Temporal Patterns
## [1] "TimeStamp" "TMC"
## [3] "DATE" "EPOCH15"
## [5] "Travel_TIME_ALL_VEHICLES" "Travel_TIME_PASSENGER_VEHICLES"
## [7] "Travel_TIME_FREIGHT_TRUCKS" "TMC_length"
## [9] "ave_aadt" "ave_wtdsgspd"
## [11] "ave_medwid" "ave_peaklane"
## [13] "ave_row" "ave_sur_wid"
## [15] "ave_no_lanes" "ave_spd_limt"
## [17] "ave_rodwycls" "ave_rshldwid"
## [19] "FC" "TER"
## [21] "ACC" "MED"
## [23] "Total" "K"
## [25] "A" "B"
## [27] "C" "O"
## [29] "DAYMTH" "Crash"
## [31] "Spd_All" "Spd_Car"
## [33] "Spd_Truck" "date"
## [35] "Month" "Day"
## [37] "Year" "Hour1"
## [39] "PCT_TIME" "Hour"
## [41] "DOW"
df_RMU$AADT1 <- cut(df_RMU$ave_aadt , breaks=c(0,2000,5000,10000, 15000, 20000, 30000, Inf),
labels=c("0-2000","2001-5000","5001-10000","10001-15000","15001-20000","20001-30000","> 30000"))
table(df_RMU$AADT1)
##
## 0-2000 2001-5000 5001-10000 10001-15000 15001-20000 20001-30000
## 257568 836736 1034400 650112 666912 444288
## > 30000
## 105120
df_RMU$Crash1 <- cut(df_RMU$Crash , breaks=c(-1,0,Inf),
labels=c("No crash","Crash"))
table(df_RMU$Crash1)
##
## No crash Crash
## 3995012 124
# ############################################################
# df_RMU$DayNight <- cut(df_RMU$EPOCH15 , breaks=c(-1,26,67,95),
# labels=c("Night","Day","Night"))
# table(df_RMU$DayNight)
# df_RMU$PeakOffPeak <- cut(df_RMU$EPOCH15 , breaks=c(-1,26,35,62,75, 96),
# labels=c("Off-Peak","Morning Peak","Off-Peak", "Evening Peak", "Off-Peak"))
# table(df_RMU$PeakOffPeak)
# ###########################################################
df_RMU$DayNight <- cut(df_RMU$EPOCH15 , breaks=c(-1,26,67,95))
df_RMU$DayNight <- as.numeric(df_RMU$DayNight)
df_RMU$DayNight <- c("Night","Day","Night")[df_RMU$DayNight]
table(df_RMU$DayNight)
##
## Day Night
## 1706256 2288880
df_RMU$PeakOffPeak <- cut(df_RMU$EPOCH15 , breaks=c(-1,26,35,62,75, 96))
df_RMU$PeakOffPeak <- as.numeric(df_RMU$PeakOffPeak)
df_RMU$PeakOffPeak <- c("Off-Peak","Morning Peak","Off-Peak", "Evening Peak", "Off-Peak")[df_RMU$PeakOffPeak]
table(df_RMU$PeakOffPeak)
##
## Evening Peak Morning Peak Off-Peak
## 541008 374544 3079584
# # ###########################################################
# df_RMU01 <- df_RMU[,c(26:28, 31, 32, 34, 38, 55, 56, 6, 53, 49,54, 48, 57, 58, 44:46)]
# df_RMU02 <- df_RMU01[,c(8:19)]
# # ###########################################################
df_RMU01 <- df_RMU[,c("ave_spd_limt","ave_medwid", "ave_no_lanes","ave_rshldwid","TMC_length",
"ave_sur_wid", "AADT1", "Crash1", "EPOCH15", "Hour","Day", "DOW", "Month",
"DayNight","PeakOffPeak","Spd_All", "Spd_Car", "Spd_Truck")]
df_RMU02 <- df_RMU01[,c( "AADT1","Crash1","EPOCH15","Hour", "Day", "DOW", "Month",
"DayNight","PeakOffPeak","Spd_All","Spd_Car","Spd_Truck")]
cols <- c("EPOCH15", "Hour", "Day", "DOW", "Month", "AADT1" , "Crash1", "DayNight", "PeakOffPeak")
cols1 <- c("Spd_All", "Spd_Car", "Spd_Truck")
cols2 <- c("ave_spd_limt","ave_medwid" , "ave_no_lanes", "ave_rshldwid" ,"TMC_length" , "ave_sur_wid")
df_RMU02= df_RMU02 %<>%
mutate_at(cols, funs(factor(.)))
