North Carolina Rural Two-lane – Daily Speed (ARIMA)

Subasish Das and Choalun Ma

2018-11-12

# Step 1: Load R Packages 
### options(repos='http://cran.rstudio.com/')
#install.packages("astsa")
#install.packages('ggplot2')
#install.packages('forecast')
#install.packages('tseries')
#install.packages("data.table")

library(astsa)
library(forecast)
library(tseries)
library(zoo)
library(tseries)

library(data.table)
library(dplyr)
library(tidyr)
library(naniar)
library(stringr)
library(ggplot2)
library(DT)
library(lubridate)
library(ggpubr)


setwd("/scratch/user/cma16/Task4_Deliverable2/NCprocess4/AllCrash/FacilityBased/")
load("./two-lane_undivided_NC_reduce_withCrash_no_intersection.rData")
mytype = 'R2'
setwd(paste0("/scratch/user/cma16/Task4_Deliverable2/NCprocess4/AllCrash/FacilityBased/",mytype))

df_R2 <- N_2un_nomed
dim(df_R2)
## [1] 16229280       30
### Calculating Speed
df_R2$spd_av = 3600*df_R2$TMC_length/df_R2$Travel_TIME_ALL_VEHICLES/5280
df_R2$spd_pv = 3600*df_R2$TMC_length/df_R2$Travel_TIME_PASSENGER_VEHICLES/5280
df_R2$spd_ft = 3600*df_R2$TMC_length/df_R2$Travel_TIME_FREIGHT_TRUCKS/5280

### Month, Day
df_R2$date <- as.character(df_R2$DATE)
df_R2$date <- str_pad(df_R2$DATE, 8, pad = "0")
df_R2$Month <- substr(df_R2$date, start = 1, stop = 2)
df_R2$Day   <- substr(df_R2$date, start = 3, stop = 4)
df_R2$Year  <- substr(df_R2$date, start = 5, stop = 8)
df_R2$MonthDay <- paste0(df_R2$Month,"_", df_R2$Day)
head(df_R2)
##            TimeStamp       TMC    DATE EPOCH15 Travel_TIME_ALL_VEHICLES
## 1:  110N07650_0101_0 110N07650 1012015       0                       NA
## 2:  110N07650_0101_1 110N07650 1012015       1                       NA
## 3: 110N07650_0101_10 110N07650 1012015      10                       NA
## 4: 110N07650_0101_11 110N07650 1012015      11                       NA
## 5: 110N07650_0101_12 110N07650 1012015      12                       NA
## 6: 110N07650_0101_13 110N07650 1012015      13                       NA
##    Travel_TIME_PASSENGER_VEHICLES Travel_TIME_FREIGHT_TRUCKS TMC_length
## 1:                             NA                         NA   25859.83
## 2:                             NA                         NA   25859.83
## 3:                             NA                         NA   25859.83
## 4:                             NA                         NA   25859.83
## 5:                             NA                         NA   25859.83
## 6:                             NA                         NA   25859.83
##    ave_aadt ave_wtdsgspd ave_medwid ave_peaklane  ave_row ave_sur_wid
## 1: 14778.71           70         NA           NA 122.6387          60
## 2: 14778.71           70         NA           NA 122.6387          60
## 3: 14778.71           70         NA           NA 122.6387          60
## 4: 14778.71           70         NA           NA 122.6387          60
## 5: 14778.71           70         NA           NA 122.6387          60
## 6: 14778.71           70         NA           NA 122.6387          60
##    ave_no_lanes ave_spd_limt ave_rodwycls ave_rshldwid FC TER ACC MED
## 1:            2      36.3579            8            5  6   3   F  Cu
## 2:            2      36.3579            8            5  6   3   F  Cu
## 3:            2      36.3579            8            5  6   3   F  Cu
## 4:            2      36.3579            8            5  6   3   F  Cu
## 5:            2      36.3579            8            5  6   3   F  Cu
## 6:            2      36.3579            8            5  6   3   F  Cu
##    Total K A B C O DAYMTH Crash spd_av spd_pv spd_ft     date Month Day
## 1:     0 0 0 0 0 0   0101     0     NA     NA     NA 01012015    01  01
## 2:     0 0 0 0 0 0   0101     0     NA     NA     NA 01012015    01  01
## 3:     0 0 0 0 0 0   0101     0     NA     NA     NA 01012015    01  01
## 4:     0 0 0 0 0 0   0101     0     NA     NA     NA 01012015    01  01
## 5:     0 0 0 0 0 0   0101     0     NA     NA     NA 01012015    01  01
## 6:     0 0 0 0 0 0   0101     0     NA     NA     NA 01012015    01  01
##    Year MonthDay
## 1: 2015    01_01
## 2: 2015    01_01
## 3: 2015    01_01
## 4: 2015    01_01
## 5: 2015    01_01
## 6: 2015    01_01
day1<- df_R2[,-c(1)] %>% group_by(MonthDay) %>% summarize(Speed_All_Mean=mean(spd_av, na.rm=TRUE))
day1
## # A tibble: 365 x 2
##    MonthDay Speed_All_Mean
##    <chr>             <dbl>
##  1 01_01              33.4
##  2 01_02              32.3
##  3 01_03              32.4
##  4 01_04              33.7
##  5 01_05              31.8
##  6 01_06              31.5
##  7 01_07              31.4
##  8 01_08              31.9
##  9 01_09              31.6
## 10 01_10              32.4
## # ... with 355 more rows
# Step 2: Examine Data
speed_clean <- tsclean(ts(day1$Speed_All_Mean))
plot.ts(speed_clean)

