Temporal Patterns
## [1] "TimeStamp" "TMC"
## [3] "DATE" "EPOCH1h"
## [5] "Travel_TIME_ALL_VEHICLES" "Travel_TIME_PASSENGER_VEHICLES"
## [7] "Travel_TIME_FREIGHT_TRUCKS" "ADMIN_LEVE"
## [9] "ADMIN_LE_1" "ADMIN_LE_2"
## [11] "DISTANCE" "ROAD_NUMBE"
## [13] "ROAD_NAME" "LATITUDE"
## [15] "LONGITUDE" "ROAD_DIREC"
## [17] "ORN_FID" "COUNTY"
## [19] "divided" "SURF_TYP"
## [21] "NHS_CDE" "HPMS"
## [23] "ACCESS" "AADT_YR"
## [25] "FED_FACI" "PK_LANES"
## [27] "MED_TYPE" "FED_MEDW"
## [29] "BEGMP" "ENDMP"
## [31] "SEG_LNG" "cnty_rte"
## [33] "rte_nbr" "aadt"
## [35] "aadt_bc" "aadt_pt"
## [37] "surf_wid" "no_lanes"
## [39] "func_cls" "rodwycls"
## [41] "Total" "K"
## [43] "A" "B"
## [45] "C" "O"
## [47] "DAYMTH" "Crash"
## [49] "Spd_All" "Spd_Car"
## [51] "Spd_Truck" "date"
## [53] "Month" "Day"
## [55] "Year" "Hour1"
## [57] "PCT_TIME" "Hour"
## [59] "DOW"
df_R2$AADT1 <- cut(df_R2$aadt , breaks=c(0,2000,5000,10000, 15000, 20000, 30000, Inf),
labels=c("0-2000","2001-5000","5001-10000","10001-15000","15001-20000","20001-30000","> 30000"))
table(df_R2$AADT1)
##
## 0-2000 2001-5000 5001-10000 10001-15000 15001-20000 20001-30000
## 183960 2388744 2821368 297840 43800 0
## > 30000
## 0
df_R2$Crash1 <- cut(df_R2$Crash , breaks=c(-1,0, Inf),
labels=c("No crash","Crash"))
table(df_R2$Crash1)
##
## No crash Crash
## 5733547 2165
df_R2$DayNight <- cut(df_R2$EPOCH1h , breaks=c(-1,6,16,23))
df_R2$DayNight <- as.numeric(df_R2$DayNight)
df_R2$DayNight <- c("Night","Day","Night")[df_R2$DayNight]
table(df_R2$DayNight)
##
## Day Night
## 2389880 3345832
df_R2$PeakOffPeak <- cut(df_R2$EPOCH1h , breaks=c(-1,6,8,15,19,23))
df_R2$PeakOffPeak <- as.numeric(df_R2$PeakOffPeak)
df_R2$PeakOffPeak <- c("Off-Peak","Morning Peak","Off-Peak", "Evening Peak", "Off-Peak")[df_R2$PeakOffPeak]
table(df_R2$PeakOffPeak)
##
## Evening Peak Morning Peak Off-Peak
## 955952 477976 4301784
df_R201 <- df_R2[,c("divided", "MED_TYPE", "surf_wid", "no_lanes", "EPOCH1h",
"Hour","Day","DOW","Month","Year", "AADT1","Crash1",
"DayNight","PeakOffPeak","Spd_All","Spd_Car","Spd_Truck")]
df_R202 <- df_R201[,c(5:17)]
cols <- c("EPOCH1h", "Hour", "Day", "DOW", "Month", "AADT1" , "Crash1", "DayNight", "PeakOffPeak")
cols1 <- c("Spd_All", "Spd_Car", "Spd_Truck")
cols2 <- c("divided", "MED_TYPE", "surf_wid","no_lanes")
df_R202= df_R202 %<>%
mutate_at(cols, funs(factor(.)))