hour1 <- ExpCustomStat(df_RMU02,Cvar = c("Hour"), Nvar=cols1, stat = c('Count','Prop','mean','median','p0.85','min', 'max','sd', 'var','PS'),gpby=FALSE)
day1 <- ExpCustomStat(df_RMU02,Cvar = c("Day"), Nvar=cols1, stat = c('Count','Prop','mean','median','p0.85','min', 'max','sd', 'var','PS'),gpby=FALSE)
DOW1 <- ExpCustomStat(df_RMU02,Cvar = c("DOW"), Nvar=cols1, stat = c('Count','Prop','mean','median','p0.85','min', 'max','sd', 'var','PS'),gpby=FALSE)
Month1 <- ExpCustomStat(df_RMU02,Cvar = c("Month"), Nvar=cols1, stat = c('Count','Prop','mean','median','p0.85','min', 'max','sd', 'var','PS'),gpby=FALSE)
AADT2 <- ExpCustomStat(df_RMU02,Cvar = c("AADT1"), Nvar=cols1, stat = c('Count','Prop','mean','median','p0.85','min', 'max','sd', 'var','PS'),gpby=FALSE)
Crash2 <- ExpCustomStat(df_RMU02,Cvar = c("Crash1", "Hour"), Nvar=cols1, stat = c('Count','Prop','mean','median','p0.85','min', 'max','sd', 'var','PS'))
DayNight1 <- ExpCustomStat(df_RMU02,Cvar = c("DayNight"), Nvar=cols1, stat = c('Count','Prop','mean','median','p0.85','min', 'max','sd', 'var','PS'),gpby=FALSE)
PeakOffPeak1 <- ExpCustomStat(df_RMU02,Cvar = c("PeakOffPeak"), Nvar=cols1, stat = c('Count','Prop','mean','median','p0.85','min', 'max','sd', 'var','PS'),gpby=FALSE)
geo <- ExpCustomStat(df_RMU01, Nvar=cols2, stat = c('mean','median','p0.85','min', 'max','sd', 'var','PS'))
ggline(gather(hour1[,c(1, 2, 6, 8, 11)], condition, measurement, mean:sd, factor_key=TRUE), x = "Level", y = "measurement", color = "Attribute",
palette = c("red", "blue", "black"))+theme(legend.title=element_blank())+ facet_grid(condition~ .)+labs(title="By Hour")
ggline(gather(DOW1[,c(1, 2, 6, 8, 11)], condition, measurement, mean:sd, factor_key=TRUE), x = "Level", y = "measurement", color = "Attribute",
palette = c("red", "blue", "black"))+theme(legend.title=element_blank())+ facet_grid(condition~ .)+labs(title="By Day of Week")
ggline(gather(Month1[,c(1, 2, 6, 8, 11)], condition, measurement, mean:sd, factor_key=TRUE), x = "Level", y = "measurement", color = "Attribute",
palette = c("red", "blue", "black"))+theme(legend.title=element_blank())+ facet_grid(condition~ .)+labs(title="By Month")
ggline(gather(AADT2[,c(1, 2, 6, 8, 11)], condition, measurement, mean:sd, factor_key=TRUE), x = "Level", y = "measurement", color = "Attribute",
palette = c("red", "blue", "black"))+theme(legend.title=element_blank())+ facet_grid(condition~ .)+labs(title="By AADT")
ggline(gather(Crash2[,c(1, 2, 3, 6, 8, 11)], condition, measurement, mean:sd, factor_key=TRUE), x = "Hour", y = "measurement", color = "Attribute",
