Temporal Patterns
## [1] "TimeStamp" "TMC"
## [3] "DATE" "EPOCH15"
## [5] "Travel_TIME_ALL_VEHICLES" "Travel_TIME_PASSENGER_VEHICLES"
## [7] "Travel_TIME_FREIGHT_TRUCKS" "TMC_length"
## [9] "ave_aadt" "ave_wtdsgspd"
## [11] "ave_medwid" "ave_peaklane"
## [13] "ave_row" "ave_sur_wid"
## [15] "ave_no_lanes" "ave_spd_limt"
## [17] "ave_rodwycls" "ave_rshldwid"
## [19] "FC" "TER"
## [21] "ACC" "MED"
## [23] "Total" "K"
## [25] "A" "B"
## [27] "C" "O"
## [29] "DAYMTH" "Crash"
## [31] "Spd_All" "Spd_Car"
## [33] "Spd_Truck" "date"
## [35] "Month" "Day"
## [37] "Year" "Hour1"
## [39] "PCT_TIME" "Hour"
## [41] "DOW"
df_RI$AADT1 <- cut(df_RI$ave_aadt , breaks=c(0,2000,5000,10000, 15000, 20000, 30000, Inf),
labels=c("0-2000","2001-5000","5001-10000","10001-15000","15001-20000","20001-30000","> 30000"))
table(df_RI$AADT1)
##
## 0-2000 2001-5000 5001-10000 10001-15000 15001-20000 20001-30000
## 0 140160 280320 356640 216192 52704
## > 30000
## 350400
df_RI$Crash1 <- cut(df_RI$Crash , breaks=c(-1,0,Inf),
labels=c("No crash","Crash"))
table(df_RI$Crash1)
##
## No crash Crash
## 2261410 254
# ############################################################
# df_RI$DayNight <- cut(df_RI$EPOCH15 , breaks=c(-1,26,67,95),
# labels=c("Night","Day","Night"))
# table(df_RI$DayNight)
# df_RI$PeakOffPeak <- cut(df_RI$EPOCH15 , breaks=c(-1,26,35,62,75, 96),
# labels=c("Off-Peak","Morning Peak","Off-Peak", "Evening Peak", "Off-Peak"))
# table(df_RI$PeakOffPeak)
# ###########################################################
df_RI$DayNight <- cut(df_RI$EPOCH15 , breaks=c(-1,26,67,95))
df_RI$DayNight <- as.numeric(df_RI$DayNight)
df_RI$DayNight <- c("Night","Day","Night")[df_RI$DayNight]
table(df_RI$DayNight)
##
## Day Night
## 965919 1295745
df_RI$PeakOffPeak <- cut(df_RI$EPOCH15 , breaks=c(-1,26,35,62,75, 96))
df_RI$PeakOffPeak <- as.numeric(df_RI$PeakOffPeak)
df_RI$PeakOffPeak <- c("Off-Peak","Morning Peak","Off-Peak", "Evening Peak", "Off-Peak")[df_RI$PeakOffPeak]
table(df_RI$PeakOffPeak)
##
## Evening Peak Morning Peak Off-Peak
## 306267 212031 1743366
# # ###########################################################
# df_RI01 <- df_RI[,c(26:28, 31, 32, 34, 38, 55, 56, 6, 53, 49,54, 48, 57, 58, 44:46)]
# df_RI02 <- df_RI01[,c(8:19)]
# # ###########################################################
df_RI01 <- df_RI[,c("ave_spd_limt","ave_medwid", "ave_no_lanes","ave_rshldwid","TMC_length",
"ave_sur_wid", "AADT1", "Crash1", "EPOCH15", "Hour","Day", "DOW", "Month",
"DayNight","PeakOffPeak","Spd_All", "Spd_Car", "Spd_Truck")]
df_RI02 <- df_RI01[,c( "AADT1","Crash1","EPOCH15","Hour", "Day", "DOW", "Month",
"DayNight","PeakOffPeak","Spd_All","Spd_Car","Spd_Truck")]
cols <- c("EPOCH15", "Hour", "Day", "DOW", "Month", "AADT1" , "Crash1", "DayNight", "PeakOffPeak")
cols1 <- c("Spd_All", "Spd_Car", "Spd_Truck")
cols2 <- c("ave_spd_limt","ave_medwid" , "ave_no_lanes", "ave_rshldwid" ,"TMC_length" , "ave_sur_wid")
df_RI02= df_RI02 %<>%
mutate_at(cols, funs(factor(.)))