hour1 <- ExpCustomStat(df_R202,Cvar = c("Hour"), Nvar=cols1, stat = c('Count','Prop','mean','median','p0.85','min', 'max','sd', 'var','PS'),gpby=FALSE)
day1 <- ExpCustomStat(df_R202,Cvar = c("Day"), Nvar=cols1, stat = c('Count','Prop','mean','median','p0.85','min', 'max','sd', 'var','PS'),gpby=FALSE)
DOW1 <- ExpCustomStat(df_R202,Cvar = c("DOW"), Nvar=cols1, stat = c('Count','Prop','mean','median','p0.85','min', 'max','sd', 'var','PS'),gpby=FALSE)
Month1 <- ExpCustomStat(df_R202,Cvar = c("Month"), Nvar=cols1, stat = c('Count','Prop','mean','median','p0.85','min', 'max','sd', 'var','PS'),gpby=FALSE)
AADT2 <- ExpCustomStat(df_R202,Cvar = c("AADT1"), Nvar=cols1, stat = c('Count','Prop','mean','median','p0.85','min', 'max','sd', 'var','PS'),gpby=FALSE)
Crash2 <- ExpCustomStat(df_R202,Cvar = c("Crash1", "Hour"), Nvar=cols1, stat = c('Count','Prop','mean','median','p0.85','min', 'max','sd', 'var','PS'))
DayNight1 <- ExpCustomStat(df_R202,Cvar = c("DayNight"), Nvar=cols1, stat = c('Count','Prop','mean','median','p0.85','min', 'max','sd', 'var','PS'),gpby=FALSE)
PeakOffPeak1 <- ExpCustomStat(df_R202,Cvar = c("PeakOffPeak"), Nvar=cols1, stat = c('Count','Prop','mean','median','p0.85','min', 'max','sd', 'var','PS'),gpby=FALSE)
geo <- ExpCustomStat(df_R201, Nvar=cols2, stat = c('mean','median','p0.85','min', 'max','sd', 'var','PS'))
## divided variable/s not in numeric type
## Either convert it into numeric or remove that from 'Nvar' list
ggline(gather(hour1[,c(1, 2, 6, 8, 11)], condition, measurement, mean:sd, factor_key=TRUE), x = "Level", y = "measurement", color = "Attribute",
palette = c("red", "blue", "black"))+theme(legend.title=element_blank())+ facet_grid(condition~ .)+labs(title="By Hour")
ggline(gather(DOW1[,c(1, 2, 6, 8, 11)], condition, measurement, mean:sd, factor_key=TRUE), x = "Level", y = "measurement", color = "Attribute",
palette = c("red", "blue", "black"))+theme(legend.title=element_blank())+ facet_grid(condition~ .)+labs(title="By Day of Week")
ggline(gather(Month1[,c(1, 2, 6, 8, 11)], condition, measurement, mean:sd, factor_key=TRUE), x = "Level", y = "measurement", color = "Attribute",
palette = c("red", "blue", "black"))+theme(legend.title=element_blank())+ facet_grid(condition~ .)+labs(title="By Month")
ggline(gather(AADT2[,c(1, 2, 6, 8, 11)], condition, measurement, mean:sd, factor_key=TRUE), x = "Level", y = "measurement", color = "Attribute",
palette = c("red", "blue", "black"))+theme(legend.title=element_blank())+ facet_grid(condition~ .)+labs(title="By AADT")
ggline(gather(Crash2[,c(1, 2, 3, 6, 8, 11)], condition, measurement, mean:sd, factor_key=TRUE), x = "Hour", y = "measurement", color = "Attribute",
palette = c("red", "blue", "black"))+theme(legend.title=element_blank())+ facet_grid(condition+Crash1~ .)+labs(title="By Crash")
ggline(gather(DayNight1[,c(1, 2, 6, 8, 11)], condition, measurement, mean:sd, factor_key=TRUE), x = "Level", y = "measurement", color = "Attribute",
palette = c("red", "blue", "black"))+theme(legend.title=element_blank())+ facet_grid(condition~ .)+labs(title="By Day/Night")
ggline(gather(PeakOffPeak1[,c(1, 2, 6, 8, 11)], condition, measurement, mean:sd, factor_key=TRUE), x = "Level", y = "measurement", color = "Attribute",
palette = c("red", "blue", "black"))+theme(legend.title=element_blank())+ facet_grid(condition~ .)+labs(title="By Peak/Off-Peak")
Temporal Statistics of Operational Speed
#
setwd("/scratch/user/cma16/Task4_Deliverable2/OHprocess4/AllCrash/FacilityBased/")
