readxl)
 
library(DT)
 
library(dplyr)
 
library(reshape2)
 
library(data.table)
 
library(tidyr)
 

setwd("~folder location")
 

dat1 <- read_excel("NLP_032020.xlsx", sheet="fin00") ## generated from TRID 
(https://trid.trb.org/) search
 
dat2 <- dat1[,c("title", "abstract", "year", "serial", "publisher")]
 
dat2a <- dat2[!duplicated(dat2[,c(1:5)]),]
 

dat2a$non_na <- 3- apply(dat2a, 1, function(x) sum(is.na(x)))
 

https://www.trid.trb.org
https://www.rpubs.com
https://www.trid.trb.org
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# use aggregate to create new data frame with the maxima
 
dat2b <- aggregate(non_na ~ title, dat2a, max)
 
# then simply merge with the original
 
dat2c <- merge(dat2b, dat2a)
 
dim(dat2c)
 

### generated 45 papers
 

Code Chunk 2 
dat4 <- dat1[,c("title", "term", "subject_area", "author")] 
dat4a <- dat4[!duplicated(dat4[,c(1:4)]),] 
dat5 = melt(dat4a, id.vars = c("title" )) 
dat6 = dat5[complete.cases(dat5), ] 
dat7= dat6 %>% group_by(title, variable) %>% mutate(rowind = row_number()) 

dat2e <- dat1[,c("title", "year")][complete.cases(dat1[,c("title", 
[!duplicated(dat1[,c("title", "year")][complete.cases(dat1[,c("title", 
[,c(1:2)]),] 
dat8= left_join(dat7, dat2e, by="title") 

"year")]), 
"year")]), 

] 
] 

Code Chunk 3 (by Keywords) 
dat8a= subset(dat8, variable=="term") 
dat8a= subset(dat8a, year > 1990) 
dat9 <- dat8a[,c("value", "year")] %>% group_by(value, year) %>% summarise(count 
= n()) %>% 

spread(year, count) 
dat9[is.na(dat9)] <- 0 

dat9$Total=rowSums(dat9[,c(2:11)]) 
datatable(dat9, extensions = c('Scroller', 'FixedColumns'), options = list( 

deferRender = TRUE, 
scrollY = TRUE, 
scrollX = TRUE, 
fixedColumns = list(leftColumns = 2, rightColumns = 1) 

)) 

Table 35 shows the partial display by keywords. 

Code Chunk 4 (by Author Numbering) 
dat8a= subset(dat8, variable=="author")
 
dat9 <- dat8a[,c("value", "rowind")] %>% group_by(value, rowind) %>% 

summarise(count = n()) %>%
 

spread(rowind, count) 
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dat9[is.na(dat9)] <- 0 
datatable(dat9, extensions = c('Scroller', 'FixedColumns'), options = list(

  deferRender = TRUE,

  scrollY = TRUE,

  scrollX = TRUE,

 fixedColumns = list(leftColumns = 2, rightColumns = 1) 

)) 

Table 35. Partial display by keywords 

Show 10 entries Search: 

Value 2008 2009 2012 2013 2014 2015 2016 2017 2018 Total
 

1 Accuracy 0 0 0 0 0 0 0 0 0 1 

2 Activities of 0 0 0 0 0 1 0 0 0 1 
daily living 

3 Advanced 0 0 0 0 0 0 1 0 0 1 
traveler 
information 
system 

4 Aircraft 0 0 0 0 0 0 0 0 0 1 
incidents 

5 Airlines 0 0 0 0 0 0 2 0 0 1 

6 Algorithms 0 1 0 0 1 0 2 1 0 1 

7 Apnea 0 0 0 0 0 0 0 0 0 1 

8 Artificial 0 0 0 0 0 0 0 0 0 1 
intelligence 

Table 36 shows the partial display by author numbering. 

Table 36. Partial display by author numbering 

Show 10 entries Search: 

Value 1 2 3 4 5 6 7
 

1 Abbasi, Allreza 0 1 0 0 0 0 0 

2 Ali Farman 1 0 0 0 0 0 0 

3 Alluri Priyanka 0 0 1 0 0 0 0 

4 An, Nan 0 0 0 1 0 0 0 

5 Belnke, Thies 1 0 0 0 0 0 0 

Code Chunk 5 (by Author and Publication Year) 
dat8a= subset(dat8, variable=="author") 
dat8a= subset(dat8a, year > 1990) 
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dat9 <- dat8a[,c("value", "year")] %>% group_by(value, year) %>% summarise(count 
= n()) %>% 

spread(year, count) 
dat9[is.na(dat9)] <- 0 
datatable(dat9, extensions = c('Scroller', 'FixedColumns'), options = list( 

deferRender = TRUE, 
scrollY = TRUE, 
scrollX = TRUE, 
fixedColumns = list(leftColumns = 2, rightColumns = 1) 

)) 

Table 37 shows the partial display by author and publication year. 