hour1 <- ExpCustomStat(df_RI02,Cvar = c("Hour"), Nvar=cols1, stat = c('Count','Prop','mean','median','p0.85','min', 'max','sd', 'var','PS'),gpby=FALSE)
day1 <- ExpCustomStat(df_RI02,Cvar = c("Day"), Nvar=cols1, stat = c('Count','Prop','mean','median','p0.85','min', 'max','sd', 'var','PS'),gpby=FALSE)
DOW1 <- ExpCustomStat(df_RI02,Cvar = c("DOW"), Nvar=cols1, stat = c('Count','Prop','mean','median','p0.85','min', 'max','sd', 'var','PS'),gpby=FALSE)
Month1 <- ExpCustomStat(df_RI02,Cvar = c("Month"), Nvar=cols1, stat = c('Count','Prop','mean','median','p0.85','min', 'max','sd', 'var','PS'),gpby=FALSE)
AADT2 <- ExpCustomStat(df_RI02,Cvar = c("AADT1"), Nvar=cols1, stat = c('Count','Prop','mean','median','p0.85','min', 'max','sd', 'var','PS'),gpby=FALSE)
Crash2 <- ExpCustomStat(df_RI02,Cvar = c("Crash1", "Hour"), Nvar=cols1, stat = c('Count','Prop','mean','median','p0.85','min', 'max','sd', 'var','PS'))
DayNight1 <- ExpCustomStat(df_RI02,Cvar = c("DayNight"), Nvar=cols1, stat = c('Count','Prop','mean','median','p0.85','min', 'max','sd', 'var','PS'),gpby=FALSE)
PeakOffPeak1 <- ExpCustomStat(df_RI02,Cvar = c("PeakOffPeak"), Nvar=cols1, stat = c('Count','Prop','mean','median','p0.85','min', 'max','sd', 'var','PS'),gpby=FALSE)
geo <- ExpCustomStat(df_RI01, Nvar=cols2, stat = c('mean','median','p0.85','min', 'max','sd', 'var','PS'))
ggline(gather(hour1[,c(1, 2, 6, 8, 11)], condition, measurement, mean:sd, factor_key=TRUE), x = "Level", y = "measurement", color = "Attribute",
palette = c("red", "blue", "black"))+theme(legend.title=element_blank())+ facet_grid(condition~ .)+labs(title="By Hour")
ggline(gather(DOW1[,c(1, 2, 6, 8, 11)], condition, measurement, mean:sd, factor_key=TRUE), x = "Level", y = "measurement", color = "Attribute",
palette = c("red", "blue", "black"))+theme(legend.title=element_blank())+ facet_grid(condition~ .)+labs(title="By Day of Week")
ggline(gather(Month1[,c(1, 2, 6, 8, 11)], condition, measurement, mean:sd, factor_key=TRUE), x = "Level", y = "measurement", color = "Attribute",
palette = c("red", "blue", "black"))+theme(legend.title=element_blank())+ facet_grid(condition~ .)+labs(title="By Month")
ggline(gather(AADT2[,c(1, 2, 6, 8, 11)], condition, measurement, mean:sd, factor_key=TRUE), x = "Level", y = "measurement", color = "Attribute",
palette = c("red", "blue", "black"))+theme(legend.title=element_blank())+ facet_grid(condition~ .)+labs(title="By AADT")
ggline(gather(Crash2[,c(1, 2, 3, 6, 8, 11)], condition, measurement, mean:sd, factor_key=TRUE), x = "Hour", y = "measurement", color = "Attribute",
palette = c("red", "blue", "black"))+theme(legend.title=element_blank())+ facet_grid(condition+Crash1~ .)+labs(title="By Crash")
ggline(gather(DayNight1[,c(1, 2, 6, 8, 11)], condition, measurement, mean:sd, factor_key=TRUE), x = "Level", y = "measurement", color = "Attribute",
palette = c("red", "blue", "black"))+theme(legend.title=element_blank())+ facet_grid(condition~ .)+labs(title="By Day/Night")
ggline(gather(PeakOffPeak1[,c(1, 2, 6, 8, 11)], condition, measurement, mean:sd, factor_key=TRUE), x = "Level", y = "measurement", color = "Attribute",
palette = c("red", "blue", "black"))+theme(legend.title=element_blank())+ facet_grid(condition~ .)+labs(title="By Peak/Off-Peak")
Temporal Statistics of Operational Speed
setwd("/scratch/user/cma16/Task4_Deliverable2/NCprocess4/AllCrash/FacilityBased/")
head(hour1)
