Not Preface

Codes from An Introduction to Statistical Learning with R are replicated in this rpubs page. 1


Datasets

## install.packages("ISLR")
library(ISLR)

head(Auto)
##   mpg cylinders displacement horsepower weight acceleration year origin
## 1  18         8          307        130   3504         12.0   70      1
## 2  15         8          350        165   3693         11.5   70      1
## 3  18         8          318        150   3436         11.0   70      1
## 4  16         8          304        150   3433         12.0   70      1
## 5  17         8          302        140   3449         10.5   70      1
## 6  15         8          429        198   4341         10.0   70      1
##                        name
## 1 chevrolet chevelle malibu
## 2         buick skylark 320
## 3        plymouth satellite
## 4             amc rebel sst
## 5               ford torino
## 6          ford galaxie 500
head(Caravan)
##   MOSTYPE MAANTHUI MGEMOMV MGEMLEEF MOSHOOFD MGODRK MGODPR MGODOV MGODGE
## 1      33        1       3        2        8      0      5      1      3
## 2      37        1       2        2        8      1      4      1      4
## 3      37        1       2        2        8      0      4      2      4
## 4       9        1       3        3        3      2      3      2      4
## 5      40        1       4        2       10      1      4      1      4
## 6      23        1       2        1        5      0      5      0      5
##   MRELGE MRELSA MRELOV MFALLEEN MFGEKIND MFWEKIND MOPLHOOG MOPLMIDD
## 1      7      0      2        1        2        6        1        2
## 2      6      2      2        0        4        5        0        5
## 3      3      2      4        4        4        2        0        5
## 4      5      2      2        2        3        4        3        4
## 5      7      1      2        2        4        4        5        4
## 6      0      6      3        3        5        2        0        5
##   MOPLLAAG MBERHOOG MBERZELF MBERBOER MBERMIDD MBERARBG MBERARBO MSKA
## 1        7        1        0        1        2        5        2    1
## 2        4        0        0        0        5        0        4    0
## 3        4        0        0        0        7        0        2    0
## 4        2        4        0        0        3        1        2    3
## 5        0        0        5        4        0        0        0    9
## 6        4        2        0        0        4        2        2    2
##   MSKB1 MSKB2 MSKC MSKD MHHUUR MHKOOP MAUT1 MAUT2 MAUT0 MZFONDS MZPART
## 1     1     2    6    1      1      8     8     0     1       8      1
## 2     2     3    5    0      2      7     7     1     2       6      3
## 3     5     0    4    0      7      2     7     0     2       9      0
## 4     2     1    4    0      5      4     9     0     0       7      2
## 5     0     0    0    0      4      5     6     2     1       5      4
## 6     2     2    4    2      9      0     5     3     3       9      0
##   MINKM30 MINK3045 MINK4575 MINK7512 MINK123M MINKGEM MKOOPKLA PWAPART
## 1       0        4        5        0        0       4        3       0
## 2       2        0        5        2        0       5        4       2
## 3       4        5        0        0        0       3        4       2
## 4       1        5        3        0        0       4        4       0
## 5       0        0        9        0        0       6        3       0
## 6       5        2        3        0        0       3        3       0
##   PWABEDR PWALAND PPERSAUT PBESAUT PMOTSCO PVRAAUT PAANHANG PTRACTOR
## 1       0       0        6       0       0       0        0        0
## 2       0       0        0       0       0       0        0        0
## 3       0       0        6       0       0       0        0        0
## 4       0       0        6       0       0       0        0        0
## 5       0       0        0       0       0       0        0        0
## 6       0       0        6       0       0       0        0        0
##   PWERKT PBROM PLEVEN PPERSONG PGEZONG PWAOREG PBRAND PZEILPL PPLEZIER
## 1      0     0      0        0       0       0      5       0        0
## 2      0     0      0        0       0       0      2       0        0
## 3      0     0      0        0       0       0      2       0        0
## 4      0     0      0        0       0       0      2       0        0
## 5      0     0      0        0       0       0      6       0        0
## 6      0     0      0        0       0       0      0       0        0
##   PFIETS PINBOED PBYSTAND AWAPART AWABEDR AWALAND APERSAUT ABESAUT AMOTSCO
## 1      0       0        0       0       0       0        1       0       0
## 2      0       0        0       2       0       0        0       0       0
## 3      0       0        0       1       0       0        1       0       0
## 4      0       0        0       0       0       0        1       0       0
## 5      0       0        0       0       0       0        0       0       0
## 6      0       0        0       0       0       0        1       0       0
##   AVRAAUT AAANHANG ATRACTOR AWERKT ABROM ALEVEN APERSONG AGEZONG AWAOREG
## 1       0        0        0      0     0      0        0       0       0
## 2       0        0        0      0     0      0        0       0       0
## 3       0        0        0      0     0      0        0       0       0
## 4       0        0        0      0     0      0        0       0       0
## 5       0        0        0      0     0      0        0       0       0
## 6       0        0        0      0     0      0        0       0       0
##   ABRAND AZEILPL APLEZIER AFIETS AINBOED ABYSTAND Purchase
## 1      1       0        0      0       0        0       No
## 2      1       0        0      0       0        0       No
## 3      1       0        0      0       0        0       No
## 4      1       0        0      0       0        0       No
## 5      1       0        0      0       0        0       No
## 6      0       0        0      0       0        0       No
head(Carseats)
##   Sales CompPrice Income Advertising Population Price ShelveLoc Age
## 1  9.50       138     73          11        276   120       Bad  42
## 2 11.22       111     48          16        260    83      Good  65
## 3 10.06       113     35          10        269    80    Medium  59
## 4  7.40       117    100           4        466    97    Medium  55
## 5  4.15       141     64           3        340   128       Bad  38
## 6 10.81       124    113          13        501    72       Bad  78
##   Education Urban  US
## 1        17   Yes Yes
## 2        10   Yes Yes
## 3        12   Yes Yes
## 4        14   Yes Yes
## 5        13   Yes  No
## 6        16    No Yes
head(College)
##                              Private Apps Accept Enroll Top10perc
## Abilene Christian University     Yes 1660   1232    721        23
## Adelphi University               Yes 2186   1924    512        16
## Adrian College                   Yes 1428   1097    336        22
## Agnes Scott College              Yes  417    349    137        60
## Alaska Pacific University        Yes  193    146     55        16
## Albertson College                Yes  587    479    158        38
##                              Top25perc F.Undergrad P.Undergrad Outstate
## Abilene Christian University        52        2885         537     7440
## Adelphi University                  29        2683        1227    12280
## Adrian College                      50        1036          99    11250
## Agnes Scott College                 89         510          63    12960
## Alaska Pacific University           44         249         869     7560
## Albertson College                   62         678          41    13500
##                              Room.Board Books Personal PhD Terminal
## Abilene Christian University       3300   450     2200  70       78
## Adelphi University                 6450   750     1500  29       30
## Adrian College                     3750   400     1165  53       66
## Agnes Scott College                5450   450      875  92       97
## Alaska Pacific University          4120   800     1500  76       72
## Albertson College                  3335   500      675  67       73
##                              S.F.Ratio perc.alumni Expend Grad.Rate
## Abilene Christian University      18.1          12   7041        60
## Adelphi University                12.2          16  10527        56
## Adrian College                    12.9          30   8735        54
## Agnes Scott College                7.7          37  19016        59
## Alaska Pacific University         11.9           2  10922        15
## Albertson College                  9.4          11   9727        55
head(Default)
##   default student   balance    income
## 1      No      No  729.5265 44361.625
## 2      No     Yes  817.1804 12106.135
## 3      No      No 1073.5492 31767.139
## 4      No      No  529.2506 35704.494
## 5      No      No  785.6559 38463.496
## 6      No     Yes  919.5885  7491.559
head(Hitters)
##                   AtBat Hits HmRun Runs RBI Walks Years CAtBat CHits
## -Andy Allanson      293   66     1   30  29    14     1    293    66
## -Alan Ashby         315   81     7   24  38    39    14   3449   835
## -Alvin Davis        479  130    18   66  72    76     3   1624   457
## -Andre Dawson       496  141    20   65  78    37    11   5628  1575
## -Andres Galarraga   321   87    10   39  42    30     2    396   101
## -Alfredo Griffin    594  169     4   74  51    35    11   4408  1133
##                   CHmRun CRuns CRBI CWalks League Division PutOuts Assists
## -Andy Allanson         1    30   29     14      A        E     446      33
## -Alan Ashby           69   321  414    375      N        W     632      43
## -Alvin Davis          63   224  266    263      A        W     880      82
## -Andre Dawson        225   828  838    354      N        E     200      11
## -Andres Galarraga     12    48   46     33      N        E     805      40
## -Alfredo Griffin      19   501  336    194      A        W     282     421
##                   Errors Salary NewLeague
## -Andy Allanson        20     NA         A
## -Alan Ashby           10  475.0         N
## -Alvin Davis          14  480.0         A
## -Andre Dawson          3  500.0         N
## -Andres Galarraga      4   91.5         N
## -Alfredo Griffin      25  750.0         A
head(OJ)
##   Purchase WeekofPurchase StoreID PriceCH PriceMM DiscCH DiscMM SpecialCH
## 1       CH            237       1    1.75    1.99   0.00    0.0         0
## 2       CH            239       1    1.75    1.99   0.00    0.3         0
## 3       CH            245       1    1.86    2.09   0.17    0.0         0
## 4       MM            227       1    1.69    1.69   0.00    0.0         0
## 5       CH            228       7    1.69    1.69   0.00    0.0         0
## 6       CH            230       7    1.69    1.99   0.00    0.0         0
##   SpecialMM  LoyalCH SalePriceMM SalePriceCH PriceDiff Store7 PctDiscMM
## 1         0 0.500000        1.99        1.75      0.24     No  0.000000
## 2         1 0.600000        1.69        1.75     -0.06     No  0.150754
## 3         0 0.680000        2.09        1.69      0.40     No  0.000000
## 4         0 0.400000        1.69        1.69      0.00     No  0.000000
## 5         0 0.956535        1.69        1.69      0.00    Yes  0.000000
## 6         1 0.965228        1.99        1.69      0.30    Yes  0.000000
##   PctDiscCH ListPriceDiff STORE
## 1  0.000000          0.24     1
## 2  0.000000          0.24     1
## 3  0.091398          0.23     1
## 4  0.000000          0.00     1
## 5  0.000000          0.00     0
## 6  0.000000          0.30     0
head(Portfolio)
##            X          Y
## 1 -0.8952509 -0.2349235
## 2 -1.5624543 -0.8851760
## 3 -0.4170899  0.2718880
## 4  1.0443557 -0.7341975
## 5 -0.3155684  0.8419834
## 6 -1.7371238 -2.0371910
head(Wage)
##        year age     sex           maritl     race       education
## 231655 2006  18 1. Male 1. Never Married 1. White    1. < HS Grad
## 86582  2004  24 1. Male 1. Never Married 1. White 4. College Grad
## 161300 2003  45 1. Male       2. Married 1. White 3. Some College
## 155159 2003  43 1. Male       2. Married 3. Asian 4. College Grad
## 11443  2005  50 1. Male      4. Divorced 1. White      2. HS Grad
## 376662 2008  54 1. Male       2. Married 1. White 4. College Grad
##                    region       jobclass         health health_ins
## 231655 2. Middle Atlantic  1. Industrial      1. <=Good      2. No
## 86582  2. Middle Atlantic 2. Information 2. >=Very Good      2. No
## 161300 2. Middle Atlantic  1. Industrial      1. <=Good     1. Yes
## 155159 2. Middle Atlantic 2. Information 2. >=Very Good     1. Yes
## 11443  2. Middle Atlantic 2. Information      1. <=Good     1. Yes
## 376662 2. Middle Atlantic 2. Information 2. >=Very Good     1. Yes
##         logwage      wage
## 231655 4.318063  75.04315
## 86582  4.255273  70.47602
## 161300 4.875061 130.98218
## 155159 5.041393 154.68529
## 11443  4.318063  75.04315
## 376662 4.845098 127.11574
head(Smarket)
##   Year   Lag1   Lag2   Lag3   Lag4   Lag5 Volume  Today Direction
## 1 2001  0.381 -0.192 -2.624 -1.055  5.010 1.1913  0.959        Up
## 2 2001  0.959  0.381 -0.192 -2.624 -1.055 1.2965  1.032        Up
## 3 2001  1.032  0.959  0.381 -0.192 -2.624 1.4112 -0.623      Down
## 4 2001 -0.623  1.032  0.959  0.381 -0.192 1.2760  0.614        Up
## 5 2001  0.614 -0.623  1.032  0.959  0.381 1.2057  0.213        Up
## 6 2001  0.213  0.614 -0.623  1.032  0.959 1.3491  1.392        Up
head(Weekly)
##   Year   Lag1   Lag2   Lag3   Lag4   Lag5    Volume  Today Direction
## 1 1990  0.816  1.572 -3.936 -0.229 -3.484 0.1549760 -0.270      Down
## 2 1990 -0.270  0.816  1.572 -3.936 -0.229 0.1485740 -2.576      Down
## 3 1990 -2.576 -0.270  0.816  1.572 -3.936 0.1598375  3.514        Up
## 4 1990  3.514 -2.576 -0.270  0.816  1.572 0.1616300  0.712        Up
## 5 1990  0.712  3.514 -2.576 -0.270  0.816 0.1537280  1.178        Up
## 6 1990  1.178  0.712  3.514 -2.576 -0.270 0.1544440 -1.372      Down