Table 37. Partial display by author and publication year 

Value 2008 2009 2012 2013 2014 2015 2016 2017 2018 2019 
1 Abbasi, Allreza 0 0 0 0 0 1 0 0 0 0 
2 Ali Farman 0 0 0 0 0 0 0 0 0 1 
3 Alluri Priyanka 0 0 0 0 0 0 1 0 0 0 
4 An, Nan 0 0 0 0 0 0 0 0 0 1 
5 Belnke, Thies 0 0 0 0 0 0 0 1 0 0 

Code Chunk 6 (by Journal) 
dat4 <- dat1[,c("title", "serial")] 
dat4a <- dat4[!duplicated(dat4[,c(1:2)]),] 
dat5 = melt(dat4a, id.vars = c("title" )) 

dat6 = dat5[complete.cases(dat5), ] 
dat7= dat6 %>% group_by(title, variable) %>% mutate(rowind = row_number()) 
dat2e <- dat1[,c("title", "year")][complete.cases(dat1[,c("title", "year")]), ] 
[!duplicated(dat1[,c("title", "year")][complete.cases(dat1[,c("title", "year")]), ] 
[,c(1:2)]),] 
dat8= left_join(dat7, dat2e, by="title") 
colnames(dat8)[3] <- "serial" 
dat9 <- dat8[,c("serial", "year")] %>% group_by(serial, year) %>% summarise(count = 
n()) %>% 

spread(year, count) 
dat9[is.na(dat9)] <- 0 
dat9$Total=rowSums(dat9[,c(2:11)]) 
datatable(dat9, extensions = c('Scroller', 'FixedColumns'), options = list( 

deferRender = TRUE, 
scrollY = TRUE, 
scrollX = TRUE, 
fixedColumns = list(leftColumns = 2, rightColumns = 1) 

)) 
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Table 38 shows the partial display by journal name.
 

Table 38. Partial display by journal name 


Serial 2008 2009 2012 2013 2014 2015 2016 2017 2018 2019 

1 Accident 
Analysis and 
Prevention 

1 0 0 0 0 0 0 2 0 0 

2 Air Transport 
World 0 0 0 0 0 0 2 0 0 0 

3 Human Factors 0 0 0 0 1 0 0 0 0 0 

4 IEE 
Transactions 
on Intelligent 
Transportation 
Systems 

0 0 0 0 0 0 1 1 0 0 

Code Chunk 7 (Display Paper Title and First Author) 
dat4 <- dat1[,c("title", "author")]
 
dat4a <- dat4[!duplicated(dat4[,c(1:2)]),]
 
dat5 = melt(dat4a, id.vars = c("title" ))
 

dat6 = dat5[complete.cases(dat5), ]
 
dat7= dat6 %>% group_by(title, variable) %>% mutate(rowind = row_number())
 
dat7a= subset(dat7, rowind==1)
 
dat2e <- dat1[,c("title", "serial", "year")][complete.cases(dat1[,c("title", "serial", 

"year")]), ][!duplicated(dat1[,c("title", "serial", "year")][complete.cases(dat1[,c("title", 

"serial", "year")]), ][,c(1:3)]),]
 
dat8= left_join(dat7a, dat2e, by="title")
 
colnames(dat8)[3] <- "first_author" 

datatable(
 dat8[,c(6, 1, 3, 5)], extensions = c('Select', 'Buttons'), options = list(


 select = list(style = 'os', items = 'row'),

 dom = 'Blfrtip',

 rowId = 0,

 buttons = c('selectRows', 'csv', 'excel')


 ),
 selection = 'none' 

) 

Table 39 shows the partial display by first author and paper title. 
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Table 39. Partial display by first author and paper title 

Year Title First_ Serial 
author 

1 2019 Text Mining Tweets on 
Driving Safety and Cellphone 
Use 

Qian, Chao Proceedings of the Human 
Factors and Ergonomics 
Society Annual Meeting 

2 2019 Voice of airline passenger: 
A text mining approach 
to understand customer 