# ggplot() + geom_line(data = Q1, aes(x = TimeStamp, y = speed_clean)) + ylab('Cleaned Speed Records')

day1$cnt_ma = ma(speed_clean, order=7) # using the clean count with no outliers
day1$cnt_ma30 = ma(speed_clean, order=30)
# Step 3: Decompose Your Data
count_ma = ts(na.omit(speed_clean), frequency=30)
decomp = stl(count_ma, s.window="periodic")
deseasonal_cnt <- seasadj(decomp)
plot(decomp)

# Step 4: Stationarity
# statinary test
adf.test(count_ma, alternative = "stationary")
## 
##  Augmented Dickey-Fuller Test
## 
## data:  count_ma
## Dickey-Fuller = -3.1466, Lag order = 7, p-value = 0.09718
## alternative hypothesis: stationary
adf.test(deseasonal_cnt, alternative = "stationary")
## 
##  Augmented Dickey-Fuller Test
## 
## data:  deseasonal_cnt
## Dickey-Fuller = -3.0898, Lag order = 7, p-value = 0.117
## alternative hypothesis: stationary
d1 = diff(deseasonal_cnt)
adf.test(d1, alternative = "stationary")
## Warning in adf.test(d1, alternative = "stationary"): p-value smaller than
## printed p-value
## 
##  Augmented Dickey-Fuller Test
## 
## data:  d1
## Dickey-Fuller = -9.3223, Lag order = 7, p-value = 0.01
## alternative hypothesis: stationary
# Step 5: Autocorrelations and Choosing Model Order
# check ACF and PACF
acf2(count_ma)