Chapter 2

# Chapter 2 Lab: Introduction to R

# Basic Commands

x <- c(1,3,2,5)
x
## [1] 1 3 2 5
x = c(1,6,2)
x
## [1] 1 6 2
y = c(1,4,3)
length(x)
## [1] 3
length(y)
## [1] 3
x+y
## [1]  2 10  5
ls()
## [1] "x" "y"
rm(x,y)
ls()
## character(0)
rm(list=ls())
?matrix
x=matrix(data=c(1,2,3,4), nrow=2, ncol=2)
x
##      [,1] [,2]
## [1,]    1    3
## [2,]    2    4
x=matrix(c(1,2,3,4),2,2)
matrix(c(1,2,3,4),2,2,byrow=TRUE)
##      [,1] [,2]
## [1,]    1    2
## [2,]    3    4
sqrt(x)
##          [,1]     [,2]
## [1,] 1.000000 1.732051
## [2,] 1.414214 2.000000
x^2
##      [,1] [,2]
## [1,]    1    9
## [2,]    4   16
x=rnorm(50)
y=x+rnorm(50,mean=50,sd=.1)
cor(x,y)
## [1] 0.9970548
set.seed(1303)
rnorm(50)
##  [1] -1.1439763145  1.3421293656  2.1853904757  0.5363925179  0.0631929665
##  [6]  0.5022344825 -0.0004167247  0.5658198405 -0.5725226890 -1.1102250073
## [11] -0.0486871234 -0.6956562176  0.8289174803  0.2066528551 -0.2356745091
## [16] -0.5563104914 -0.3647543571  0.8623550343 -0.6307715354  0.3136021252
## [21] -0.9314953177  0.8238676185  0.5233707021  0.7069214120  0.4202043256
## [26] -0.2690521547 -1.5103172999 -0.6902124766 -0.1434719524 -1.0135274099
## [31]  1.5732737361  0.0127465055  0.8726470499  0.4220661905 -0.0188157917
## [36]  2.6157489689 -0.6931401748 -0.2663217810 -0.7206364412  1.3677342065
## [41]  0.2640073322  0.6321868074 -1.3306509858  0.0268888182  1.0406363208
## [46]  1.3120237985 -0.0300020767 -0.2500257125  0.0234144857  1.6598706557
set.seed(3)
y=rnorm(100)
mean(y)
## [1] 0.01103557
var(y)
## [1] 0.7328675
sqrt(var(y))
## [1] 0.8560768
sd(y)
## [1] 0.8560768
# Graphics

x=rnorm(100)
y=rnorm(100)
plot(x,y)

plot(x,y,xlab="this is the x-axis",ylab="this is the y-axis",main="Plot of X vs Y")

pdf("Figure.pdf")
plot(x,y,col="green")
dev.off()
## quartz_off_screen 
##                 2
x=seq(1,10)
x
##  [1]  1  2  3  4  5  6  7  8  9 10
x=1:10
x
##  [1]  1  2  3  4  5  6  7  8  9 10
x=seq(-pi,pi,length=50)
y=x
f=outer(x,y,function(x,y)cos(y)/(1+x^2))
contour(x,y,f)
contour(x,y,f,nlevels=45,add=T)

fa=(f-t(f))/2
contour(x,y,fa,nlevels=15)

image(x,y,fa)

persp(x,y,fa)

persp(x,y,fa,theta=30)

persp(x,y,fa,theta=30,phi=20)

persp(x,y,fa,theta=30,phi=70)

persp(x,y,fa,theta=30,phi=40)

# Indexing Data

A=matrix(1:16,4,4)
A
##      [,1] [,2] [,3] [,4]
## [1,]    1    5    9   13
## [2,]    2    6   10   14
## [3,]    3    7   11   15
## [4,]    4    8   12   16
A[2,3]
## [1] 10
A[c(1,3),c(2,4)]
##      [,1] [,2]
## [1,]    5   13
## [2,]    7   15
A[1:3,2:4]
##      [,1] [,2] [,3]
## [1,]    5    9   13
## [2,]    6   10   14
## [3,]    7   11   15
A[1:2,]
##      [,1] [,2] [,3] [,4]
## [1,]    1    5    9   13
## [2,]    2    6   10   14
A[,1:2]
##      [,1] [,2]
## [1,]    1    5
## [2,]    2    6
## [3,]    3    7
## [4,]    4    8
A[1,]
## [1]  1  5  9 13
A[-c(1,3),]
##      [,1] [,2] [,3] [,4]
## [1,]    2    6   10   14
## [2,]    4    8   12   16
A[-c(1,3),-c(1,3,4)]
## [1] 6 8
dim(A)
## [1] 4 4