Sezen, Eren Journal of Air Transport 
Management 

satisfaction 
3 2019 Insight from Scientific Study 

in Logistics using Text Mining 
Hong, 
Jungyeol 

Transportation Research 
Record: Journal of the 
Transportation Research 
Board 

4 2019 Fuzzy Ontology and LSTM-
Based Text Mining: A 
Transportation Network 
Monitoring System for 
Assisting Travel 

Ali, Farman Sensors 

5 2018 Transport Analysis Approach 
Based on Big Data and Text 
Mining Analysis from Social 
Media 

Serna, 
Alnhoa 

Transportation Research 
Procedia 



Appendix I 

Example of Self-Organizing Maps 

Problem Statement 
The self-organizing map is one of the most commonly used dimension reduction 
methods. The following example shows how Pedestrian and Bicycle Crash 
Analysis Tool (PBCAT) data from FARS can be used in determining important 
clusters. At first, 36 clusters are developed. Based on the parameter tuning, three 
super clusters are developed. Figures 100-103 show the clusters, associated 
information in each cluster, and different cluster distance measures. 

Code Chunk 1 
## Please check my RPUBS for additional codes: https://rpubs.com/subasish 

library(SOMbrero) 
setwd("~folder_location") 

new <- read.csv("Ped_RulesNew3.csv") 
names(new) 

new1 <- subset(new, Tot >40) 
dim(new1) 

dat1 <- new1[,c(10:61)] 

dat2 <- dat1[,-1] 
rownames(dat2) <- dat1[,1] 
head(dat2) 
dim(dat2) 
library(SOMbrero) 
korresp.som <- trainSOM(x.data=dat2, dimension=c(6,6), 

https://www.rpubs.com
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type="korresp", scaling="chi2", nb.save=10, 
radius.type="letremy") 

plot(korresp.som, what="obs", type="hitmap")
	
plot(korresp.som, what="obs", type="names")
	

plot(korresp.som, what="obs", type="names", scale=c(0.6,0.5))
	

plot(korresp.som, what="prototypes", type="lines", view="r", print.title=TRUE)
	
plot(korresp.som, what="prototypes", type="lines", view="c", print.title=TRUE)
	

par(mfrow=c(1,2))
	
plot(korresp.som, what="prototypes", type="poly.dist", print.title=TRUE)
	
plot(korresp.som, what="prototypes", type="umatrix", print.title=TRUE)
	
plot(korresp.som, what="prototypes", type="smooth.dist", print.title=TRUE)
	
plot(korresp.som, what="prototypes", type="mds")
	

plot(superClass(korresp.som)) 

my.sc <- superClass(korresp.som, k=3) 
summary(my.sc) 
plot(my.sc, plot.var=FALSE)
	
plot(my.sc, type="grid", plot.legend=TRUE)
	
plot(my.sc, type="hitmap", plot.legend=TRUE)
	
plot(my.sc, type="lines", print.title=TRUE)
	
plot(my.sc, type="lines", print.title=TRUE, view="c")
	
plot(my.sc, type="mds", plot.legend=TRUE)
	
plot(my.sc, type="poly.dist")
	

Figure 100. Clusters of states. 
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Figure 103. Super clusters. 



Appendix J 

Example of Correspondence Analysis 

Problem Statement 
Correspondence analysis is one of the popular dimension reduction methods. This 
example examines the application of correspondence analysis to see the difference 
of injury types for wet and dry pavement conditions. The codes present several 
intermediate plots. Figure 104 and Figure 105 show the trends of injury level by 
the ordered scores. 
Code Chunk 1 

## Please check my RPUBS for additional codes: https://rpubs.com/subasish
 
setwd("~folder_location")
 

library(CAvariants)
 
library(data.table)
 
library(dplyr)
 
library(tidyr)
 

dry1a <- read.csv("C:/Users/subas/Syncplicity/MyProjects_IMP/MY_Papers_V2/TRB 

2020/00000 PAPER DATA/Pap01/dry1.csv")
 
wet1a <- read.csv("C:/Users/subas/Syncplicity/MyProjects_IMP/MY_Papers_V2/TRB 

2020/00000 PAPER DATA/Pap01/wet1.csv")
 

rownames(dry1a) <- dry1a[,1]
 
rownames(wet1a) <- wet1a[,1]
 

dry1b <- dry1a[,-c(1)]
 
wet1b <- wet1a[,-c(1)]
 

plot(CAvariants(dry1b, catype = "DONSCA", firstaxis = 1, lastaxis = 2)) 
plot(CAvariants(dry1b, catype = "NSCA", firstaxis = 1, lastaxis = 2)) 
plot(CAvariants(dry1b, catype = "DOCA", firstaxis = 1, lastaxis = 2)) 
plot(CAvariants(dry1b, catype = "SOCA", firstaxis = 1, lastaxis = 2)) 
plot(CAvariants(dry1b, catype = "SONSCA", firstaxis = 1, lastaxis = 2)) 