##          ACF  PACF
##   [1,]  0.30  0.30
##   [2,] -0.14 -0.25
##   [3,] -0.19 -0.08
##   [4,] -0.21 -0.18
##   [5,] -0.18 -0.13
##   [6,]  0.23  0.30
##   [7,]  0.82  0.76
##   [8,]  0.24 -0.27
##   [9,] -0.18 -0.14
##  [10,] -0.22 -0.06
##  [11,] -0.24  0.01
##  [12,] -0.20  0.01
##  [13,]  0.21  0.08
##  [14,]  0.76  0.25
##  [15,]  0.20 -0.21
##  [16,] -0.21 -0.07
##  [17,] -0.24  0.01
##  [18,] -0.24  0.07
##  [19,] -0.20 -0.01
##  [20,]  0.20  0.07
##  [21,]  0.77  0.24
##  [22,]  0.20 -0.13
##  [23,] -0.20  0.03
##  [24,] -0.24 -0.08
##  [25,] -0.23  0.05
##  [26,] -0.19  0.03
##  [27,]  0.21  0.07
##  [28,]  0.77  0.16
##  [29,]  0.22 -0.05
##  [30,] -0.19 -0.03
##  [31,] -0.24 -0.06
##  [32,] -0.25 -0.03
##  [33,] -0.21  0.00
##  [34,]  0.20  0.03
##  [35,]  0.74  0.02
##  [36,]  0.18 -0.10
##  [37,] -0.22 -0.06
##  [38,] -0.25  0.01
##  [39,] -0.24  0.13
##  [40,] -0.19  0.06
##  [41,]  0.21  0.03
##  [42,]  0.74  0.07
##  [43,]  0.18 -0.06
##  [44,] -0.21  0.04
##  [45,] -0.26 -0.06
##  [46,] -0.26 -0.07
##  [47,] -0.21 -0.04
##  [48,]  0.18 -0.06
##  [49,]  0.71  0.02
##  [50,]  0.16 -0.08
##  [51,] -0.20  0.10
##  [52,] -0.24  0.05
##  [53,] -0.26 -0.04
##  [54,] -0.22 -0.03
##  [55,]  0.17 -0.01
##  [56,]  0.67 -0.07
##  [57,]  0.15  0.02
##  [58,] -0.21  0.06
##  [59,] -0.25 -0.04
##  [60,] -0.27 -0.02
##  [61,] -0.23 -0.07
##  [62,]  0.16 -0.02
##  [63,]  0.64 -0.02
##  [64,]  0.15  0.09
##  [65,] -0.21  0.00
##  [66,] -0.25  0.02
##  [67,] -0.26 -0.05
##  [68,] -0.22 -0.03
##  [69,]  0.16 -0.03
##  [70,]  0.64 -0.02
##  [71,]  0.14  0.01
##  [72,] -0.21 -0.03
##  [73,] -0.25 -0.02
##  [74,] -0.27  0.01
##  [75,] -0.22  0.03
##  [76,]  0.14 -0.03
##  [77,]  0.63  0.10
##  [78,]  0.13 -0.02
##  [79,] -0.21 -0.02
##  [80,] -0.24  0.00
##  [81,] -0.25  0.01
##  [82,] -0.21  0.01
##  [83,]  0.14 -0.07
##  [84,]  0.59 -0.09
##  [85,]  0.11 -0.05
##  [86,] -0.22  0.00
##  [87,] -0.26 -0.02
##  [88,] -0.28 -0.04
##  [89,] -0.25 -0.09
##  [90,]  0.11 -0.01
##  [91,]  0.56 -0.01
##  [92,]  0.09  0.01
##  [93,] -0.22 -0.01
##  [94,] -0.27 -0.08
##  [95,] -0.27  0.07
##  [96,] -0.24  0.03
##  [97,]  0.09 -0.09
##  [98,]  0.54  0.00
##  [99,]  0.09 -0.03
## [100,] -0.22 -0.06
## [101,] -0.25  0.09
## [102,] -0.27  0.02
## [103,] -0.23  0.01
## [104,]  0.10 -0.03
## [105,]  0.55  0.02
## [106,]  0.08 -0.10
## [107,] -0.21  0.02
## [108,] -0.25 -0.02
## [109,] -0.27 -0.03
## [110,] -0.23 -0.01
## [111,]  0.11  0.05
## [112,]  0.51 -0.11
## [113,]  0.07  0.01
## [114,] -0.22  0.04
## [115,] -0.25  0.01
## [116,] -0.26  0.01
## [117,] -0.23 -0.01
## [118,]  0.08 -0.05
## [119,]  0.48 -0.07
## [120,]  0.06  0.03
acf2(deseasonal_cnt)