Chapter 5

# Chaper 5 Lab: Cross-Validation and the Bootstrap

# The Validation Set Approach

library(ISLR)
set.seed(1)
train=sample(392,196)
head(train)
## [1] 105 146 224 354  79 348
lm.fit=lm(mpg~horsepower,data=Auto,subset=train)
attach(Auto)
mean((mpg-predict(lm.fit,Auto))[-train]^2)
## [1] 26.14142
lm.fit2=lm(mpg~poly(horsepower,2),data=Auto,subset=train)
mean((mpg-predict(lm.fit2,Auto))[-train]^2)
## [1] 19.82259
lm.fit3=lm(mpg~poly(horsepower,3),data=Auto,subset=train)
mean((mpg-predict(lm.fit3,Auto))[-train]^2)
## [1] 19.78252
set.seed(2)
train=sample(392,196)
lm.fit=lm(mpg~horsepower,subset=train)
mean((mpg-predict(lm.fit,Auto))[-train]^2)
## [1] 23.29559
lm.fit2=lm(mpg~poly(horsepower,2),data=Auto,subset=train)
mean((mpg-predict(lm.fit2,Auto))[-train]^2)
## [1] 18.90124
lm.fit3=lm(mpg~poly(horsepower,3),data=Auto,subset=train)
mean((mpg-predict(lm.fit3,Auto))[-train]^2)
## [1] 19.2574
# Leave-One-Out Cross-Validation

glm.fit=glm(mpg~horsepower,data=Auto)
coef(glm.fit)
## (Intercept)  horsepower 
##  39.9358610  -0.1578447
lm.fit=lm(mpg~horsepower,data=Auto)
coef(lm.fit)
## (Intercept)  horsepower 
##  39.9358610  -0.1578447
library(boot)
glm.fit=glm(mpg~horsepower,data=Auto)
cv.err=cv.glm(Auto,glm.fit)
cv.err$delta
## [1] 24.23151 24.23114
cv.error=rep(0,5)
for (i in 1:5){
 glm.fit=glm(mpg~poly(horsepower,i),data=Auto)
 cv.error[i]=cv.glm(Auto,glm.fit)$delta[1]
 }
cv.error
## [1] 24.23151 19.24821 19.33498 19.42443 19.03321
# k-Fold Cross-Validation

set.seed(17)
cv.error.10=rep(0,10)
for (i in 1:10){
 glm.fit=glm(mpg~poly(horsepower,i),data=Auto)
 cv.error.10[i]=cv.glm(Auto,glm.fit,K=10)$delta[1]
 }
cv.error.10
##  [1] 24.20520 19.18924 19.30662 19.33799 18.87911 19.02103 18.89609
##  [8] 19.71201 18.95140 19.50196
# The Bootstrap

alpha.fn=function(data,index){
 X=data$X[index]
 Y=data$Y[index]
 return((var(Y)-cov(X,Y))/(var(X)+var(Y)-2*cov(X,Y)))
 }
alpha.fn(Portfolio,1:100)
## [1] 0.5758321
set.seed(1)
alpha.fn(Portfolio,sample(100,100,replace=T))
## [1] 0.5963833
boot(Portfolio,alpha.fn,R=1000)
## 
## ORDINARY NONPARAMETRIC BOOTSTRAP
## 
## 
## Call:
## boot(data = Portfolio, statistic = alpha.fn, R = 1000)
## 
## 
## Bootstrap Statistics :
##      original        bias    std. error
## t1* 0.5758321 -7.315422e-05  0.08861826
# Estimating the Accuracy of a Linear Regression Model

boot.fn=function(data,index)
 return(coef(lm(mpg~horsepower,data=data,subset=index)))
boot.fn(Auto,1:392)
## (Intercept)  horsepower 
##  39.9358610  -0.1578447
set.seed(1)
boot.fn(Auto,sample(392,392,replace=T))
## (Intercept)  horsepower 
##  38.7387134  -0.1481952
boot.fn(Auto,sample(392,392,replace=T))
## (Intercept)  horsepower 
##  40.0383086  -0.1596104
boot(Auto,boot.fn,1000)
## 
## ORDINARY NONPARAMETRIC BOOTSTRAP
## 
## 
## Call:
## boot(data = Auto, statistic = boot.fn, R = 1000)
## 
## 
## Bootstrap Statistics :
##       original      bias    std. error
## t1* 39.9358610  0.02972191 0.860007896
## t2* -0.1578447 -0.00030823 0.007404467
summary(lm(mpg~horsepower,data=Auto))$coef
##               Estimate  Std. Error   t value      Pr(>|t|)
## (Intercept) 39.9358610 0.717498656  55.65984 1.220362e-187
## horsepower  -0.1578447 0.006445501 -24.48914  7.031989e-81
boot.fn=function(data,index)
 coefficients(lm(mpg~horsepower+I(horsepower^2),data=data,subset=index))
set.seed(1)
boot(Auto,boot.fn,1000)
## 
## ORDINARY NONPARAMETRIC BOOTSTRAP
## 
## 
## Call:
## boot(data = Auto, statistic = boot.fn, R = 1000)
## 
## 
## Bootstrap Statistics :
##         original        bias     std. error
## t1* 56.900099702  6.098115e-03 2.0944855842
## t2* -0.466189630 -1.777108e-04 0.0334123802
## t3*  0.001230536  1.324315e-06 0.0001208339
summary(lm(mpg~horsepower+I(horsepower^2),data=Auto))$coef
##                     Estimate   Std. Error   t value      Pr(>|t|)
## (Intercept)     56.900099702 1.8004268063  31.60367 1.740911e-109
## horsepower      -0.466189630 0.0311246171 -14.97816  2.289429e-40
## I(horsepower^2)  0.001230536 0.0001220759  10.08009  2.196340e-21

Chapter 7

# Chapter 7 Lab: Non-linear Modeling

library(ISLR)
attach(Wage)
## The following object is masked from Auto:
## 
##     year
head(Wage)
##        year age     sex           maritl     race       education
## 231655 2006  18 1. Male 1. Never Married 1. White    1. < HS Grad
## 86582  2004  24 1. Male 1. Never Married 1. White 4. College Grad
## 161300 2003  45 1. Male       2. Married 1. White 3. Some College
## 155159 2003  43 1. Male       2. Married 3. Asian 4. College Grad
## 11443  2005  50 1. Male      4. Divorced 1. White      2. HS Grad
## 376662 2008  54 1. Male       2. Married 1. White 4. College Grad
##                    region       jobclass         health health_ins
## 231655 2. Middle Atlantic  1. Industrial      1. <=Good      2. No
## 86582  2. Middle Atlantic 2. Information 2. >=Very Good      2. No
## 161300 2. Middle Atlantic  1. Industrial      1. <=Good     1. Yes
## 155159 2. Middle Atlantic 2. Information 2. >=Very Good     1. Yes
## 11443  2. Middle Atlantic 2. Information      1. <=Good     1. Yes
## 376662 2. Middle Atlantic 2. Information 2. >=Very Good     1. Yes
##         logwage      wage
## 231655 4.318063  75.04315
## 86582  4.255273  70.47602
## 161300 4.875061 130.98218
## 155159 5.041393 154.68529
## 11443  4.318063  75.04315
## 376662 4.845098 127.11574
str(Wage)
## 'data.frame':    3000 obs. of  12 variables:
##  $ year      : int  2006 2004 2003 2003 2005 2008 2009 2008 2006 2004 ...
##  $ age       : int  18 24 45 43 50 54 44 30 41 52 ...
##  $ sex       : Factor w/ 2 levels "1. Male","2. Female": 1 1 1 1 1 1 1 1 1 1 ...
##  $ maritl    : Factor w/ 5 levels "1. Never Married",..: 1 1 2 2 4 2 2 1 1 2 ...
##  $ race      : Factor w/ 4 levels "1. White","2. Black",..: 1 1 1 3 1 1 4 3 2 1 ...
##  $ education : Factor w/ 5 levels "1. < HS Grad",..: 1 4 3 4 2 4 3 3 3 2 ...
##  $ region    : Factor w/ 9 levels "1. New England",..: 2 2 2 2 2 2 2 2 2 2 ...
##  $ jobclass  : Factor w/ 2 levels "1. Industrial",..: 1 2 1 2 2 2 1 2 2 2 ...
##  $ health    : Factor w/ 2 levels "1. <=Good","2. >=Very Good": 1 2 1 2 1 2 2 1 2 2 ...
##  $ health_ins: Factor w/ 2 levels "1. Yes","2. No": 2 2 1 1 1 1 1 1 1 1 ...
##  $ logwage   : num  4.32 4.26 4.88 5.04 4.32 ...
##  $ wage      : num  75 70.5 131 154.7 75 ...
# Polynomial Regression and Step Functions