palette = c("red", "blue", "black"))+theme(legend.title=element_blank())+ facet_grid(condition+Crash1~ .)+labs(title="By Crash")
ggline(gather(DayNight1[,c(1, 2, 6, 8, 11)], condition, measurement, mean:sd, factor_key=TRUE), x = "Level", y = "measurement", color = "Attribute",
palette = c("red", "blue", "black"))+theme(legend.title=element_blank())+ facet_grid(condition~ .)+labs(title="By Day/Night")
ggline(gather(PeakOffPeak1[,c(1, 2, 6, 8, 11)], condition, measurement, mean:sd, factor_key=TRUE), x = "Level", y = "measurement", color = "Attribute",
palette = c("red", "blue", "black"))+theme(legend.title=element_blank())+ facet_grid(condition~ .)+labs(title="By Peak/Off-Peak")
Temporal Statistics of Operational Speed
setwd("/scratch/user/cma16/Task4_Deliverable2/NCprocess4/AllCrash/FacilityBased/")
head(hour1)
## Level Attribute Group_by Count Prop mean median p0.85
## 1: 00 Spd_All Hour 166464 4.17 34.88840 36.71138 54.01021
## 2: 02 Spd_All Hour 166464 4.17 35.02084 36.95241 54.45292
## 3: 03 Spd_All Hour 166464 4.17 35.74168 37.92478 55.32939
## 4: 04 Spd_All Hour 166464 4.17 36.82886 39.51848 56.22285
## 5: 05 Spd_All Hour 166464 4.17 37.72722 40.20848 56.40734
## 6: 06 Spd_All Hour 166464 4.17 37.39770 39.75235 55.32051
## min max sd var PS
## 1: 0.2028411 81.23672 16.51279 272.6723 1.17
## 2: 0.4383796 85.74184 16.61708 276.1272 1.11
## 3: 0.1704430 77.81245 16.70801 279.1576 1.24
## 4: 0.4315013 76.29874 16.95660 287.5262 1.62
## 5: 0.1704430 90.68976 16.73749 280.1437 2.83
## 6: 0.1280568 88.38403 16.11696 259.7563 4.56
## Level Attribute Group_by Count Prop mean median p0.85
## 1: 01 Spd_All Day 131136 3.28 33.79339 34.78349 52.80284
## 2: 02 Spd_All Day 131136 3.28 33.79551 34.86386 52.46364
## 3: 03 Spd_All Day 131136 3.28 33.59132 34.66359 52.49301
## 4: 04 Spd_All Day 131136 3.28 33.67571 34.65910 52.68262
## 5: 05 Spd_All Day 131136 3.28 33.66646 34.68389 52.75855
## 6: 06 Spd_All Day 131136 3.28 33.68679 34.70245 52.81050
## min max sd var PS
## 1: 0.1280568 79.35354 16.22467 263.2398 3.05
## 2: 0.2028411 84.52042 16.08435 258.7064 3.38
## 3: 0.1704430 77.81245 16.16386 261.2703 3.30
## 4: 0.1704430 91.84438 16.28294 265.1341 3.16
## 5: 0.2028411 76.29874 16.29860 265.6445 3.10
## 6: 0.1704430 78.82835 16.33793 266.9278 3.26
## Level Attribute Group_by Count Prop mean median p0.85
## 1: Wed Spd_All DOW 573024 14.34 33.76697 34.78687 52.63384
## 2: Thu Spd_All DOW 581568 14.56 33.77252 34.74139 52.68793
## 3: Fri Spd_All DOW 566784 14.19 33.54073 34.50061 52.75834
## 4: Sat Spd_All DOW 566784 14.19 