##          ACF  PACF
##   [1,]  0.30  0.30
##   [2,] -0.15 -0.26
##   [3,] -0.20 -0.08
##   [4,] -0.22 -0.19
##   [5,] -0.18 -0.13
##   [6,]  0.24  0.30
##   [7,]  0.83  0.78
##   [8,]  0.24 -0.29
##   [9,] -0.19 -0.16
##  [10,] -0.22 -0.05
##  [11,] -0.24  0.02
##  [12,] -0.20  0.01
##  [13,]  0.21  0.08
##  [14,]  0.79  0.26
##  [15,]  0.21 -0.21
##  [16,] -0.21 -0.03
##  [17,] -0.24 -0.04
##  [18,] -0.24  0.08
##  [19,] -0.21  0.00
##  [20,]  0.21  0.09
##  [21,]  0.78  0.19
##  [22,]  0.20 -0.12
##  [23,] -0.20  0.03
##  [24,] -0.24 -0.07
##  [25,] -0.24  0.06
##  [26,] -0.20  0.02
##  [27,]  0.22  0.08
##  [28,]  0.78  0.16
##  [29,]  0.22 -0.05
##  [30,] -0.21 -0.09
##  [31,] -0.24 -0.01
##  [32,] -0.25 -0.03
##  [33,] -0.21  0.01
##  [34,]  0.20  0.02
##  [35,]  0.75  0.01
##  [36,]  0.18 -0.11
##  [37,] -0.22  0.00
##  [38,] -0.26  0.00
##  [39,] -0.24  0.11
##  [40,] -0.19  0.07
##  [41,]  0.21  0.01
##  [42,]  0.75  0.05
##  [43,]  0.18 -0.06
##  [44,] -0.21  0.07
##  [45,] -0.27 -0.09
##  [46,] -0.26 -0.04
##  [47,] -0.22 -0.09
##  [48,]  0.19 -0.04
##  [49,]  0.72  0.03
##  [50,]  0.16 -0.06
##  [51,] -0.21  0.07
##  [52,] -0.25  0.07
##  [53,] -0.27 -0.05
##  [54,] -0.22 -0.05
##  [55,]  0.17  0.00
##  [56,]  0.68 -0.09
##  [57,]  0.15  0.04
##  [58,] -0.21  0.06
##  [59,] -0.26 -0.03
##  [60,] -0.28 -0.08
##  [61,] -0.23  0.00
##  [62,]  0.17 -0.04
##  [63,]  0.66  0.01
##  [64,]  0.15  0.11
##  [65,] -0.21 -0.02
##  [66,] -0.25  0.01
##  [67,] -0.26 -0.02
##  [68,] -0.23 -0.07
##  [69,]  0.17 -0.04
##  [70,]  0.65  0.04
##  [71,]  0.14 -0.03
##  [72,] -0.21 -0.02
##  [73,] -0.26 -0.01
##  [74,] -0.27  0.03
##  [75,] -0.23  0.00
##  [76,]  0.15  0.00
##  [77,]  0.64  0.04
##  [78,]  0.13 -0.01
##  [79,] -0.21 -0.01
##  [80,] -0.25 -0.01
##  [81,] -0.26 -0.02
##  [82,] -0.21  0.05
##  [83,]  0.14 -0.08
##  [84,]  0.59 -0.13
##  [85,]  0.11 -0.02
##  [86,] -0.23 -0.04
##  [87,] -0.26  0.01
##  [88,] -0.29 -0.02
##  [89,] -0.26 -0.10
##  [90,]  0.10 -0.08
##  [91,]  0.57  0.06
##  [92,]  0.10 -0.02
##  [93,] -0.22  0.01
##  [94,] -0.27 -0.04
##  [95,] -0.27  0.06
##  [96,] -0.25  0.02
##  [97,]  0.09 -0.07
##  [98,]  0.55 -0.02
##  [99,]  0.09 -0.05
## [100,] -0.22  0.01
## [101,] -0.25  0.06
## [102,] -0.27  0.01
## [103,] -0.23  0.04
## [104,]  0.11  0.01
## [105,]  0.56 -0.02
## [106,]  0.09 -0.09
## [107,] -0.22 -0.01
## [108,] -0.25  0.01
## [109,] -0.27 -0.02
## [110,] -0.23 -0.03
## [111,]  0.10  0.02
## [112,]  0.51 -0.10
## [113,]  0.07  0.01
## [114,] -0.23 -0.01
## [115,] -0.26  0.02
## [116,] -0.27  0.00
## [117,] -0.24  0.03
## [118,]  0.08 -0.04
## [119,]  0.48 -0.09
## [120,]  0.05 -0.02

Seasonility Not in Consideration

# Step 6: Fitting an ARIMA model
auto.arima(deseasonal_cnt, seasonal=FALSE)
## Series: deseasonal_cnt 
## ARIMA(3,0,3) with non-zero mean 
## 
## Coefficients:
##          ar1      ar2     ar3     ma1     ma2      ma3     mean
##       0.5344  -0.4038  0.8244  -0.174  0.1657  -0.8609  31.9432
## s.e.  0.0373   0.0457  0.0383   0.036  0.0397   0.0315   0.1188
## 
## sigma^2 estimated as 0.7106:  log likelihood=-453.18
## AIC=922.37   AICc=922.77   BIC=953.57
# Step 7: Evaluate and Iterate
# (try different model)
fit<-auto.arima(deseasonal_cnt, seasonal=FALSE)
tsdisplay(residuals(fit), lag.max=45, main='Model Residuals [Seasonality not considered]')

# step 8 forcast
fcast <- forecast(fit, h=30)
plot(fcast)

Seasonility in Consideration

# Step 6: Fitting an ARIMA model
auto.arima(deseasonal_cnt, seasonal=TRUE)
## Series: deseasonal_cnt 
## ARIMA(2,0,2)(2,0,0)[30] with non-zero mean 
## 
## Coefficients:
##          ar1     ar2      ma1      ma2     sar1     sar2     mean
##       0.2351  0.7410  -0.0247  -0.8555  -0.3305  -0.3906  31.9443
## s.e.  0.0557  0.0546   0.0340   0.0301   0.0530   0.0518   0.1169
## 
## sigma^2 estimated as 0.6948:  log likelihood=-453.93
## AIC=923.86   AICc=924.26   BIC=955.05
# Step 7: Evaluate and Iterate
# (try different model)
fit<-auto.arima(deseasonal_cnt, seasonal=TRUE)
tsdisplay(residuals(fit), lag.max=45, main='Model Residuals [Seasonality considered]')

# step 8 forcast
fcast <- forecast(fit, h=30)
plot(fcast)