fit=lm(wage~poly(age,4),data=Wage)
coef(summary(fit))
##                 Estimate Std. Error    t value     Pr(>|t|)
## (Intercept)    111.70361  0.7287409 153.283015 0.000000e+00
## poly(age, 4)1  447.06785 39.9147851  11.200558 1.484604e-28
## poly(age, 4)2 -478.31581 39.9147851 -11.983424 2.355831e-32
## poly(age, 4)3  125.52169 39.9147851   3.144742 1.678622e-03
## poly(age, 4)4  -77.91118 39.9147851  -1.951938 5.103865e-02
fit2=lm(wage~poly(age,4,raw=T),data=Wage)
coef(summary(fit2))
##                             Estimate   Std. Error   t value     Pr(>|t|)
## (Intercept)            -1.841542e+02 6.004038e+01 -3.067172 0.0021802539
## poly(age, 4, raw = T)1  2.124552e+01 5.886748e+00  3.609042 0.0003123618
## poly(age, 4, raw = T)2 -5.638593e-01 2.061083e-01 -2.735743 0.0062606446
## poly(age, 4, raw = T)3  6.810688e-03 3.065931e-03  2.221409 0.0263977518
## poly(age, 4, raw = T)4 -3.203830e-05 1.641359e-05 -1.951938 0.0510386498
fit2a=lm(wage~age+I(age^2)+I(age^3)+I(age^4),data=Wage)
coef(fit2a)
##   (Intercept)           age      I(age^2)      I(age^3)      I(age^4) 
## -1.841542e+02  2.124552e+01 -5.638593e-01  6.810688e-03 -3.203830e-05
fit2b=lm(wage~cbind(age,age^2,age^3,age^4),data=Wage)
agelims=range(age)
age.grid=seq(from=agelims[1],to=agelims[2])
preds=predict(fit,newdata=list(age=age.grid),se=TRUE)
se.bands=cbind(preds$fit+2*preds$se.fit,preds$fit-2*preds$se.fit)
par(mfrow=c(1,2),mar=c(4.5,4.5,1,1),oma=c(0,0,4,0))
plot(age,wage,xlim=agelims,cex=.5,col="darkgrey")
title("Degree-4 Polynomial",outer=T)
lines(age.grid,preds$fit,lwd=2,col="blue")
matlines(age.grid,se.bands,lwd=1,col="blue",lty=3)
preds2=predict(fit2,newdata=list(age=age.grid),se=TRUE)
max(abs(preds$fit-preds2$fit))
## [1] 7.81597e-11
fit.1=lm(wage~age,data=Wage)
fit.2=lm(wage~poly(age,2),data=Wage)
fit.3=lm(wage~poly(age,3),data=Wage)
fit.4=lm(wage~poly(age,4),data=Wage)
fit.5=lm(wage~poly(age,5),data=Wage)
anova(fit.1,fit.2,fit.3,fit.4,fit.5)
## Analysis of Variance Table
## 
## Model 1: wage ~ age
## Model 2: wage ~ poly(age, 2)
## Model 3: wage ~ poly(age, 3)
## Model 4: wage ~ poly(age, 4)
## Model 5: wage ~ poly(age, 5)
##   Res.Df     RSS Df Sum of Sq        F    Pr(>F)    
## 1   2998 5022216                                    
## 2   2997 4793430  1    228786 143.5931 < 2.2e-16 ***
## 3   2996 4777674  1     15756   9.8888  0.001679 ** 
## 4   2995 4771604  1      6070   3.8098  0.051046 .  
## 5   2994 4770322  1      1283   0.8050  0.369682    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
coef(summary(fit.5))
##                 Estimate Std. Error     t value     Pr(>|t|)
## (Intercept)    111.70361  0.7287647 153.2780243 0.000000e+00
## poly(age, 5)1  447.06785 39.9160847  11.2001930 1.491111e-28
## poly(age, 5)2 -478.31581 39.9160847 -11.9830341 2.367734e-32
## poly(age, 5)3  125.52169 39.9160847   3.1446392 1.679213e-03
## poly(age, 5)4  -77.91118 39.9160847  -1.9518743 5.104623e-02
## poly(age, 5)5  -35.81289 39.9160847  -0.8972045 3.696820e-01
(-11.983)^2
## [1] 143.5923
fit.1=lm(wage~education+age,data=Wage)
fit.2=lm(wage~education+poly(age,2),data=Wage)
fit.3=lm(wage~education+poly(age,3),data=Wage)
anova(fit.1,fit.2,fit.3)
## Analysis of Variance Table
## 
## Model 1: wage ~ education + age
## Model 2: wage ~ education + poly(age, 2)
## Model 3: wage ~ education + poly(age, 3)
##   Res.Df     RSS Df Sum of Sq        F Pr(>F)    
## 1   2994 3867992                                 
## 2   2993 3725395  1    142597 114.6969 <2e-16 ***
## 3   2992 3719809  1      5587   4.4936 0.0341 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
fit=glm(I(wage>250)~poly(age,4),data=Wage,family=binomial)
preds=predict(fit,newdata=list(age=age.grid),se=T)
pfit=exp(preds$fit)/(1+exp(preds$fit))
se.bands.logit = cbind(preds$fit+2*preds$se.fit, preds$fit-2*preds$se.fit)
se.bands = exp(se.bands.logit)/(1+exp(se.bands.logit))
preds=predict(fit,newdata=list(age=age.grid),type="response",se=T)
plot(age,I(wage>250),xlim=agelims,type="n",ylim=c(0,.2))
points(jitter(age), I((wage>250)/5),cex=.5,pch="|",col="darkgrey")
lines(age.grid,pfit,lwd=2, col="blue")
matlines(age.grid,se.bands,lwd=1,col="blue",lty=3)

table(cut(age,4))
## 
## (17.9,33.5]   (33.5,49]   (49,64.5] (64.5,80.1] 
##         750        1399         779          72
fit=lm(wage~cut(age,4),data=Wage)
coef(summary(fit))
##                         Estimate Std. Error   t value     Pr(>|t|)
## (Intercept)            94.158392   1.476069 63.789970 0.000000e+00
## cut(age, 4)(33.5,49]   24.053491   1.829431 13.148074 1.982315e-38
## cut(age, 4)(49,64.5]   23.664559   2.067958 11.443444 1.040750e-29
## cut(age, 4)(64.5,80.1]  7.640592   4.987424  1.531972 1.256350e-01
# Splines

library(splines)
fit=lm(wage~bs(age,knots=c(25,40,60)),data=Wage)
pred=predict(fit,newdata=list(age=age.grid),se=T)
plot(age,wage,col="gray")
lines(age.grid,pred$fit,lwd=2)
lines(age.grid,pred$fit+2*pred$se,lty="dashed")
lines(age.grid,pred$fit-2*pred$se,lty="dashed")
dim(bs(age,knots=c(25,40,60)))
## [1] 3000    6
dim(bs(age,df=6))
## [1] 3000    6
attr(bs(age,df=6),"knots")
##   25%   50%   75% 
## 33.75 42.00 51.00
fit2=lm(wage~ns(age,df=4),data=Wage)
pred2=predict(fit2,newdata=list(age=age.grid),se=T)
lines(age.grid, pred2$fit,col="red",lwd=2)
plot(age,wage,xlim=agelims,cex=.5,col="darkgrey")
title("Smoothing Spline")
fit=smooth.spline(age,wage,df=16)
fit2=smooth.spline(age,wage,cv=TRUE)
## Warning in smooth.spline(age, wage, cv = TRUE): cross-validation with non-
## unique 'x' values seems doubtful
fit2$df
## [1] 6.794596
lines(fit,col="red",lwd=2)
lines(fit2,col="blue",lwd=2)
legend("topright",legend=c("16 DF","6.8 DF"),col=c("red","blue"),lty=1,lwd=2,cex=.8)

plot(age,wage,xlim=agelims,cex=.5,col="darkgrey")
title("Local Regression")
fit=loess(wage~age,span=.2,data=Wage)
fit2=loess(wage~age,span=.5,data=Wage)
lines(age.grid,predict(fit,data.frame(age=age.grid)),col="red",lwd=2)
lines(age.grid,predict(fit2,data.frame(age=age.grid)),col="blue",lwd=2)
legend("topright",legend=c("Span=0.2","Span=0.5"),col=c("red","blue"),lty=1,lwd=2,cex=.8)

# GAMs

gam1=lm(wage~ns(year,4)+ns(age,5)+education,data=Wage)
library(gam)
## Loaded gam 1.09.1
gam.m3=gam(wage~s(year,4)+s(age,5)+education,data=Wage)
par(mfrow=c(1,3))

plot(gam.m3, se=TRUE,col="blue")

plot.gam(gam1, se=TRUE, col="red")

gam.m1=gam(wage~s(age,5)+education,data=Wage)
gam.m2=gam(wage~year+s(age,5)+education,data=Wage)
anova(gam.m1,gam.m2,gam.m3,test="F")
## Analysis of Deviance Table
## 
## Model 1: wage ~ s(age, 5) + education
## Model 2: wage ~ year + s(age, 5) + education
## Model 3: wage ~ s(year, 4) + s(age, 5) + education
##   Resid. Df Resid. Dev Df Deviance       F    Pr(>F)    
## 1      2990    3711731                                  
## 2      2989    3693842  1  17889.2 14.4771 0.0001447 ***
## 3      2986    3689770  3   4071.1  1.0982 0.3485661    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(gam.m3)
## 
## Call: gam(formula = wage ~ s(year, 4) + s(age, 5) + education, data = Wage)
## Deviance Residuals:
##     Min      1Q  Median      3Q     Max 
## -119.43  -19.70   -3.33   14.17  213.48 
## 
## (Dispersion Parameter for gaussian family taken to be 1235.69)
## 
##     Null Deviance: 5222086 on 2999 degrees of freedom
## Residual Deviance: 3689770 on 2986 degrees of freedom
## AIC: 29887.75 
## 
## Number of Local Scoring Iterations: 2 
## 
## Anova for Parametric Effects
##              Df  Sum Sq Mean Sq F value    Pr(>F)    
## s(year, 4)    1   27162   27162  21.981 2.877e-06 ***
## s(age, 5)     1  195338  195338 158.081 < 2.2e-16 ***
## education     4 1069726  267432 216.423 < 2.2e-16 ***
## Residuals  2986 3689770    1236                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Anova for Nonparametric Effects
##             Npar Df Npar F  Pr(F)    
## (Intercept)                          
## s(year, 4)        3  1.086 0.3537    
## s(age, 5)         4 32.380 <2e-16 ***
## education                            
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
preds=predict(gam.m2,newdata=Wage)
gam.lo=gam(wage~s(year,df=4)+lo(age,span=0.7)+education,data=Wage)
plot.gam(gam.lo, se=TRUE, col="green")

gam.lo.i=gam(wage~lo(year,age,span=0.5)+education,data=Wage)
library(akima)
plot(gam.lo.i)
gam.lr=gam(I(wage>250)~year+s(age,df=5)+education,family=binomial,data=Wage)
par(mfrow=c(1,3))

plot(gam.lr,se=T,col="green")

table(education,I(wage>250))
##                     
## education            FALSE TRUE
##   1. < HS Grad         268    0
##   2. HS Grad           966    5
##   3. Some College      643    7
##   4. College Grad      663   22
##   5. Advanced Degree   381   45
gam.lr.s=gam(I(wage>250)~year+s(age,df=5)+education,family=binomial,data=Wage,subset=(education!="1. < HS Grad"))
plot(gam.lr.s,se=T,col="green")