33.30019 34.28094 52.93339
## 5: Sun Spd_All DOW 568992 14.24 33.96463 35.07853 53.64747
## 6: Mon Spd_All DOW 568992 14.24 33.83020 34.82655 52.61819
## min max sd var PS
## 1: 0.1280568 81.78344 16.10328 259.3155 16.97
## 2: 0.1704430 85.74184 16.12811 260.1161 16.81
## 3: 0.1280568 88.76314 16.33621 266.8718 16.11
## 4: 0.1280568 91.84438 16.83760 283.5047 9.82
## 5: 0.1280568 86.61198 16.84141 283.6331 7.16
## 6: 0.1280568 91.75307 16.08074 258.5902 16.21
## Level Attribute Group_by Count Prop mean median p0.85
## 1: 07 Spd_All Month 389856 9.76 33.98403 35.12432 52.90236
## 2: 08 Spd_All Month 389856 9.76 33.75334 34.82721 52.64627
## 3: 09 Spd_All Month 377280 9.44 33.70719 34.80102 52.47885
## 4: 10 Spd_All Month 389856 9.76 33.74643 34.86386 52.39222
## 5: 11 Spd_All Month 443520 11.10 33.22323 34.18572 52.09202
## 6: 12 Spd_All Month 458304 11.47 32.77630 33.49156 51.75821
## min max sd var PS
## 1: 0.1280568 86.61198 16.33139 266.7144 10.48
## 2: 0.1280568 85.07449 16.21837 263.0354 10.15
## 3: 0.1280568 85.74184 16.12169 259.9090 9.68
## 4: 0.1704430 81.44904 16.10441 259.3520 10.15
## 5: 0.1280568 90.68976 16.13593 260.3683 9.53
## 6: 0.1280568 89.51329 16.21704 262.9923 10.30
## Level Attribute Group_by Count Prop mean median p0.85
## 1: 5001-10000 Spd_All AADT1 1034400 25.89 37.59030 41.20839 54.14727
## 2: 2001-5000 Spd_All AADT1 836736 20.94 45.21940 51.41315 58.45158
## 3: 20001-30000 Spd_All AADT1 444288 11.12 23.08929 20.38246 37.77721
## 4: 15001-20000 Spd_All AADT1 666912 16.69 32.85233 34.69960 46.96068
## 5: 0-2000 Spd_All AADT1 257568 6.45 41.41035 45.79368 57.73949
## 6: 10001-15000 Spd_All AADT1 650112 16.27 26.84927 28.04026 39.86132
## min max sd var PS
## 1: 0.1280568 91.84438 16.31021 266.0228 32.02
## 2: 0.3750959 88.38403 15.72056 247.1360 19.35
## 3: 0.1704430 86.08784 11.56138 133.6656 12.85
## 4: 0.6200500 76.12151 13.80345 190.5351 17.78
## 5: 0.5196614 89.51329 16.52610 273.1121 3.14
## 6: 0.6077899 91.75307 12.21389 149.1791 10.42
## Crash1 Hour Attribute Count Prop mean median p0.85
## 1: No crash 00 Spd_All 166457 4.17 34.88921 36.71138 54.00907
## 2: No crash 02 Spd_All 166443 4.17 35.01594 36.91892 54.42861
## 3: No crash 03 Spd_All 166432 4.17 35.73998 37.92478 55.32939
## 4: No crash 04 Spd_All 166427 4.17 36.83195 39.52011 56.22285
## 5: No crash 05 Spd_All 166448 4.17 37.72673 40.20848 56.40711
## 6: No crash 06 Spd_All 166464 4.17 37.39770 39.75235 55.32051
## min max sd var PS
## 1: 0.2028411 81.23672 16.51163 272.6339 1.17
## 2: 0.4383796 85.74184 16.61363 276.0128 1.11
## 3: 