## Level Attribute Group_by Count Prop mean median p0.85
## 1: 00 Spd_All Hour 94236 4.17 52.13831 60.07747 65.28138
## 2: 02 Spd_All Hour 94236 4.17 53.34298 60.18868 64.87674
## 3: 03 Spd_All Hour 94236 4.17 53.84344 60.38302 64.76781
## 4: 04 Spd_All Hour 94236 4.17 53.13700 60.23503 64.87674
## 5: 05 Spd_All Hour 94236 4.17 50.91111 58.56050 64.56013
## 6: 06 Spd_All Hour 94236 4.17 45.62911 50.58226 64.24582
## min max sd var PS
## 1: 0.32597994 88.08880 17.22727 296.7790 2.56
## 2: 0.04537650 88.08880 16.24267 263.8244 2.37
## 3: 0.07330526 95.41623 15.77257 248.7740 2.45
## 4: 0.02443423 95.41623 16.24864 264.0185 2.64
## 5: 0.08958905 87.46488 16.98486 288.4855 3.14
## 6: 0.34783805 87.46488 18.96808 359.7882 4.15
## Level Attribute Group_by Count Prop mean median p0.85
## 1: 01 Spd_All Day 74304 3.29 43.23029 46.61318 64.70613
## 2: 02 Spd_All Day 74304 3.29 42.23233 44.74705 64.07164
## 3: 03 Spd_All Day 74304 3.29 42.53875 45.19581 64.43091
## 4: 04 Spd_All Day 74304 3.29 43.01859 45.85009 64.57589
## 5: 05 Spd_All Day 74304 3.29 43.05309 46.13193 64.70613
## 6: 06 Spd_All Day 74304 3.29 42.68542 44.92770 64.55236
## min max sd var PS
## 1: 0.09873157 88.30629 20.63637 425.8599 3.17
## 2: 0.21993887 95.41623 20.61553 425.0000 3.30
## 3: 0.02443423 95.39461 20.70858 428.8452 3.30
## 4: 0.21993887 87.46488 20.59289 424.0672 3.20
## 5: 0.03512298 87.46488 20.77933 431.7805 3.20
## 6: 0.02443423 95.41623 20.72531 429.5385 3.30
## Level Attribute Group_by Count Prop mean median p0.85
## 1: Thu Spd_All DOW 328896 14.54 41.63704 43.43769 63.75633
## 2: Fri Spd_All DOW 320928 14.19 41.52896 43.02873 64.37046
## 3: Sat Spd_All DOW 320832 14.19 44.98155 50.41793 65.63580
## 4: Sun Spd_All DOW 322464 14.26 48.04098 57.37987 66.66829
## 5: Mon Spd_All DOW 322464 14.26 41.74310 43.60004 63.97795
## 6: Tue Spd_All DOW 322560 14.26 41.26947 42.90086 63.61082
## min max sd var PS
## 1: 0.02443423 95.41623 20.48510 419.6391 15.43
## 2: 0.02443423 88.08880 20.84338 434.4463 15.08
## 3: 0.02443423 95.41623 20.97013 439.7462 12.80
## 4: 0.02443423 95.41623 20.31982 412.8953 11.07
## 5: 0.09773693 95.41623 20.49933 420.2226 14.95
## 6: 0.03283318 95.41623 20.36965 414.9226 15.31
## Level Attribute Group_by Count Prop mean median p0.85
## 1: 01 Spd_All Month 169632 7.50 44.16214 50.19314 64.19419
## 2: 02 Spd_All Month 153216 6.77 43.04699 47.03375 63.72706
## 3: 03 Spd_All Month 169632 7.50 42.77420 46.07781 64.25991
## 4: 04 Spd_All Month 164160 7.26 43.05030 46.55628 64.37046
## 5: 05 Spd_All Month 169632 7.50 43.08041 46.55628 64.76781
## 6: 06 Spd_All Month 164160 7.26 42.73845 45.29596 64.71094
## min max sd var PS
## 1: 0.3259799 92.75093 20.30921 412.4638 7.37
## 2: 0.3478381 95.41623 20.24371 409.8076 6.78
## 3: 0.3259799 95.41623 20.56629 422.9724 8.00
## 4: 0.3478381 88.08880 20.53207 421.5660 7.87
## 5: 0.3259799 88.08880 20.75733 430.8668 8.06
## 6: 0.3478381 95.41623 20.56960 423.1084 8.08
## Level Attribute Group_by Count Prop mean median p0.85
## 1: > 30000 Spd_All AADT1 350400 15.49 62.82542 63.15486 67.43470
## 2: <NA> Spd_All AADT1 865248 38.26 26.76228 25.46039 40.73887
## 3: 15001-20000 Spd_All AADT1 216192 9.56 20.28796 18.41517 33.50963
## 4: 5001-10000 Spd_All AADT1 280320 12.39 41.72002 44.76986 52.95279
## 5: 2001-5000 Spd_All AADT1 140160 6.20 44.59757 51.86145 57.49856
## 6: 20001-30000 Spd_All AADT1 52704 2.33 50.58303 53.15976 59.64266
## min max sd var PS
## 1: 0.62142011 95.41623 