head(hour1)
## Level Attribute Group_by Count Prop mean median p0.85
## 1: 00 Spd_All Hour 238988 4.17 46.54176 50.30881 57.29199
## 2: 01 Spd_All Hour 238988 4.17 46.64795 50.44740 57.62392
## 3: 10 Spd_All Hour 238988 4.17 44.56996 48.44912 56.10018
## 4: 11 Spd_All Hour 238988 4.17 44.43626 48.41103 56.09725
## 5: 12 Spd_All Hour 238988 4.17 44.41430 48.42635 56.12063
## 6: 13 Spd_All Hour 238988 4.17 44.51282 48.49174 56.13871
## min max sd var PS
## 1: 0.6212757 91.37022 12.47010 155.5034 2.67
## 2: 0.6212308 84.49200 12.66086 160.2974 2.58
## 3: 0.6212308 84.49200 12.93021 167.1902 5.08
## 4: 0.6212308 84.63938 13.08443 171.2024 5.11
## 5: 0.6212308 84.49200 13.14118 172.6906 5.11
## 6: 0.6166143 84.49200 13.10005 171.6113 5.13
## Level Attribute Group_by Count Prop mean median p0.85
## 1: 01 Spd_All Day 188544 3.29 45.04269 48.87549 56.52934
## 2: 02 Spd_All Day 188544 3.29 45.15224 48.99593 56.46963
## 3: 03 Spd_All Day 188544 3.29 45.08333 48.83672 56.37550
## 4: 04 Spd_All Day 188544 3.29 45.03154 48.86677 56.46675
## 5: 05 Spd_All Day 188544 3.29 45.06273 48.88477 56.43811
## 6: 06 Spd_All Day 188544 3.29 45.03663 48.88556 56.38563
## min max sd var PS
## 1: 0.6212308 84.49200 12.95075 167.7220 3.07
## 2: 0.6212308 88.58962 12.80607 163.9953 3.37
## 3: 0.6212308 88.62274 12.75700 162.7410 3.30
## 4: 0.6212757 84.49200 12.88951 166.1395 3.20
## 5: 0.6214662 84.49200 12.87144 165.6739 3.21
## 6: 0.6166143 85.53802 12.85837 165.3378 3.31
## Level Attribute Group_by Count Prop mean median p0.85
## 1: Thu Spd_All DOW 833016 14.52 45.06986 48.90450 56.37111
## 2: Fri Spd_All DOW 817008 14.24 45.02206 48.95335 56.39028
## 3: Sat Spd_All DOW 817008 14.24 45.37804 49.40502 56.79718
## 4: Sun Spd_All DOW 817032 14.24 45.84801 49.80977 57.09305
## 5: Mon Spd_All DOW 817032 14.24 45.20765 49.03092 56.48045
## 6: Tue Spd_All DOW 817032 14.24 45.13370 48.96765 56.39400
## min max sd var PS
## 1: 0.6166143 91.25528 12.78357 163.4196 15.57
## 2: 0.6166545 91.37022 12.89946 166.3962 15.13
## 3: 0.6166143 91.37022 13.20426 174.3524 12.42
## 4: 0.6212308 90.66918 13.09268 171.4183 10.60
## 5: 0.6166143 84.98071 12.73764 162.2474 15.08
## 6: 0.6166143 88.16620 12.72482 161.9209 15.61
## Level Attribute Group_by Count Prop mean median p0.85
## 1: 01 Spd_All Month 478392 8.34 44.74701 48.20888 55.98756
## 2: 02 Spd_All Month 432096 7.53 44.23628 47.50839 55.73179
## 3: 03 Spd_All Month 478392 8.34 45.31483 49.08273 56.46668
## 4: 04 Spd_All Month 462960 8.07 45.53027 49.48751 56.55341
## 5: 05 Spd_All Month 478392 8.34 45.14393 49.16684 56.48147
## 6: 06 Spd_All Month 462960 8.07 45.08760 49.08273 56.53964
## min max sd var PS
## 1: 0.6212757 84.49200 12.51032 156.5080 7.52
## 2: 0.6212308 86.15404 12.51640 156.6602 6.91
## 3: 0.6212308 86.44356 12.63734 159.7023 8.07
## 4: 0.6166143 88.62274 12.71952 161.7862 8.09
## 5: 0.6166143 84.49200 12.97893 168.4526 8.20
## 6: 0.6166143 86.42871 13.04838 170.2602 8.13
## Level Attribute Group_by Count Prop mean median p0.85
## 1: 2001-5000 Spd_All AADT1 2388744 41.65 45.92105 49.46992 56.53463
## 2: 5001-10000 Spd_All AADT1 2821368 49.19 45.22713 49.40502 56.59426
## 3: 0-2000 Spd_All AADT1 183960 3.21 48.84657 52.12393 57.63865
## 4: 10001-15000 Spd_All AADT1 297840 5.19 40.69878 44.42596 54.43729
## 5: 15001-20000 Spd_All AADT1 43800 0.76 34.55586 38.36620 50.44800
## 6: 2001-5000 Spd_Car AADT1 2388744 41.65 46.49415 50.23438 