Chapter 8

# Chapter 8 Lab: Decision Trees

# Fitting Classification Trees

library(tree)
library(ISLR)
attach(Carseats)
High=ifelse(Sales<=8,"No","Yes")
Carseats=data.frame(Carseats,High)
head(Carseats)
##   Sales CompPrice Income Advertising Population Price ShelveLoc Age
## 1  9.50       138     73          11        276   120       Bad  42
## 2 11.22       111     48          16        260    83      Good  65
## 3 10.06       113     35          10        269    80    Medium  59
## 4  7.40       117    100           4        466    97    Medium  55
## 5  4.15       141     64           3        340   128       Bad  38
## 6 10.81       124    113          13        501    72       Bad  78
##   Education Urban  US High
## 1        17   Yes Yes  Yes
## 2        10   Yes Yes  Yes
## 3        12   Yes Yes  Yes
## 4        14   Yes Yes   No
## 5        13   Yes  No   No
## 6        16    No Yes  Yes
tree.carseats=tree(High~.-Sales,Carseats)
summary(tree.carseats)
## 
## Classification tree:
## tree(formula = High ~ . - Sales, data = Carseats)
## Variables actually used in tree construction:
## [1] "ShelveLoc"   "Price"       "Income"      "CompPrice"   "Population" 
## [6] "Advertising" "Age"         "US"         
## Number of terminal nodes:  27 
## Residual mean deviance:  0.4575 = 170.7 / 373 
## Misclassification error rate: 0.09 = 36 / 400
plot(tree.carseats)
text(tree.carseats,pretty=0)

tree.carseats
## node), split, n, deviance, yval, (yprob)
##       * denotes terminal node
## 
##   1) root 400 541.500 No ( 0.59000 0.41000 )  
##     2) ShelveLoc: Bad,Medium 315 390.600 No ( 0.68889 0.31111 )  
##       4) Price < 92.5 46  56.530 Yes ( 0.30435 0.69565 )  
##         8) Income < 57 10  12.220 No ( 0.70000 0.30000 )  
##          16) CompPrice < 110.5 5   0.000 No ( 1.00000 0.00000 ) *
##          17) CompPrice > 110.5 5   6.730 Yes ( 0.40000 0.60000 ) *
##         9) Income > 57 36  35.470 Yes ( 0.19444 0.80556 )  
##          18) Population < 207.5 16  21.170 Yes ( 0.37500 0.62500 ) *
##          19) Population > 207.5 20   7.941 Yes ( 0.05000 0.95000 ) *
##       5) Price > 92.5 269 299.800 No ( 0.75465 0.24535 )  
##        10) Advertising < 13.5 224 213.200 No ( 0.81696 0.18304 )  
##          20) CompPrice < 124.5 96  44.890 No ( 0.93750 0.06250 )  
##            40) Price < 106.5 38  33.150 No ( 0.84211 0.15789 )  
##              80) Population < 177 12  16.300 No ( 0.58333 0.41667 )  
##               160) Income < 60.5 6   0.000 No ( 1.00000 0.00000 ) *
##               161) Income > 60.5 6   5.407 Yes ( 0.16667 0.83333 ) *
##              81) Population > 177 26   8.477 No ( 0.96154 0.03846 ) *
##            41) Price > 106.5 58   0.000 No ( 1.00000 0.00000 ) *
##          21) CompPrice > 124.5 128 150.200 No ( 0.72656 0.27344 )  
##            42) Price < 122.5 51  70.680 Yes ( 0.49020 0.50980 )  
##              84) ShelveLoc: Bad 11   6.702 No ( 0.90909 0.09091 ) *
##              85) ShelveLoc: Medium 40  52.930 Yes ( 0.37500 0.62500 )  
##               170) Price < 109.5 16   7.481 Yes ( 0.06250 0.93750 ) *
##               171) Price > 109.5 24  32.600 No ( 0.58333 0.41667 )  
##                 342) Age < 49.5 13  16.050 Yes ( 0.30769 0.69231 ) *
##                 343) Age > 49.5 11   6.702 No ( 0.90909 0.09091 ) *
##            43) Price > 122.5 77  55.540 No ( 0.88312 0.11688 )  
##              86) CompPrice < 147.5 58  17.400 No ( 0.96552 0.03448 ) *
##              87) CompPrice > 147.5 19  25.010 No ( 0.63158 0.36842 )  
##               174) Price < 147 12  16.300 Yes ( 0.41667 0.58333 )  
##                 348) CompPrice < 152.5 7   5.742 Yes ( 0.14286 0.85714 ) *
##                 349) CompPrice > 152.5 5   5.004 No ( 0.80000 0.20000 ) *
##               175) Price > 147 7   0.000 No ( 1.00000 0.00000 ) *
##        11) Advertising > 13.5 45  61.830 Yes ( 0.44444 0.55556 )  
##          22) Age < 54.5 25  25.020 Yes ( 0.20000 0.80000 )  
##            44) CompPrice < 130.5 14  18.250 Yes ( 0.35714 0.64286 )  
##              88) Income < 100 9  12.370 No ( 0.55556 0.44444 ) *
##              89) Income > 100 5   0.000 Yes ( 0.00000 1.00000 ) *
##            45) CompPrice > 130.5 11   0.000 Yes ( 0.00000 1.00000 ) *
##          23) Age > 54.5 20  22.490 No ( 0.75000 0.25000 )  
##            46) CompPrice < 122.5 10   0.000 No ( 1.00000 0.00000 ) *
##            47) CompPrice > 122.5 10  13.860 No ( 0.50000 0.50000 )  
##              94) Price < 125 5   0.000 Yes ( 0.00000 1.00000 ) *
##              95) Price > 125 5   0.000 No ( 1.00000 0.00000 ) *
##     3) ShelveLoc: Good 85  90.330 Yes ( 0.22353 0.77647 )  
##       6) Price < 135 68  49.260 Yes ( 0.11765 0.88235 )  
##        12) US: No 17  22.070 Yes ( 0.35294 0.64706 )  
##          24) Price < 109 8   0.000 Yes ( 0.00000 1.00000 ) *
##          25) Price > 109 9  11.460 No ( 0.66667 0.33333 ) *
##        13) US: Yes 51  16.880 Yes ( 0.03922 0.96078 ) *
##       7) Price > 135 17  22.070 No ( 0.64706 0.35294 )  
##        14) Income < 46 6   0.000 No ( 1.00000 0.00000 ) *
##        15) Income > 46 11  15.160 Yes ( 0.45455 0.54545 ) *
set.seed(2)
train=sample(1:nrow(Carseats), 200)
Carseats.test=Carseats[-train,]
dim(Carseats.test)
## [1] 200  12
High.test=High[-train]
tree.carseats=tree(High~.-Sales,Carseats,subset=train)
tree.pred=predict(tree.carseats,Carseats.test,type="class")
table(tree.pred,High.test)
##          High.test
## tree.pred No Yes
##       No  86  27
##       Yes 30  57
set.seed(3)
cv.carseats=cv.tree(tree.carseats,FUN=prune.misclass)
names(cv.carseats)
## [1] "size"   "dev"    "k"      "method"
cv.carseats
## $size
## [1] 19 17 14 13  9  7  3  2  1
## 
## $dev
## [1] 55 55 53 52 50 56 69 65 80
## 
## $k
## [1]       -Inf  0.0000000  0.6666667  1.0000000  1.7500000  2.0000000
## [7]  4.2500000  5.0000000 23.0000000
## 
## $method
## [1] "misclass"
## 
## attr(,"class")
## [1] "prune"         "tree.sequence"
par(mfrow=c(1,2))
plot(cv.carseats$size,cv.carseats$dev,type="b")
plot(cv.carseats$k,cv.carseats$dev,type="b")

prune.carseats=prune.misclass(tree.carseats,best=9)
plot(prune.carseats)
text(prune.carseats,pretty=0)
tree.pred=predict(prune.carseats,Carseats.test,type="class")
table(tree.pred,High.test)
##          High.test
## tree.pred No Yes
##       No  94  24
##       Yes 22  60
prune.carseats=prune.misclass(tree.carseats,best=15)
plot(prune.carseats)
text(prune.carseats,pretty=0)

tree.pred=predict(prune.carseats,Carseats.test,type="class")
table(tree.pred,High.test)
##          High.test
## tree.pred No Yes
##       No  86  22
##       Yes 30  62
# Fitting Regression Trees