0.1704430 77.81245 16.70731 279.1341 1.24
## 4: 0.4315013 76.29874 16.95539 287.4853 1.62
## 5: 0.1704430 90.68976 16.73699 280.1267 2.83
## 6: 0.1280568 88.38403 16.11696 259.7563 4.56
## Level Attribute Group_by Count Prop mean median p0.85
## 1: Night Spd_All DayNight 2288880 57.29 34.44608 35.94247 53.79533
## 2: Day Spd_All DayNight 1706256 42.71 33.34838 34.11727 52.16832
## 3: Night Spd_Car DayNight 2288880 57.29 34.52268 36.10171 54.41386
## 4: Day Spd_Car DayNight 1706256 42.71 33.29266 34.11727 52.40124
## 5: Night Spd_Truck DayNight 2288880 57.29 33.66710 34.84667 52.33559
## 6: Day Spd_Truck DayNight 1706256 42.71 33.67527 34.86386 52.06267
## min max sd var PS
## 1: 0.1280568 91.84438 16.65366 277.3443 34.35
## 2: 0.1280568 91.75307 16.04102 257.3143 65.65
## 3: 0.1280568 91.84438 17.06441 291.1941 31.05
## 4: 0.1280568 91.75307 16.30507 265.8554 68.95
## 5: 0.1280568 74.88328 15.96289 254.8138 35.01
## 6: 0.1280568 76.47654 15.71805 247.0571 64.99
## Level Attribute Group_by Count Prop mean median
## 1: Off-Peak Spd_All PeakOffPeak 3079584 77.08 33.70931 34.74701
## 2: Morning Peak Spd_All PeakOffPeak 374544 9.38 34.83800 36.13345
## 3: Evening Peak Spd_All PeakOffPeak 541008 13.54 32.96927 33.55108
## 4: Off-Peak Spd_Car PeakOffPeak 3079584 77.08 33.63384 34.73036
## 5: Morning Peak Spd_Car PeakOffPeak 374544 9.38 35.02303 36.51102
## 6: Evening Peak Spd_Car PeakOffPeak 541008 13.54 32.83376 33.38100
## p0.85 min max sd var PS
## 1: 52.77364 0.1280568 91.84438 16.25762 264.3101 68.61
## 2: 52.99730 0.1280568 91.75307 15.87940 252.1552 13.29
## 3: 52.47677 0.1280568 88.76314 16.47299 271.3595 18.10
## 4: 52.93337 0.1280568 91.84438 16.55564 274.0894 67.16
## 5: 53.37584 0.1704430 91.75307 16.10868 259.4894 13.95
## 6: 52.80284 0.1280568 88.76314 16.76210 280.9682 18.89
write.csv(hour1, paste0("./",mytype,"/des_output/NC_RMU_OS_DS_hour.csv"),row.names = FALSE)
write.csv(day1, paste0("./",mytype,"/des_output/NC_RMU_OS_DS_day.csv"),row.names = FALSE)
write.csv(DOW1, paste0("./",mytype,"/des_output/NC_RMU_OS_DS_dow.csv"),row.names = FALSE)
write.csv(Month1,paste0("./",mytype,"/des_output/NC_RMU_OS_DS_month.csv"),row.names = FALSE)
write.csv(AADT2, paste0("./",mytype,"/des_output/NC_RMU_OS_DS_aadt.csv"),row.names = FALSE)
write.csv(Crash2, paste0("./",mytype,"/des_output/NC_RMU_OS_DS_crash.csv"),row.names = FALSE)
write.csv(DayNight1, paste0("./",mytype,"/des_output/NC_RMU_OS_DS_daynight.csv"),row.names = FALSE)
write.csv(PeakOffPeak1, paste0("./",mytype,"/des_output/NC_RMU_OS_DS_peakoffpeak.csv"),row.names = FALSE)