(Contd.) 

https://www.rpubs.com
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plot(CAvariants(wet1b, catype = "DONSCA", firstaxis = 1, lastaxis = 2)) 
plot(CAvariants(wet1b, catype = "NSCA", firstaxis = 1, lastaxis = 2)) 
plot(CAvariants(wet1b, catype = "DOCA", firstaxis = 1, lastaxis = 2)) 
plot(CAvariants(wet1b, catype = "SOCA", firstaxis = 1, lastaxis = 2)) 
plot(CAvariants(wet1b, catype = "SONSCA", firstaxis = 1, lastaxis = 2)) 

Figure 104. Ordered scores for dry pavement crashes. 

Figure 105. Ordered scores for wet pavement crashes. 



Appendix K 

Example of Deep Explainer 

Problem Statement 
Explainable AI has recently gained much attraction from the research community. 
One of the advanced applications of explainable AI is deep explainer. The 
following replicable code can be used to perform deep explainable AI on crash 
count data. 

Deep Explainer (Used Google Colab) 

## Code is uploaded here: https://colab.research.google.com/drive/1veeCupYghsXdHZ-
w1UmkAWGRuYTKYy8e#scrollTo=ApF6atTyxNkB 

!pip install shap 
import pandas as pd 
import numpy as np 
import matplotlib.pyplot as plt 
from collections import Counter 
import shap 
import seaborn as sns 

import warnings 
warnings.filterwarnings('ignore') 

plt.style.use('fivethirtyeight') 
%matplotlib inline 

shap.initjs() 

import io 
df2 = pd.read_csv(io.BytesIO(uploaded['a2.csv'])) 

(Contd.) 

https://www.colab.research.google.com
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### LOAD DATA (load segment level crash count data)
	
from google.colab import files
	
uploaded = files.upload()
	

labels= df2['Urban_Rur']
	
df2 = df2.drop('Urban_Rur', 1)
	
data=df2 
data.loc[:, data.dtypes == 'object'] =\ 

data.select_dtypes(['object'])\ 
.apply(lambda x: x.astype('category')) 

data = pd.get_dummies(data) 
data.head() 

from sklearn.model_selection import train_test_split 

X_train, X_test, y_train, y_test = train_test_split(data, labels, test_size=0.01, random_
	
state=42)
	
X_train.shape, X_test.shape
	

from tensorflow.keras.models import Sequential
	
from tensorflow.keras.layers import Dropout, Activation, Dense, BatchNormalization
	
from tensorflow.keras.optimizers import Adam
	

num_input_features = X_train.shape[1]
	

dnn_model = Sequential()
	
dnn_model.add(Dense(256, input_shape=(num_input_features,), kernel_
	
initializer='glorot_uniform'))
	
dnn_model.add(BatchNormalization())
	
dnn_model.add(Activation('relu'))
	

dnn_model.add(Dense(128, kernel_initializer='glorot_uniform'))
	
dnn_model.add(BatchNormalization())
	
dnn_model.add(Activation('relu'))
	

dnn_model.add(Dense(64, kernel_initializer='glorot_uniform'))
	
dnn_model.add(BatchNormalization())
	
dnn_model.add(Activation('relu'))
	

dnn_model.add(Dense(1))
	
dnn_model.add(Activation('sigmoid'))
	

dnn_model.compile(loss='binary_crossentropy', optimizer=Adam(lr=2e-5), 
metrics=['accuracy']) 

dnn_model.summary() 

from sklearn.utils import class_weight 
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class_weights = class_weight.compute_class_weight('balanced',
 np.unique(y_train),
 y_train) 

class_weights = dict(enumerate(class_weights)) 
class_weights[1] *= 2 
class_weights 

dnn_model.fit(X_train, y_train, batch_size=128, 
epochs=20, validation_split=0.1, verbose=1, class_weight=class_weights) 

shap.explainers._deep.deep_tf.op_handlers["AddV2"] = shap.explainers._deep.deep_ 
tf.passthrough 

explainer = shap.DeepExplainer(dnn_model, data=X_train.values)
	
shap_values = explainer.shap_values(X_test.values)
	
shap_values = shap_values[0]
	

shap.summary_plot(shap_values, X_test, plot_type="bar")
	
shap.summary_plot(shap_values, X_test)
	

Figure 106. SHAP values on model output magnitude. 
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Figure 107. SHAP values on model output. 