library(MASS)
head(Boston)
##      crim zn indus chas   nox    rm  age    dis rad tax ptratio  black
## 1 0.00632 18  2.31    0 0.538 6.575 65.2 4.0900   1 296    15.3 396.90
## 2 0.02731  0  7.07    0 0.469 6.421 78.9 4.9671   2 242    17.8 396.90
## 3 0.02729  0  7.07    0 0.469 7.185 61.1 4.9671   2 242    17.8 392.83
## 4 0.03237  0  2.18    0 0.458 6.998 45.8 6.0622   3 222    18.7 394.63
## 5 0.06905  0  2.18    0 0.458 7.147 54.2 6.0622   3 222    18.7 396.90
## 6 0.02985  0  2.18    0 0.458 6.430 58.7 6.0622   3 222    18.7 394.12
##   lstat medv
## 1  4.98 24.0
## 2  9.14 21.6
## 3  4.03 34.7
## 4  2.94 33.4
## 5  5.33 36.2
## 6  5.21 28.7
set.seed(1)
train = sample(1:nrow(Boston), nrow(Boston)/2)
tree.boston=tree(medv~.,Boston,subset=train)
summary(tree.boston)
## 
## Regression tree:
## tree(formula = medv ~ ., data = Boston, subset = train)
## Variables actually used in tree construction:
## [1] "lstat" "rm"    "dis"  
## Number of terminal nodes:  8 
## Residual mean deviance:  12.65 = 3099 / 245 
## Distribution of residuals:
##      Min.   1st Qu.    Median      Mean   3rd Qu.      Max. 
## -14.10000  -2.04200  -0.05357   0.00000   1.96000  12.60000
plot(tree.boston)
text(tree.boston,pretty=0)
cv.boston=cv.tree(tree.boston)
plot(cv.boston$size,cv.boston$dev,type='b')

prune.boston=prune.tree(tree.boston,best=5)
plot(prune.boston)
text(prune.boston,pretty=0)
yhat=predict(tree.boston,newdata=Boston[-train,])
boston.test=Boston[-train,"medv"]
plot(yhat,boston.test)
abline(0,1)

mean((yhat-boston.test)^2)
## [1] 25.04559
# Bagging and Random Forests

library(randomForest)
## randomForest 4.6-10
## Type rfNews() to see new features/changes/bug fixes.
set.seed(1)
bag.boston=randomForest(medv~.,data=Boston,subset=train,mtry=13,importance=TRUE)
bag.boston
## 
## Call:
##  randomForest(formula = medv ~ ., data = Boston, mtry = 13, importance = TRUE,      subset = train) 
##                Type of random forest: regression
##                      Number of trees: 500
## No. of variables tried at each split: 13
## 
##           Mean of squared residuals: 11.02509
##                     % Var explained: 86.65
yhat.bag = predict(bag.boston,newdata=Boston[-train,])
plot(yhat.bag, boston.test)
abline(0,1)
mean((yhat.bag-boston.test)^2)
## [1] 13.47349
bag.boston=randomForest(medv~.,data=Boston,subset=train,mtry=13,ntree=25)
yhat.bag = predict(bag.boston,newdata=Boston[-train,])
mean((yhat.bag-boston.test)^2)
## [1] 13.43068
set.seed(1)
rf.boston=randomForest(medv~.,data=Boston,subset=train,mtry=6,importance=TRUE)
yhat.rf = predict(rf.boston,newdata=Boston[-train,])
mean((yhat.rf-boston.test)^2)
## [1] 11.48022
importance(rf.boston)
##           %IncMSE IncNodePurity
## crim    12.547772    1094.65382
## zn       1.375489      64.40060
## indus    9.304258    1086.09103
## chas     2.518766      76.36804
## nox     12.835614    1008.73703
## rm      31.646147    6705.02638
## age      9.970243     575.13702
## dis     12.774430    1351.01978
## rad      3.911852      93.78200
## tax      7.624043     453.19472
## ptratio 12.008194     919.06760
## black    7.376024     358.96935
## lstat   27.666896    6927.98475
varImpPlot(rf.boston)

# Boosting

library(gbm)
## Loading required package: survival
## 
## Attaching package: 'survival'
## 
## The following object is masked from 'package:boot':
## 
##     aml
## 
## Loading required package: lattice
## 
## Attaching package: 'lattice'
## 
## The following object is masked from 'package:boot':
## 
##     melanoma
## 
## Loading required package: parallel
## Loaded gbm 2.1.1

set.seed(1)
boost.boston=gbm(medv~.,data=Boston[train,],distribution="gaussian",n.trees=5000,interaction.depth=4)
summary(boost.boston)
##             var    rel.inf
## lstat     lstat 45.9627334
## rm           rm 31.2238187
## dis         dis  6.8087398
## crim       crim  4.0743784
## nox         nox  2.5605001
## ptratio ptratio  2.2748652
## black     black  1.7971159
## age         age  1.6488532
## tax         tax  1.3595005
## indus     indus  1.2705924
## chas       chas  0.8014323
## rad         rad  0.2026619
## zn           zn  0.0148083
par(mfrow=c(1,2))

plot(boost.boston,i="rm")
plot(boost.boston,i="lstat")

yhat.boost=predict(boost.boston,newdata=Boston[-train,],n.trees=5000)
mean((yhat.boost-boston.test)^2)
## [1] 11.84434
boost.boston=gbm(medv~.,data=Boston[train,],distribution="gaussian",n.trees=5000,interaction.depth=4,shrinkage=0.2,verbose=F)
yhat.boost=predict(boost.boston,newdata=Boston[-train,],n.trees=5000)
mean((yhat.boost-boston.test)^2)
## [1] 11.51109

Chapter 9

set.seed(1)
x=matrix(rnorm(20*2), ncol=2)
y=c(rep(-1,10), rep(1,10))
x[y==1,]=x[y==1,] + 1
plot(x, col=(3-y))

dat=data.frame(x=x, y=as.factor(y))
library(e1071)
svmfit=svm(y~., data=dat, kernel="linear", cost=10,scale=FALSE)
plot(svmfit, dat)

svmfit$index
## [1]  1  2  5  7 14 16 17
summary(svmfit)
## 
## Call:
## svm(formula = y ~ ., data = dat, kernel = "linear", cost = 10, 
##     scale = FALSE)
## 
## 
## Parameters:
##    SVM-Type:  C-classification 
##  SVM-Kernel:  linear 
##        cost:  10 
##       gamma:  0.5 
## 
## Number of Support Vectors:  7
## 
##  ( 4 3 )
## 
## 
## Number of Classes:  2 
## 
## Levels: 
##  -1 1
svmfit=svm(y~., data=dat, kernel="linear", cost=0.1,scale=FALSE)
plot(svmfit, dat)

svmfit$index
##  [1]  1  2  3  4  5  7  9 10 12 13 14 15 16 17 18 20
set.seed(1)
tune.out=tune(svm,y~.,data=dat,kernel="linear",ranges=list(cost=c(0.001, 0.01, 0.1, 1,5,10,100)))
summary(tune.out)
## 
## Parameter tuning of 'svm':
## 
## - sampling method: 10-fold cross validation 
## 
## - best parameters:
##  cost
##   0.1
## 
## - best performance: 0.1 
## 
## - Detailed performance results:
##    cost error dispersion
## 1 1e-03  0.70  0.4216370
## 2 1e-02  0.70  0.4216370
## 3 1e-01  0.10  0.2108185
## 4 1e+00  0.15  0.2415229
## 5 5e+00  0.15  0.2415229
## 6 1e+01  0.15  0.2415229
## 7 1e+02  0.15  0.2415229
bestmod=tune.out$best.model
summary(bestmod)
## 
## Call:
## best.tune(method = svm, train.x = y ~ ., data = dat, ranges = list(cost = c(0.001, 
##     0.01, 0.1, 1, 5, 10, 100)), kernel = "linear")
## 
## 
## Parameters:
##    SVM-Type:  C-classification 
##  SVM-Kernel:  linear 
##        cost:  0.1 
##       gamma:  0.5 
## 
## Number of Support Vectors:  16
## 
##  ( 8 8 )
## 
## 
## Number of Classes:  2 
## 
## Levels: 
##  -1 1
xtest=matrix(rnorm(20*2), ncol=2)
ytest=sample(c(-1,1), 20, rep=TRUE)
xtest[ytest==1,]=xtest[ytest==1,] + 1
testdat=data.frame(x=xtest, y=as.factor(ytest))
ypred=predict(bestmod,testdat)
table(predict=ypred, truth=testdat$y)
##        truth
## predict -1  1
##      -1 11  1
##      1   0  8
svmfit=svm(y~., data=dat, kernel="linear", cost=.01,scale=FALSE)
ypred=predict(svmfit,testdat)
table(predict=ypred, truth=testdat$y)
##        truth
## predict -1  1
##      -1 11  2
##      1   0  7
x[y==1,]=x[y==1,]+0.5
plot(x, col=(y+5)/2, pch=19)

dat=data.frame(x=x,y=as.factor(y))
svmfit=svm(y~., data=dat, kernel="linear", cost=1e5)
summary(svmfit)
## 
## Call:
## svm(formula = y ~ ., data = dat, kernel = "linear", cost = 1e+05)
## 
## 
## Parameters:
##    SVM-Type:  C-classification 
##  SVM-Kernel:  linear 
##        cost:  1e+05 
##       gamma:  0.5 
## 
## Number of Support Vectors:  3
## 
##  ( 1 2 )
## 
## 
## Number of Classes:  2 
## 
## Levels: 
##  -1 1
plot(svmfit, dat)

svmfit=svm(y~., data=dat, kernel="linear", cost=1)
summary(svmfit)
## 
## Call:
## svm(formula = y ~ ., data = dat, kernel = "linear", cost = 1)
## 
## 
## Parameters:
##    SVM-Type:  C-classification 
##  SVM-Kernel:  linear 
##        cost:  1 
##       gamma:  0.5 
## 
## Number of Support Vectors:  7
## 
##  ( 4 3 )
## 
## 
## Number of Classes:  2 
## 
## Levels: 
##  -1 1
plot(svmfit,dat)