6.297387 39.65708 55.87
## 2: 0.02443423 95.39461 15.335161 235.16716 16.28
## 3: 0.34783805 62.79667 11.029088 121.64078 4.46
## 4: 0.61934387 88.30629 13.627189 185.70028 12.41
## 5: 0.32597994 77.11178 14.915707 222.47833 3.06
## 6: 0.62165732 84.32238 11.382231 129.55518 2.38
## Crash1 Hour Attribute Count Prop mean median p0.85
## 1: No crash 00 Spd_All 94230 4.17 52.13729 60.07747 65.28138
## 2: No crash 02 Spd_All 94187 4.16 53.31895 60.18868 64.86836
## 3: No crash 03 Spd_All 94176 4.16 53.81908 60.37218 64.76781
## 4: No crash 04 Spd_All 94128 4.16 53.09010 60.22582 64.87674
## 5: No crash 05 Spd_All 94221 4.17 50.90493 58.55089 64.56013
## 6: No crash 06 Spd_All 94236 4.17 45.62911 50.58226 64.24582
## min max sd var PS
## 1: 0.32597994 88.08880 17.22844 296.8190 2.56
## 2: 0.04537650 88.08880 16.25850 264.3387 2.37
## 3: 0.07330526 95.41623 15.79198 249.3867 2.44
## 4: 0.02443423 95.41623 16.28113 265.0752 2.63
## 5: 0.08958905 87.46488 16.98798 288.5915 3.14
## 6: 0.34783805 87.46488 18.96808 359.7882 4.15
## Level Attribute Group_by Count Prop mean median p0.85
## 1: Night Spd_All DayNight 1295745 57.29 46.98179 56.27510 64.76781
## 2: Day Spd_All DayNight 965919 42.71 39.50494 38.42959 64.12114
## 3: Night Spd_Car DayNight 1295745 57.29 46.73902 53.51251 66.94186
## 4: Day Spd_Car DayNight 965919 42.71 39.88207 38.30941 65.59866
## 5: Night Spd_Truck DayNight 1295745 57.29 55.30393 60.27128 63.72706
## 6: Day Spd_Truck DayNight 965919 42.71 49.87099 59.22836 63.24384
## min max sd var PS
## 1: 0.02443423 95.41623 19.64445 385.9046 45.31
## 2: 0.02443423 95.41623 20.79184 432.3007 54.69
## 3: 0.02443423 95.41623 20.72890 429.6874 41.67
## 4: 0.02443423 95.41623 21.37923 457.0716 58.33
## 5: 0.26876716 80.73681 13.79049 190.1777 50.89
## 6: 0.34783805 81.79674 18.11422 328.1248 49.11
## Level Attribute Group_by Count Prop mean median
## 1: Off-Peak Spd_All PeakOffPeak 1743366 77.08 43.59908 47.54682
## 2: Morning Peak Spd_All PeakOffPeak 212031 9.38 40.41981 40.87840
## 3: Evening Peak Spd_All PeakOffPeak 306267 13.54 39.94304 39.45241
## 4: Off-Peak Spd_Car PeakOffPeak 1743366 77.08 43.40379 45.23876
## 5: Morning Peak Spd_Car PeakOffPeak 212031 9.38 40.56454 40.33655
## 6: Evening Peak Spd_Car PeakOffPeak 306267 13.54 40.34147 39.07388
## p0.85 min max sd var PS
## 1: 64.61158 0.02443423 95.41623 20.55000 422.3024 72.13
## 2: 63.61082 0.32597994 87.46488 20.31859 412.8451 11.38
## 3: 64.33425 0.03069904 88.08880 20.97413 439.9141 16.49
## 4: 66.38576 0.02443423 95.41623 21.36167 456.3208 70.37
## 5: 65.17009 0.32597994 95.41623 20.87164 435.6255 12.02
## 6: 66.04224 0.03069904 95.41623 21.63174 467.9322 17.60
write.csv(hour1, paste0("./",mytype,"/des_output/NC_RI_OS_DS_hour.csv"),row.names = FALSE)
write.csv(day1, paste0("./",mytype,"/des_output/NC_RI_OS_DS_day.csv"),row.names = FALSE)
write.csv(DOW1, paste0("./",mytype,"/des_output/NC_RI_OS_DS_dow.csv"),row.names = FALSE)
write.csv(Month1,paste0("./",mytype,"/des_output/NC_RI_OS_DS_month.csv"),row.names = FALSE)
write.csv(AADT2, paste0("./",mytype,"/des_output/NC_RI_OS_DS_aadt.csv"),row.names = FALSE)
write.csv(Crash2, paste0("./",mytype,"/des_output/NC_RI_OS_DS_crash.csv"),row.names = FALSE)
write.csv(DayNight1, paste0("./",mytype,"/des_output/NC_RI_OS_DS_daynight.csv"),row.names = FALSE)
write.csv(PeakOffPeak1, paste0("./",mytype,"/des_output/NC_RI_OS_DS_peakoffpeak.csv"),row.names = FALSE)