 

 
 

 

 

 

 

 

 

 

Appendix L 

Road Safety Professional (RSP) 
Certification Needs 

Road Safety Professional (RSP) is a professional certification developed for 
transportation engineers and practitioners. The certificate holders can claim 
adequate knowledge in highway safety engineering. As the core competencies 
of highway safety professionals have been changing, there is a need to add AI-
related practice-ready questions for the future curriculum of this certification 
process. Table 40 shows the current examination format and content of RSP1. 

Table 40. Examination format and content of RSP1 

Define Identify Explain 
Domain 1: Foundations of Road Safety 
Define road • Identify partners • Describe evidence-based road safety, 
safety by using in road safety by including the distinction of nominal vs. 
an approved listing disciplines substantive safety, by using road safety 
reference source and agency types 

that have a role to 
play in preventing 
crashes and 
reducing their 
severity. 

• List road 
safety-relevant 
characteristics of 
different road users 

literature. 
• Describe the complexity of road safety 
and list the elements that are involved 
in crash causation and influence the 
severity of the outcome. 

• Describe different approaches to road 
safety management 

• Describe how to balance safety 
with other transportation goals by 
evaluating safety benefits and costs for 
comprehensive comparison and decision-
making. 

• Describe the elements of a culture that 
fosters road safety within an organization 
or discipline and how to achieve it. 

• Discuss developments in policy and 
technology that will influence future 
decisions and actions in road safety. 

(Contd.) 
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Table 40. (Contd.) 

Define Identify Explain 
Domain 2: Measuring Safety 

• Identify types, 
applications, and 
users of safety 
data, and discuss 
the challenges, 
limitations, and 
ways to mitigate 
them by using 
nontraditional 
safety data. 

• Discuss how the quality of safety data 
can lead to more effective programs, 
projects, and initiatives and investments. 

• Explain how key factors could affect the 
frequency and severity of crashes. 

• Explain the primary components of 
quantitative safety analysis. 

Domain 3: Human Behavior and Road Safety 
• Identify key • Describe multidisciplinary safety 

characteristics strategies to modify human behavior. 
and limitations of • Describe the key characteristics of 
human behavior effective educational strategies and 
that influence how discuss their benefits and limitations in 
road users interact modifying human behavior. 
with the roadway • Describe the key characteristics of 
environment. effective enforcement campaigns and 

discuss their benefits and limitations in 
modifying human behavior. 

• Describe and give examples of how 
roadway infrastructure features and 
elements affect human behavior. 

• Describe why human factors should be 
considered in the process of planning, 
design, and operations to increase the 
safety of all road users. 

• Describe how applying positive guidance 
principles to road elements can be used 
to affect road user behavior and improve 
safety performance. 

Domain 4: Solving Safety Problems 
Understand • Identify and 
collision describe the 
patterns steps in a safety 
and crash management 
contributing process that uses 
factors. effective data-

driven procedures 
and methods to 
reduce fatalities 
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and injuries 
caused by traffic 
collisions. 

• Identify and 
describe a 
systemwide 
approach. 

• List reliable 
sources of 
multidisciplinary 
countermeasures 
to reduce fatalities 
and serious 
injuries. 

• List tools used to 
diagnose safety 
problems and 
describe their 
specific advantages 
and disadvantages. 

• Identify how 
countermeasure 
costs and benefits 
can be used to 
evaluate the 
effectiveness 
of program 
and project 
investments. 

• Identify the 
elements of a 
countermeasure 
evaluation by using 
data to determine 
its impacts. 

• Identify techniques 
for estimating and 
comparing the 
safety performance 
of different project 
alternatives. 

• Describe how multidisciplinary 
approaches can be used to deploy the 
most effective solutions. 

• Describe opportunities for user-focused 
interventions targeted at different 
populations. 

Domain 5: Implementing Road Safety Programs 
• Identify elements • Describe how strategic safety plans are 

of successful prepared and used. 
communication and • Explain the role and value of champions 
outreach strategies in influencing road safety policies and 

programs. 

(Contd.) 
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that build • Describe how multidisciplinary teams 
consensus among and partnerships can achieve road safety 
decision-makers goals. 
and lead to • Describe the value of safety program 
increased public evaluation and explain how results 
acceptance/ influence future program delivery. 
awareness about 
road safety 
initiatives. 

• List important 
elements of 
successful road 
safety policies and 
programs. 

Source: https://www.tpcb.org/certification/rsp1/exam-format-and-content/ 

https://www.tpcb.org
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