####
set.seed(1)
x=matrix(rnorm(200*2), ncol=2)
x[1:100,]=x[1:100,]+2
x[101:150,]=x[101:150,]-2
y=c(rep(1,150),rep(2,50))
dat=data.frame(x=x,y=as.factor(y))
plot(x, col=y)

train=sample(200,100)
svmfit=svm(y~., data=dat[train,], kernel="radial",  gamma=1, cost=1)
plot(svmfit, dat[train,])

summary(svmfit)
## 
## Call:
## svm(formula = y ~ ., data = dat[train, ], kernel = "radial", 
##     gamma = 1, cost = 1)
## 
## 
## Parameters:
##    SVM-Type:  C-classification 
##  SVM-Kernel:  radial 
##        cost:  1 
##       gamma:  1 
## 
## Number of Support Vectors:  37
## 
##  ( 17 20 )
## 
## 
## Number of Classes:  2 
## 
## Levels: 
##  1 2
svmfit=svm(y~., data=dat[train,], kernel="radial",gamma=1,cost=1e5)
plot(svmfit,dat[train,])

set.seed(1)
tune.out=tune(svm, y~., data=dat[train,], kernel="radial", ranges=list(cost=c(0.1,1,10,100,1000),gamma=c(0.5,1,2,3,4)))
summary(tune.out)
## 
## Parameter tuning of 'svm':
## 
## - sampling method: 10-fold cross validation 
## 
## - best parameters:
##  cost gamma
##     1     2
## 
## - best performance: 0.12 
## 
## - Detailed performance results:
##     cost gamma error dispersion
## 1  1e-01   0.5  0.27 0.11595018
## 2  1e+00   0.5  0.13 0.08232726
## 3  1e+01   0.5  0.15 0.07071068
## 4  1e+02   0.5  0.17 0.08232726
## 5  1e+03   0.5  0.21 0.09944289
## 6  1e-01   1.0  0.25 0.13540064
## 7  1e+00   1.0  0.13 0.08232726
## 8  1e+01   1.0  0.16 0.06992059
## 9  1e+02   1.0  0.20 0.09428090
## 10 1e+03   1.0  0.20 0.08164966
## 11 1e-01   2.0  0.25 0.12692955
## 12 1e+00   2.0  0.12 0.09189366
## 13 1e+01   2.0  0.17 0.09486833
## 14 1e+02   2.0  0.19 0.09944289
## 15 1e+03   2.0  0.20 0.09428090
## 16 1e-01   3.0  0.27 0.11595018
## 17 1e+00   3.0  0.13 0.09486833
## 18 1e+01   3.0  0.18 0.10327956
## 19 1e+02   3.0  0.21 0.08755950
## 20 1e+03   3.0  0.22 0.10327956
## 21 1e-01   4.0  0.27 0.11595018
## 22 1e+00   4.0  0.15 0.10801234
## 23 1e+01   4.0  0.18 0.11352924
## 24 1e+02   4.0  0.21 0.08755950
## 25 1e+03   4.0  0.24 0.10749677
table(true=dat[-train,"y"], pred=predict(tune.out$best.model,newdata=dat[-train,]))
##     pred
## true  1  2
##    1 74  3
##    2  7 16
# ROC Curves

library(ROCR)
## Loading required package: gplots
## 
## Attaching package: 'gplots'
## 
## The following object is masked from 'package:stats':
## 
##     lowess
rocplot=function(pred, truth, ...){
   predob = prediction(pred, truth)
   perf = performance(predob, "tpr", "fpr")
   plot(perf,...)}
svmfit.opt=svm(y~., data=dat[train,], kernel="radial",gamma=2, cost=1,decision.values=T)
fitted=attributes(predict(svmfit.opt,dat[train,],decision.values=TRUE))$decision.values
par(mfrow=c(1,2))
rocplot(fitted,dat[train,"y"],main="Training Data")
svmfit.flex=svm(y~., data=dat[train,], kernel="radial",gamma=50, cost=1, decision.values=T)
fitted=attributes(predict(svmfit.flex,dat[train,],decision.values=T))$decision.values
rocplot(fitted,dat[train,"y"],add=T,col="red")

Chapter 10

# Chapter 10 Lab 1: Principal Components Analysis

states=row.names(USArrests)
states
##  [1] "Alabama"        "Alaska"         "Arizona"        "Arkansas"      
##  [5] "California"     "Colorado"       "Connecticut"    "Delaware"      
##  [9] "Florida"        "Georgia"        "Hawaii"         "Idaho"         
## [13] "Illinois"       "Indiana"        "Iowa"           "Kansas"        
## [17] "Kentucky"       "Louisiana"      "Maine"          "Maryland"      
## [21] "Massachusetts"  "Michigan"       "Minnesota"      "Mississippi"   
## [25] "Missouri"       "Montana"        "Nebraska"       "Nevada"        
## [29] "New Hampshire"  "New Jersey"     "New Mexico"     "New York"      
## [33] "North Carolina" "North Dakota"   "Ohio"           "Oklahoma"      
## [37] "Oregon"         "Pennsylvania"   "Rhode Island"   "South Carolina"
## [41] "South Dakota"   "Tennessee"      "Texas"          "Utah"          
## [45] "Vermont"        "Virginia"       "Washington"     "West Virginia" 
## [49] "Wisconsin"      "Wyoming"
names(USArrests)
## [1] "Murder"   "Assault"  "UrbanPop" "Rape"
apply(USArrests, 2, mean)
##   Murder  Assault UrbanPop     Rape 
##    7.788  170.760   65.540   21.232
apply(USArrests, 2, var)
##     Murder    Assault   UrbanPop       Rape 
##   18.97047 6945.16571  209.51878   87.72916
pr.out=prcomp(USArrests, scale=TRUE)
names(pr.out)
## [1] "sdev"     "rotation" "center"   "scale"    "x"
pr.out$center
##   Murder  Assault UrbanPop     Rape 
##    7.788  170.760   65.540   21.232
pr.out$scale
##    Murder   Assault  UrbanPop      Rape 
##  4.355510 83.337661 14.474763  9.366385
pr.out$rotation
##                 PC1        PC2        PC3         PC4
## Murder   -0.5358995  0.4181809 -0.3412327  0.64922780
## Assault  -0.5831836  0.1879856 -0.2681484 -0.74340748
## UrbanPop -0.2781909 -0.8728062 -0.3780158  0.13387773
## Rape     -0.5434321 -0.1673186  0.8177779  0.08902432
dim(pr.out$x)
## [1] 50  4
head(USArrests)
##            Murder Assault UrbanPop Rape
## Alabama      13.2     236       58 21.2
## Alaska       10.0     263       48 44.5
## Arizona       8.1     294       80 31.0
## Arkansas      8.8     190       50 19.5
## California    9.0     276       91 40.6
## Colorado      7.9     204       78 38.7
biplot(pr.out, scale=0)

pr.out$rotation=-pr.out$rotation
pr.out$x=-pr.out$x
biplot(pr.out, scale=0)

pr.out$sdev
## [1] 1.5748783 0.9948694 0.5971291 0.4164494
pr.var=pr.out$sdev^2
pr.var
## [1] 2.4802416 0.9897652 0.3565632 0.1734301
pve=pr.var/sum(pr.var)
pve
## [1] 0.62006039 0.24744129 0.08914080 0.04335752
plot(pve, xlab="Principal Component", ylab="Proportion of Variance Explained", ylim=c(0,1),type='b')

plot(cumsum(pve), xlab="Principal Component", ylab="Cumulative Proportion of Variance Explained", ylim=c(0,1),type='b')

a=c(1,2,8,-3)
cumsum(a)
## [1]  1  3 11  8
# Chapter 10 Lab 2: Clustering

# K-Means Clustering

set.seed(2)
x=matrix(rnorm(50*2), ncol=2)
x[1:25,1]=x[1:25,1]+3
x[1:25,2]=x[1:25,2]-4
km.out=kmeans(x,2,nstart=20)
km.out$cluster
##  [1] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
## [36] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
plot(x, col=(km.out$cluster+1), main="K-Means Clustering Results with K=2", xlab="", ylab="", pch=20, cex=2)

set.seed(4)
km.out=kmeans(x,3,nstart=20)
km.out
## K-means clustering with 3 clusters of sizes 10, 23, 17
## 
## Cluster means:
##         [,1]        [,2]
## 1  2.3001545 -2.69622023
## 2 -0.3820397 -0.08740753
## 3  3.7789567 -4.56200798
## 
## Clustering vector:
##  [1] 3 1 3 1 3 3 3 1 3 1 3 1 3 1 3 1 3 3 3 3 3 1 3 3 3 2 2 2 2 2 2 2 2 2 2
## [36] 2 2 2 2 2 2 2 2 1 2 1 2 2 2 2
## 
## Within cluster sum of squares by cluster:
## [1] 19.56137 52.67700 25.74089
##  (between_SS / total_SS =  79.3 %)
## 
## Available components:
## 
## [1] "cluster"      "centers"      "totss"        "withinss"    
## [5] "tot.withinss" "betweenss"    "size"         "iter"        
## [9] "ifault"
plot(x, col=(km.out$cluster+1), main="K-Means Clustering Results with K=3", xlab="", ylab="", pch=20, cex=2)

set.seed(3)
km.out=kmeans(x,3,nstart=1)
km.out$tot.withinss
## [1] 104.3319
km.out=kmeans(x,3,nstart=20)
km.out$tot.withinss
## [1] 97.97927
# Hierarchical Clustering

hc.complete=hclust(dist(x), method="complete")
hc.average=hclust(dist(x), method="average")
hc.single=hclust(dist(x), method="single")
par(mfrow=c(1,3))
plot(hc.complete,main="Complete Linkage", xlab="", sub="", cex=.9)
plot(hc.average, main="Average Linkage", xlab="", sub="", cex=.9)
plot(hc.single, main="Single Linkage", xlab="", sub="", cex=.9)

cutree(hc.complete, 2)
##  [1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2
## [36] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
cutree(hc.average, 2)
##  [1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 1 2 2
## [36] 2 2 2 2 2 2 2 2 1 2 1 2 2 2 2
cutree(hc.single, 2)
##  [1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [36] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
cutree(hc.single, 4)
##  [1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 3 3 3 3 3 3 3 3 3 3
## [36] 3 3 3 3 3 3 4 3 3 3 3 3 3 3 3
xsc=scale(x)
plot(hclust(dist(xsc), method="complete"), main="Hierarchical Clustering with Scaled Features")
x=matrix(rnorm(30*3), ncol=3)
dd=as.dist(1-cor(t(x)))
plot(hclust(dd, method="complete"), main="Complete Linkage with Correlation-Based Distance", xlab="", sub="")