57.20400
## min max sd var PS
## 1: 0.6212757 92.10765 12.27450 150.6633 42.02
## 2: 0.6185854 91.37022 12.99365 168.8350 50.26
## 3: 0.6166143 88.00224 11.61727 134.9609 1.73
## 4: 0.6214663 82.59513 14.02563 196.7183 5.34
## 5: 0.6214469 83.43323 15.09530 227.8682 0.65
## 6: 0.6212757 92.60805 12.68285 160.8548 39.80
## Crash1 Hour Attribute Count Prop mean median p0.85
## 1: No crash 00 Spd_All 238934 4.17 46.54295 50.30893 57.29208
## 2: No crash 01 Spd_All 238943 4.17 46.64850 50.44779 57.62392
## 3: No crash 10 Spd_All 238911 4.17 44.57174 48.45075 56.10026
## 4: No crash 11 Spd_All 238904 4.17 44.43814 48.41245 56.09762
## 5: No crash 12 Spd_All 238899 4.17 44.41719 48.42814 56.12063
## 6: No crash 13 Spd_All 238893 4.17 44.51532 48.49470 56.14093
## min max sd var PS
## 1: 0.6212757 91.37022 12.46909 155.4781 2.67
## 2: 0.6212308 84.49200 12.66069 160.2931 2.58
## 3: 0.6212308 84.49200 12.92939 167.1690 5.08
## 4: 0.6212308 84.63938 13.08313 171.1684 5.11
## 5: 0.6212308 84.49200 13.13984 172.6555 5.11
## 6: 0.6166143 84.49200 13.09902 171.5844 5.13
## Level Attribute Group_by Count Prop mean median p0.85
## 1: Night Spd_All DayNight 3345832 58.33 45.88383 49.72364 56.77309
## 2: Day Spd_All DayNight 2389880 41.67 44.57277 48.49692 56.19578
## 3: Night Spd_Car DayNight 3345832 58.33 46.39786 50.31493 57.47246
## 4: Day Spd_Car DayNight 2389880 41.67 44.91206 49.05937 56.81156
## 5: Night Spd_Truck DayNight 3345832 58.33 46.24961 50.26786 56.75937
## 6: Day Spd_Truck DayNight 2389880 41.67 45.43792 49.54425 56.35677
## min max sd var PS
## 1: 0.6166143 92.10765 12.64813 159.9752 49.60
## 2: 0.6166143 89.74647 13.03710 169.9660 50.40
## 3: 0.6166143 92.10765 12.99214 168.7956 43.71
## 4: 0.6166143 92.60805 13.54046 183.3441 56.29
## 5: 0.6212308 84.49200 12.34351 152.3622 47.47
## 6: 0.6212308 84.49200 12.56232 157.8118 52.53
## Level Attribute Group_by Count Prop mean median
## 1: Off-Peak Spd_All PeakOffPeak 4301784 75.00 45.31394 49.18408
## 2: Evening Peak Spd_All PeakOffPeak 955952 16.67 45.01170 49.04128
## 3: Morning Peak Spd_All PeakOffPeak 477976 8.33 44.87432 48.63672
## 4: Off-Peak Spd_Car PeakOffPeak 4301784 75.00 45.63240 49.65797
## 5: Evening Peak Spd_Car PeakOffPeak 955952 16.67 45.39757 49.68760
## 6: Morning Peak Spd_Car PeakOffPeak 477976 8.33 45.30042 49.19991
## p0.85 min max sd var PS
## 1: 56.54297 0.6166143 92.10765 12.82877 164.5774 71.37
## 2: 56.43141 0.6166143 89.74647 13.02153 169.5601 18.94
## 3: 56.37966 0.6212308 84.49200 12.81332 164.1811 9.69
## 4: 57.08630 0.6166143 92.60805 13.26465 175.9510 69.36
## 5: 57.22584 0.6166143 89.74647 13.65794 186.5394 19.84
## 6: 56.88060 0.6212308 90.53618 13.11375 171.9705 10.80
write.csv(hour1, paste0("./",mytype,"/des_output/OH_R2_OS_DS_hour.csv"),row.names = FALSE)
write.csv(day1, paste0("./",mytype,"/des_output/OH_R2_OS_DS_day.csv"),row.names = FALSE)
write.csv(DOW1, paste0("./",mytype,"/des_output/OH_R2_OS_DS_dow.csv"),row.names = FALSE)
write.csv(Month1,paste0("./",mytype,"/des_output/OH_R2_OS_DS_month.csv"),row.names = FALSE)
write.csv(AADT2, paste0("./",mytype,"/des_output/OH_R2_OS_DS_aadt.csv"),row.names = FALSE)
write.csv(Crash2, paste0("./",mytype,"/des_output/OH_R2_OS_DS_crash.csv"),row.names = FALSE)
write.csv(DayNight1, paste0("./",mytype,"/des_output/OH_R2_OS_DS_daynight.csv"),row.names = FALSE)
write.csv(PeakOffPeak1, paste0("./",mytype,"/des_output/OH_R2_OS_DS_peakoffpeak.csv"),row.names = FALSE)