# Chapter 10 Lab 3: NCI60 Data Example

# The NCI60 data

library(ISLR)
nci.labs=NCI60$labs
nci.data=NCI60$data
dim(nci.data)
## [1]   64 6830
nci.labs[1:4]
## [1] "CNS"   "CNS"   "CNS"   "RENAL"
table(nci.labs)
## nci.labs
##      BREAST         CNS       COLON K562A-repro K562B-repro    LEUKEMIA 
##           7           5           7           1           1           6 
## MCF7A-repro MCF7D-repro    MELANOMA       NSCLC     OVARIAN    PROSTATE 
##           1           1           8           9           6           2 
##       RENAL     UNKNOWN 
##           9           1
# PCA on the NCI60 Data

pr.out=prcomp(nci.data, scale=TRUE)
Cols=function(vec){
    cols=rainbow(length(unique(vec)))
    return(cols[as.numeric(as.factor(vec))])
  }
par(mfrow=c(1,2))

plot(pr.out$x[,1:2], col=Cols(nci.labs), pch=19,xlab="Z1",ylab="Z2")
plot(pr.out$x[,c(1,3)], col=Cols(nci.labs), pch=19,xlab="Z1",ylab="Z3")

summary(pr.out)
## Importance of components:
##                            PC1      PC2      PC3      PC4      PC5
## Standard deviation     27.8535 21.48136 19.82046 17.03256 15.97181
## Proportion of Variance  0.1136  0.06756  0.05752  0.04248  0.03735
## Cumulative Proportion   0.1136  0.18115  0.23867  0.28115  0.31850
##                             PC6      PC7      PC8      PC9     PC10
## Standard deviation     15.72108 14.47145 13.54427 13.14400 12.73860
## Proportion of Variance  0.03619  0.03066  0.02686  0.02529  0.02376
## Cumulative Proportion   0.35468  0.38534  0.41220  0.43750  0.46126
##                            PC11     PC12     PC13     PC14     PC15
## Standard deviation     12.68672 12.15769 11.83019 11.62554 11.43779
## Proportion of Variance  0.02357  0.02164  0.02049  0.01979  0.01915
## Cumulative Proportion   0.48482  0.50646  0.52695  0.54674  0.56590
##                            PC16     PC17     PC18     PC19    PC20
## Standard deviation     11.00051 10.65666 10.48880 10.43518 10.3219
## Proportion of Variance  0.01772  0.01663  0.01611  0.01594  0.0156
## Cumulative Proportion   0.58361  0.60024  0.61635  0.63229  0.6479
##                            PC21    PC22    PC23    PC24    PC25    PC26
## Standard deviation     10.14608 10.0544 9.90265 9.64766 9.50764 9.33253
## Proportion of Variance  0.01507  0.0148 0.01436 0.01363 0.01324 0.01275
## Cumulative Proportion   0.66296  0.6778 0.69212 0.70575 0.71899 0.73174
##                           PC27   PC28    PC29    PC30    PC31    PC32
## Standard deviation     9.27320 9.0900 8.98117 8.75003 8.59962 8.44738
## Proportion of Variance 0.01259 0.0121 0.01181 0.01121 0.01083 0.01045
## Cumulative Proportion  0.74433 0.7564 0.76824 0.77945 0.79027 0.80072
##                           PC33    PC34    PC35    PC36    PC37    PC38
## Standard deviation     8.37305 8.21579 8.15731 7.97465 7.90446 7.82127
## Proportion of Variance 0.01026 0.00988 0.00974 0.00931 0.00915 0.00896
## Cumulative Proportion  0.81099 0.82087 0.83061 0.83992 0.84907 0.85803
##                           PC39    PC40    PC41   PC42    PC43   PC44
## Standard deviation     7.72156 7.58603 7.45619 7.3444 7.10449 7.0131
## Proportion of Variance 0.00873 0.00843 0.00814 0.0079 0.00739 0.0072
## Cumulative Proportion  0.86676 0.87518 0.88332 0.8912 0.89861 0.9058
##                           PC45   PC46    PC47    PC48    PC49    PC50
## Standard deviation     6.95839 6.8663 6.80744 6.64763 6.61607 6.40793
## Proportion of Variance 0.00709 0.0069 0.00678 0.00647 0.00641 0.00601
## Cumulative Proportion  0.91290 0.9198 0.92659 0.93306 0.93947 0.94548
##                           PC51    PC52    PC53    PC54    PC55    PC56
## Standard deviation     6.21984 6.20326 6.06706 5.91805 5.91233 5.73539
## Proportion of Variance 0.00566 0.00563 0.00539 0.00513 0.00512 0.00482
## Cumulative Proportion  0.95114 0.95678 0.96216 0.96729 0.97241 0.97723
##                           PC57   PC58    PC59    PC60    PC61    PC62
## Standard deviation     5.47261 5.2921 5.02117 4.68398 4.17567 4.08212
## Proportion of Variance 0.00438 0.0041 0.00369 0.00321 0.00255 0.00244
## Cumulative Proportion  0.98161 0.9857 0.98940 0.99262 0.99517 0.99761
##                           PC63      PC64
## Standard deviation     4.04124 2.148e-14
## Proportion of Variance 0.00239 0.000e+00
## Cumulative Proportion  1.00000 1.000e+00
plot(pr.out)
pve=100*pr.out$sdev^2/sum(pr.out$sdev^2)
par(mfrow=c(1,2))

plot(pve,  type="o", ylab="PVE", xlab="Principal Component", col="blue")
plot(cumsum(pve), type="o", ylab="Cumulative PVE", xlab="Principal Component", col="brown3")

# Clustering the Observations of the NCI60 Data

sd.data=scale(nci.data)
par(mfrow=c(1,3))
data.dist=dist(sd.data)
plot(hclust(data.dist), labels=nci.labs, main="Complete Linkage", xlab="", sub="",ylab="")
plot(hclust(data.dist, method="average"), labels=nci.labs, main="Average Linkage", xlab="", sub="",ylab="")
plot(hclust(data.dist, method="single"), labels=nci.labs,  main="Single Linkage", xlab="", sub="",ylab="")

hc.out=hclust(dist(sd.data))
hc.clusters=cutree(hc.out,4)
table(hc.clusters,nci.labs)
##            nci.labs
## hc.clusters BREAST CNS COLON K562A-repro K562B-repro LEUKEMIA MCF7A-repro
##           1      2   3     2           0           0        0           0
##           2      3   2     0           0           0        0           0
##           3      0   0     0           1           1        6           0
##           4      2   0     5           0           0        0           1
##            nci.labs
## hc.clusters MCF7D-repro MELANOMA NSCLC OVARIAN PROSTATE RENAL UNKNOWN
##           1           0        8     8       6        2     8       1
##           2           0        0     1       0        0     1       0
##           3           0        0     0       0        0     0       0
##           4           1        0     0       0        0     0       0
par(mfrow=c(1,1))
plot(hc.out, labels=nci.labs)
abline(h=139, col="red")

hc.out
## 
## Call:
## hclust(d = dist(sd.data))
## 
## Cluster method   : complete 
## Distance         : euclidean 
## Number of objects: 64
set.seed(2)
km.out=kmeans(sd.data, 4, nstart=20)
km.clusters=km.out$cluster
table(km.clusters,hc.clusters)
##            hc.clusters
## km.clusters  1  2  3  4
##           1 11  0  0  9
##           2  0  0  8  0
##           3  9  0  0  0
##           4 20  7  0  0
hc.out=hclust(dist(pr.out$x[,1:5]))
plot(hc.out, labels=nci.labs, main="Hier. Clust. on First Five Score Vectors")

table(cutree(hc.out,4), nci.labs)
##    nci.labs
##     BREAST CNS COLON K562A-repro K562B-repro LEUKEMIA MCF7A-repro
##   1      0   2     7           0           0        2           0
##   2      5   3     0           0           0        0           0
##   3      0   0     0           1           1        4           0
##   4      2   0     0           0           0        0           1
##    nci.labs
##     MCF7D-repro MELANOMA NSCLC OVARIAN PROSTATE RENAL UNKNOWN
##   1           0        1     8       5        2     7       0
##   2           0        7     1       1        0     2       1
##   3           0        0     0       0        0     0       0
##   4           1        0     0       0        0     0       0

  1. Compiled by Subasish Das